solana/runtime/src/accounts_index.rs

4351 lines
152 KiB
Rust

use {
crate::{
accounts_index_storage::{AccountsIndexStorage, Startup},
accounts_partition::RentPayingAccountsByPartition,
ancestors::Ancestors,
bucket_map_holder::{Age, BucketMapHolder},
contains::Contains,
in_mem_accounts_index::{InMemAccountsIndex, InsertNewEntryResults},
inline_spl_token::{self, GenericTokenAccount},
inline_spl_token_2022,
pubkey_bins::PubkeyBinCalculator24,
rolling_bit_field::RollingBitField,
secondary_index::*,
},
log::*,
once_cell::sync::OnceCell,
ouroboros::self_referencing,
rand::{thread_rng, Rng},
rayon::{
iter::{IntoParallelIterator, ParallelIterator},
ThreadPool,
},
solana_measure::measure::Measure,
solana_sdk::{
account::ReadableAccount,
clock::{BankId, Slot},
pubkey::Pubkey,
},
std::{
collections::{btree_map::BTreeMap, HashSet},
fmt::Debug,
ops::{
Bound,
Bound::{Excluded, Included, Unbounded},
Range, RangeBounds,
},
path::PathBuf,
sync::{
atomic::{AtomicBool, AtomicU64, AtomicU8, AtomicUsize, Ordering},
Arc, Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard,
},
},
thiserror::Error,
};
pub const ITER_BATCH_SIZE: usize = 1000;
pub const BINS_DEFAULT: usize = 8192;
pub const BINS_FOR_TESTING: usize = 2; // we want > 1, but each bin is a few disk files with a disk based index, so fewer is better
pub const BINS_FOR_BENCHMARKS: usize = 8192;
pub const FLUSH_THREADS_TESTING: usize = 1;
pub const ACCOUNTS_INDEX_CONFIG_FOR_TESTING: AccountsIndexConfig = AccountsIndexConfig {
bins: Some(BINS_FOR_TESTING),
flush_threads: Some(FLUSH_THREADS_TESTING),
drives: None,
index_limit_mb: IndexLimitMb::Unspecified,
ages_to_stay_in_cache: None,
scan_results_limit_bytes: None,
started_from_validator: false,
};
pub const ACCOUNTS_INDEX_CONFIG_FOR_BENCHMARKS: AccountsIndexConfig = AccountsIndexConfig {
bins: Some(BINS_FOR_BENCHMARKS),
flush_threads: Some(FLUSH_THREADS_TESTING),
drives: None,
index_limit_mb: IndexLimitMb::Unspecified,
ages_to_stay_in_cache: None,
scan_results_limit_bytes: None,
started_from_validator: false,
};
pub type ScanResult<T> = Result<T, ScanError>;
pub type SlotList<T> = Vec<(Slot, T)>;
pub type SlotSlice<'s, T> = &'s [(Slot, T)];
pub type RefCount = u64;
pub type AccountMap<T, U> = Arc<InMemAccountsIndex<T, U>>;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// how accounts index 'upsert' should handle reclaims
pub enum UpsertReclaim {
/// previous entry for this slot in the index is expected to be cached, so irrelevant to reclaims
PreviousSlotEntryWasCached,
/// previous entry for this slot in the index may need to be reclaimed, so return it.
/// reclaims is the only output of upsert, requiring a synchronous execution
PopulateReclaims,
/// overwrite existing data in the same slot and do not return in 'reclaims'
IgnoreReclaims,
}
#[derive(Debug, Default)]
pub struct ScanConfig {
/// checked by the scan. When true, abort scan.
pub abort: Option<Arc<AtomicBool>>,
/// true to allow return of all matching items and allow them to be unsorted.
/// This is more efficient.
pub collect_all_unsorted: bool,
}
impl ScanConfig {
pub fn new(collect_all_unsorted: bool) -> Self {
Self {
collect_all_unsorted,
..ScanConfig::default()
}
}
/// mark the scan as aborted
pub fn abort(&self) {
if let Some(abort) = self.abort.as_ref() {
abort.store(true, Ordering::Relaxed)
}
}
/// use existing 'abort' if available, otherwise allocate one
pub fn recreate_with_abort(&self) -> Self {
ScanConfig {
abort: Some(self.abort.as_ref().map(Arc::clone).unwrap_or_default()),
collect_all_unsorted: self.collect_all_unsorted,
}
}
/// true if scan should abort
pub fn is_aborted(&self) -> bool {
if let Some(abort) = self.abort.as_ref() {
abort.load(Ordering::Relaxed)
} else {
false
}
}
}
pub(crate) type AccountMapEntry<T> = Arc<AccountMapEntryInner<T>>;
pub trait IsCached {
fn is_cached(&self) -> bool;
}
pub trait IndexValue: 'static + IsCached + ZeroLamport + DiskIndexValue {}
pub trait DiskIndexValue:
'static + Clone + Debug + PartialEq + Copy + Default + Sync + Send
{
}
#[derive(Error, Debug, PartialEq, Eq)]
pub enum ScanError {
#[error("Node detected it replayed bad version of slot {slot:?} with id {bank_id:?}, thus the scan on said slot was aborted")]
SlotRemoved { slot: Slot, bank_id: BankId },
#[error("scan aborted: {0}")]
Aborted(String),
}
enum ScanTypes<R: RangeBounds<Pubkey>> {
Unindexed(Option<R>),
Indexed(IndexKey),
}
#[derive(Debug, Clone, Copy)]
pub enum IndexKey {
ProgramId(Pubkey),
SplTokenMint(Pubkey),
SplTokenOwner(Pubkey),
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum AccountIndex {
ProgramId,
SplTokenMint,
SplTokenOwner,
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct AccountSecondaryIndexesIncludeExclude {
pub exclude: bool,
pub keys: HashSet<Pubkey>,
}
/// specification of how much memory in-mem portion of account index can use
#[derive(Debug, Clone)]
pub enum IndexLimitMb {
/// nothing explicit specified, so default
Unspecified,
/// limit was specified, use disk index for rest
Limit(usize),
/// in-mem-only was specified, no disk index
InMemOnly,
}
impl Default for IndexLimitMb {
fn default() -> Self {
Self::Unspecified
}
}
#[derive(Debug, Default, Clone)]
pub struct AccountsIndexConfig {
pub bins: Option<usize>,
pub flush_threads: Option<usize>,
pub drives: Option<Vec<PathBuf>>,
pub index_limit_mb: IndexLimitMb,
pub ages_to_stay_in_cache: Option<Age>,
pub scan_results_limit_bytes: Option<usize>,
/// true if the accounts index is being created as a result of being started as a validator (as opposed to test, etc.)
pub started_from_validator: bool,
}
#[derive(Debug, Default, Clone)]
pub struct AccountSecondaryIndexes {
pub keys: Option<AccountSecondaryIndexesIncludeExclude>,
pub indexes: HashSet<AccountIndex>,
}
impl AccountSecondaryIndexes {
pub fn is_empty(&self) -> bool {
self.indexes.is_empty()
}
pub fn contains(&self, index: &AccountIndex) -> bool {
self.indexes.contains(index)
}
pub fn include_key(&self, key: &Pubkey) -> bool {
match &self.keys {
Some(options) => options.exclude ^ options.keys.contains(key),
None => true, // include all keys
}
}
}
#[derive(Debug, Default)]
/// data per entry in in-mem accounts index
/// used to keep track of consistency with disk index
pub struct AccountMapEntryMeta {
/// true if entry in in-mem idx has changes and needs to be written to disk
pub dirty: AtomicBool,
/// 'age' at which this entry should be purged from the cache (implements lru)
pub age: AtomicU8,
}
impl AccountMapEntryMeta {
pub fn new_dirty<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>>(
storage: &Arc<BucketMapHolder<T, U>>,
is_cached: bool,
) -> Self {
AccountMapEntryMeta {
dirty: AtomicBool::new(true),
age: AtomicU8::new(storage.future_age_to_flush(is_cached)),
}
}
pub fn new_clean<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>>(
storage: &Arc<BucketMapHolder<T, U>>,
) -> Self {
AccountMapEntryMeta {
dirty: AtomicBool::new(false),
age: AtomicU8::new(storage.future_age_to_flush(false)),
}
}
}
#[derive(Debug, Default)]
/// one entry in the in-mem accounts index
/// Represents the value for an account key in the in-memory accounts index
pub struct AccountMapEntryInner<T> {
/// number of alive slots that contain >= 1 instances of account data for this pubkey
/// where alive represents a slot that has not yet been removed by clean via AccountsDB::clean_stored_dead_slots() for containing no up to date account information
ref_count: AtomicU64,
/// list of slots in which this pubkey was updated
/// Note that 'clean' removes outdated entries (ie. older roots) from this slot_list
/// purge_slot() also removes non-rooted slots from this list
pub slot_list: RwLock<SlotList<T>>,
/// synchronization metadata for in-memory state since last flush to disk accounts index
pub meta: AccountMapEntryMeta,
}
impl<T: IndexValue> AccountMapEntryInner<T> {
pub fn new(slot_list: SlotList<T>, ref_count: RefCount, meta: AccountMapEntryMeta) -> Self {
Self {
slot_list: RwLock::new(slot_list),
ref_count: AtomicU64::new(ref_count),
meta,
}
}
pub fn ref_count(&self) -> RefCount {
self.ref_count.load(Ordering::Acquire)
}
pub fn addref(&self) {
self.ref_count.fetch_add(1, Ordering::Release);
self.set_dirty(true);
}
/// decrement the ref count
/// return true if the old refcount was already 0. This indicates an under refcounting error in the system.
pub fn unref(&self) -> bool {
let previous = self.ref_count.fetch_sub(1, Ordering::Release);
self.set_dirty(true);
if previous == 0 {
inc_new_counter_info!("accounts_index-deref_from_0", 1);
}
previous == 0
}
pub fn dirty(&self) -> bool {
self.meta.dirty.load(Ordering::Acquire)
}
pub fn set_dirty(&self, value: bool) {
self.meta.dirty.store(value, Ordering::Release)
}
/// set dirty to false, return true if was dirty
pub fn clear_dirty(&self) -> bool {
self.meta
.dirty
.compare_exchange(true, false, Ordering::AcqRel, Ordering::Relaxed)
.is_ok()
}
pub fn age(&self) -> Age {
self.meta.age.load(Ordering::Acquire)
}
pub fn set_age(&self, value: Age) {
self.meta.age.store(value, Ordering::Release)
}
/// set age to 'next_age' if 'self.age' is 'expected_age'
pub fn try_exchange_age(&self, next_age: Age, expected_age: Age) {
let _ = self.meta.age.compare_exchange(
expected_age,
next_age,
Ordering::AcqRel,
Ordering::Relaxed,
);
}
}
pub enum AccountIndexGetResult<T: IndexValue> {
/// (index entry, index in slot list)
Found(ReadAccountMapEntry<T>, usize),
NotFound,
}
#[self_referencing]
pub struct ReadAccountMapEntry<T: IndexValue> {
owned_entry: AccountMapEntry<T>,
#[borrows(owned_entry)]
#[covariant]
slot_list_guard: RwLockReadGuard<'this, SlotList<T>>,
}
impl<T: IndexValue> Debug for ReadAccountMapEntry<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:?}", self.borrow_owned_entry())
}
}
impl<T: IndexValue> ReadAccountMapEntry<T> {
pub fn from_account_map_entry(account_map_entry: AccountMapEntry<T>) -> Self {
ReadAccountMapEntryBuilder {
owned_entry: account_map_entry,
slot_list_guard_builder: |lock| lock.slot_list.read().unwrap(),
}
.build()
}
pub fn slot_list(&self) -> &SlotList<T> {
self.borrow_slot_list_guard()
}
pub fn ref_count(&self) -> RefCount {
self.borrow_owned_entry().ref_count()
}
pub fn addref(&self) {
self.borrow_owned_entry().addref();
}
}
/// can be used to pre-allocate structures for insertion into accounts index outside of lock
pub enum PreAllocatedAccountMapEntry<T: IndexValue> {
Entry(AccountMapEntry<T>),
Raw((Slot, T)),
}
impl<T: IndexValue> ZeroLamport for PreAllocatedAccountMapEntry<T> {
fn is_zero_lamport(&self) -> bool {
match self {
PreAllocatedAccountMapEntry::Entry(entry) => {
entry.slot_list.read().unwrap()[0].1.is_zero_lamport()
}
PreAllocatedAccountMapEntry::Raw(raw) => raw.1.is_zero_lamport(),
}
}
}
impl<T: IndexValue> From<PreAllocatedAccountMapEntry<T>> for (Slot, T) {
fn from(source: PreAllocatedAccountMapEntry<T>) -> (Slot, T) {
match source {
PreAllocatedAccountMapEntry::Entry(entry) => entry.slot_list.read().unwrap()[0],
PreAllocatedAccountMapEntry::Raw(raw) => raw,
}
}
}
impl<T: IndexValue> PreAllocatedAccountMapEntry<T> {
/// create an entry that is equivalent to this process:
/// 1. new empty (refcount=0, slot_list={})
/// 2. update(slot, account_info)
/// This code is called when the first entry [ie. (slot,account_info)] for a pubkey is inserted into the index.
pub fn new<U: DiskIndexValue + From<T> + Into<T>>(
slot: Slot,
account_info: T,
storage: &Arc<BucketMapHolder<T, U>>,
store_raw: bool,
) -> PreAllocatedAccountMapEntry<T> {
if store_raw {
Self::Raw((slot, account_info))
} else {
Self::Entry(Self::allocate(slot, account_info, storage))
}
}
fn allocate<U: DiskIndexValue + From<T> + Into<T>>(
slot: Slot,
account_info: T,
storage: &Arc<BucketMapHolder<T, U>>,
) -> AccountMapEntry<T> {
let is_cached = account_info.is_cached();
let ref_count = u64::from(!is_cached);
let meta = AccountMapEntryMeta::new_dirty(storage, is_cached);
Arc::new(AccountMapEntryInner::new(
vec![(slot, account_info)],
ref_count,
meta,
))
}
pub fn into_account_map_entry<U: DiskIndexValue + From<T> + Into<T>>(
self,
storage: &Arc<BucketMapHolder<T, U>>,
) -> AccountMapEntry<T> {
match self {
Self::Entry(entry) => entry,
Self::Raw((slot, account_info)) => Self::allocate(slot, account_info, storage),
}
}
}
#[derive(Debug)]
pub struct RootsTracker {
/// Current roots where appendvecs or write cache has account data.
/// Constructed during load from snapshots.
/// Updated every time we add a new root or clean/shrink an append vec into irrelevancy.
/// Range is approximately the last N slots where N is # slots per epoch.
pub(crate) alive_roots: RollingBitField,
/// Set of roots that are roots now or were roots at one point in time.
/// Range is approximately the last N slots where N is # slots per epoch.
/// A root could remain here if all entries in the append vec at that root are cleaned/shrunk and there are no
/// more entries for that slot. 'alive_roots' will no longer contain such roots.
/// This is a superset of 'alive_roots'
pub(crate) historical_roots: RollingBitField,
uncleaned_roots: HashSet<Slot>,
previous_uncleaned_roots: HashSet<Slot>,
}
impl Default for RootsTracker {
fn default() -> Self {
// we expect to keep a rolling set of 400k slots around at a time
// 4M gives us plenty of extra(?!) room to handle a width 10x what we should need.
// cost is 4M bits of memory, which is .5MB
RootsTracker::new(4194304)
}
}
impl RootsTracker {
pub fn new(max_width: u64) -> Self {
Self {
alive_roots: RollingBitField::new(max_width),
historical_roots: RollingBitField::new(max_width),
uncleaned_roots: HashSet::new(),
previous_uncleaned_roots: HashSet::new(),
}
}
pub fn min_alive_root(&self) -> Option<Slot> {
self.alive_roots.min()
}
}
#[derive(Debug, Default)]
pub struct AccountsIndexRootsStats {
pub roots_len: Option<usize>,
pub uncleaned_roots_len: Option<usize>,
pub previous_uncleaned_roots_len: Option<usize>,
pub roots_range: Option<u64>,
pub historical_roots_len: Option<usize>,
pub rooted_cleaned_count: usize,
pub unrooted_cleaned_count: usize,
pub clean_unref_from_storage_us: u64,
pub clean_dead_slot_us: u64,
}
pub struct AccountsIndexIterator<'a, T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> {
account_maps: &'a LockMapTypeSlice<T, U>,
bin_calculator: &'a PubkeyBinCalculator24,
start_bound: Bound<Pubkey>,
end_bound: Bound<Pubkey>,
is_finished: bool,
collect_all_unsorted: bool,
}
impl<'a, T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> AccountsIndexIterator<'a, T, U> {
fn range<R>(
map: &AccountMaps<T, U>,
range: R,
collect_all_unsorted: bool,
) -> Vec<(Pubkey, AccountMapEntry<T>)>
where
R: RangeBounds<Pubkey> + std::fmt::Debug,
{
let mut result = map.items(&range);
if !collect_all_unsorted {
result.sort_unstable_by(|a, b| a.0.cmp(&b.0));
}
result
}
fn clone_bound(bound: Bound<&Pubkey>) -> Bound<Pubkey> {
match bound {
Unbounded => Unbounded,
Included(k) => Included(*k),
Excluded(k) => Excluded(*k),
}
}
fn bin_from_bound(&self, bound: &Bound<Pubkey>, unbounded_bin: usize) -> usize {
match bound {
Bound::Included(bound) | Bound::Excluded(bound) => {
self.bin_calculator.bin_from_pubkey(bound)
}
Bound::Unbounded => unbounded_bin,
}
}
fn start_bin(&self) -> usize {
// start in bin where 'start_bound' would exist
self.bin_from_bound(&self.start_bound, 0)
}
fn end_bin_inclusive(&self) -> usize {
// end in bin where 'end_bound' would exist
self.bin_from_bound(&self.end_bound, usize::MAX)
}
fn bin_start_and_range(&self) -> (usize, usize) {
let start_bin = self.start_bin();
// calculate the max range of bins to look in
let end_bin_inclusive = self.end_bin_inclusive();
let bin_range = if start_bin > end_bin_inclusive {
0 // empty range
} else if end_bin_inclusive == usize::MAX {
usize::MAX
} else {
// the range is end_inclusive + 1 - start
// end_inclusive could be usize::MAX already if no bound was specified
end_bin_inclusive.saturating_add(1) - start_bin
};
(start_bin, bin_range)
}
pub fn new<R>(
index: &'a AccountsIndex<T, U>,
range: Option<&R>,
collect_all_unsorted: bool,
) -> Self
where
R: RangeBounds<Pubkey>,
{
Self {
start_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.start_bound()))
.unwrap_or(Unbounded),
end_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.end_bound()))
.unwrap_or(Unbounded),
account_maps: &index.account_maps,
is_finished: false,
bin_calculator: &index.bin_calculator,
collect_all_unsorted,
}
}
pub fn hold_range_in_memory<R>(&self, range: &R, start_holding: bool, thread_pool: &ThreadPool)
where
R: RangeBounds<Pubkey> + Debug + Sync,
{
// forward this hold request ONLY to the bins which contain keys in the specified range
let (start_bin, bin_range) = self.bin_start_and_range();
// the idea is this range shouldn't be more than a few buckets, but the process of loading from disk buckets is very slow
// so, parallelize the bucket loads
thread_pool.install(|| {
(0..bin_range).into_par_iter().for_each(|idx| {
let map = &self.account_maps[idx + start_bin];
map.hold_range_in_memory(range, start_holding);
});
});
}
}
impl<'a, T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> Iterator
for AccountsIndexIterator<'a, T, U>
{
type Item = Vec<(Pubkey, AccountMapEntry<T>)>;
fn next(&mut self) -> Option<Self::Item> {
if self.is_finished {
return None;
}
let (start_bin, bin_range) = self.bin_start_and_range();
let mut chunk = Vec::with_capacity(ITER_BATCH_SIZE);
'outer: for i in self.account_maps.iter().skip(start_bin).take(bin_range) {
for (pubkey, account_map_entry) in Self::range(
&i,
(self.start_bound, self.end_bound),
self.collect_all_unsorted,
) {
if chunk.len() >= ITER_BATCH_SIZE && !self.collect_all_unsorted {
break 'outer;
}
let item = (pubkey, account_map_entry);
chunk.push(item);
}
}
if chunk.is_empty() {
self.is_finished = true;
return None;
} else if self.collect_all_unsorted {
self.is_finished = true;
}
self.start_bound = Excluded(chunk.last().unwrap().0);
Some(chunk)
}
}
pub trait ZeroLamport {
fn is_zero_lamport(&self) -> bool;
}
type MapType<T, U> = AccountMap<T, U>;
type LockMapType<T, U> = Vec<MapType<T, U>>;
type LockMapTypeSlice<T, U> = [MapType<T, U>];
type AccountMaps<'a, T, U> = &'a MapType<T, U>;
#[derive(Debug, Default)]
pub struct ScanSlotTracker {
is_removed: bool,
}
impl ScanSlotTracker {
pub fn is_removed(&self) -> bool {
self.is_removed
}
pub fn mark_removed(&mut self) {
self.is_removed = true;
}
}
#[derive(Copy, Clone)]
pub enum AccountsIndexScanResult {
/// if the entry is not in the in-memory index, do not add it, make no modifications to it
None,
/// keep the entry in the in-memory index
KeepInMemory,
/// reduce refcount by 1
Unref,
}
#[derive(Debug)]
/// T: account info type to interact in in-memory items
/// U: account info type to be persisted to disk
pub struct AccountsIndex<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> {
pub account_maps: LockMapType<T, U>,
pub bin_calculator: PubkeyBinCalculator24,
program_id_index: SecondaryIndex<DashMapSecondaryIndexEntry>,
spl_token_mint_index: SecondaryIndex<DashMapSecondaryIndexEntry>,
spl_token_owner_index: SecondaryIndex<RwLockSecondaryIndexEntry>,
pub(crate) roots_tracker: RwLock<RootsTracker>,
ongoing_scan_roots: RwLock<BTreeMap<Slot, u64>>,
// Each scan has some latest slot `S` that is the tip of the fork the scan
// is iterating over. The unique id of that slot `S` is recorded here (note we don't use
// `S` as the id because there can be more than one version of a slot `S`). If a fork
// is abandoned, all of the slots on that fork up to `S` will be removed via
// `AccountsDb::remove_unrooted_slots()`. When the scan finishes, it'll realize that the
// results of the scan may have been corrupted by `remove_unrooted_slots` and abort its results.
//
// `removed_bank_ids` tracks all the slot ids that were removed via `remove_unrooted_slots()` so any attempted scans
// on any of these slots fails. This is safe to purge once the associated Bank is dropped and
// scanning the fork with that Bank at the tip is no longer possible.
pub removed_bank_ids: Mutex<HashSet<BankId>>,
storage: AccountsIndexStorage<T, U>,
/// when a scan's accumulated data exceeds this limit, abort the scan
pub scan_results_limit_bytes: Option<usize>,
/// # roots added since last check
pub roots_added: AtomicUsize,
/// # roots removed since last check
pub roots_removed: AtomicUsize,
/// # scans active currently
pub active_scans: AtomicUsize,
/// # of slots between latest max and latest scan
pub max_distance_to_min_scan_slot: AtomicU64,
/// populated at generate_index time - accounts that could possibly be rent paying
pub rent_paying_accounts_by_partition: OnceCell<RentPayingAccountsByPartition>,
}
impl<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> AccountsIndex<T, U> {
pub fn default_for_tests() -> Self {
Self::new(Some(ACCOUNTS_INDEX_CONFIG_FOR_TESTING), &Arc::default())
}
pub fn new(config: Option<AccountsIndexConfig>, exit: &Arc<AtomicBool>) -> Self {
let scan_results_limit_bytes = config
.as_ref()
.and_then(|config| config.scan_results_limit_bytes);
let (account_maps, bin_calculator, storage) = Self::allocate_accounts_index(config, exit);
Self {
account_maps,
bin_calculator,
program_id_index: SecondaryIndex::<DashMapSecondaryIndexEntry>::new(
"program_id_index_stats",
),
spl_token_mint_index: SecondaryIndex::<DashMapSecondaryIndexEntry>::new(
"spl_token_mint_index_stats",
),
spl_token_owner_index: SecondaryIndex::<RwLockSecondaryIndexEntry>::new(
"spl_token_owner_index_stats",
),
roots_tracker: RwLock::<RootsTracker>::default(),
ongoing_scan_roots: RwLock::<BTreeMap<Slot, u64>>::default(),
removed_bank_ids: Mutex::<HashSet<BankId>>::default(),
storage,
scan_results_limit_bytes,
roots_added: AtomicUsize::default(),
roots_removed: AtomicUsize::default(),
active_scans: AtomicUsize::default(),
max_distance_to_min_scan_slot: AtomicU64::default(),
rent_paying_accounts_by_partition: OnceCell::default(),
}
}
fn allocate_accounts_index(
config: Option<AccountsIndexConfig>,
exit: &Arc<AtomicBool>,
) -> (
LockMapType<T, U>,
PubkeyBinCalculator24,
AccountsIndexStorage<T, U>,
) {
let bins = config
.as_ref()
.and_then(|config| config.bins)
.unwrap_or(BINS_DEFAULT);
// create bin_calculator early to verify # bins is reasonable
let bin_calculator = PubkeyBinCalculator24::new(bins);
let storage = AccountsIndexStorage::new(bins, &config, exit);
let account_maps = (0..bins)
.map(|bin| Arc::clone(&storage.in_mem[bin]))
.collect::<Vec<_>>();
(account_maps, bin_calculator, storage)
}
fn iter<R>(&self, range: Option<&R>, collect_all_unsorted: bool) -> AccountsIndexIterator<T, U>
where
R: RangeBounds<Pubkey>,
{
AccountsIndexIterator::new(self, range, collect_all_unsorted)
}
/// is the accounts index using disk as a backing store
pub fn is_disk_index_enabled(&self) -> bool {
self.storage.storage.is_disk_index_enabled()
}
fn min_ongoing_scan_root_from_btree(ongoing_scan_roots: &BTreeMap<Slot, u64>) -> Option<Slot> {
ongoing_scan_roots.keys().next().cloned()
}
fn do_checked_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
scan_bank_id: BankId,
func: F,
scan_type: ScanTypes<R>,
config: &ScanConfig,
) -> Result<(), ScanError>
where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey> + std::fmt::Debug,
{
{
let locked_removed_bank_ids = self.removed_bank_ids.lock().unwrap();
if locked_removed_bank_ids.contains(&scan_bank_id) {
return Err(ScanError::SlotRemoved {
slot: ancestors.max_slot(),
bank_id: scan_bank_id,
});
}
}
self.active_scans.fetch_add(1, Ordering::Relaxed);
let max_root = {
let mut w_ongoing_scan_roots = self
// This lock is also grabbed by clean_accounts(), so clean
// has at most cleaned up to the current `max_root` (since
// clean only happens *after* BankForks::set_root() which sets
// the `max_root`)
.ongoing_scan_roots
.write()
.unwrap();
// `max_root()` grabs a lock while
// the `ongoing_scan_roots` lock is held,
// make sure inverse doesn't happen to avoid
// deadlock
let max_root_inclusive = self.max_root_inclusive();
if let Some(min_ongoing_scan_root) =
Self::min_ongoing_scan_root_from_btree(&w_ongoing_scan_roots)
{
if min_ongoing_scan_root < max_root_inclusive {
let current = max_root_inclusive - min_ongoing_scan_root;
self.max_distance_to_min_scan_slot
.fetch_max(current, Ordering::Relaxed);
}
}
*w_ongoing_scan_roots.entry(max_root_inclusive).or_default() += 1;
max_root_inclusive
};
// First we show that for any bank `B` that is a descendant of
// the current `max_root`, it must be true that and `B.ancestors.contains(max_root)`,
// regardless of the pattern of `squash()` behavior, where `ancestors` is the set
// of ancestors that is tracked in each bank.
//
// Proof: At startup, if starting from a snapshot, generate_index() adds all banks
// in the snapshot to the index via `add_root()` and so `max_root` will be the
// greatest of these. Thus, so the claim holds at startup since there are no
// descendants of `max_root`.
//
// Now we proceed by induction on each `BankForks::set_root()`.
// Assume the claim holds when the `max_root` is `R`. Call the set of
// descendants of `R` present in BankForks `R_descendants`.
//
// Then for any banks `B` in `R_descendants`, it must be that `B.ancestors.contains(S)`,
// where `S` is any ancestor of `B` such that `S >= R`.
//
// For example:
// `R` -> `A` -> `C` -> `B`
// Then `B.ancestors == {R, A, C}`
//
// Next we call `BankForks::set_root()` at some descendant of `R`, `R_new`,
// where `R_new > R`.
//
// When we squash `R_new`, `max_root` in the AccountsIndex here is now set to `R_new`,
// and all nondescendants of `R_new` are pruned.
//
// Now consider any outstanding references to banks in the system that are descended from
// `max_root == R_new`. Take any one of these references and call it `B`. Because `B` is
// a descendant of `R_new`, this means `B` was also a descendant of `R`. Thus `B`
// must be a member of `R_descendants` because `B` was constructed and added to
// BankForks before the `set_root`.
//
// This means by the guarantees of `R_descendants` described above, because
// `R_new` is an ancestor of `B`, and `R < R_new < B`, then `B.ancestors.contains(R_new)`.
//
// Now until the next `set_root`, any new banks constructed from `new_from_parent` will
// also have `max_root == R_new` in their ancestor set, so the claim holds for those descendants
// as well. Once the next `set_root` happens, we once again update `max_root` and the same
// inductive argument can be applied again to show the claim holds.
// Check that the `max_root` is present in `ancestors`. From the proof above, if
// `max_root` is not present in `ancestors`, this means the bank `B` with the
// given `ancestors` is not descended from `max_root, which means
// either:
// 1) `B` is on a different fork or
// 2) `B` is an ancestor of `max_root`.
// In both cases we can ignore the given ancestors and instead just rely on the roots
// present as `max_root` indicates the roots present in the index are more up to date
// than the ancestors given.
let empty = Ancestors::default();
let ancestors = if ancestors.contains_key(&max_root) {
ancestors
} else {
/*
This takes of edge cases like:
Diagram 1:
slot 0
|
slot 1
/ \
slot 2 |
| slot 3 (max root)
slot 4 (scan)
By the time the scan on slot 4 is called, slot 2 may already have been
cleaned by a clean on slot 3, but slot 4 may not have been cleaned.
The state in slot 2 would have been purged and is not saved in any roots.
In this case, a scan on slot 4 wouldn't accurately reflect the state when bank 4
was frozen. In cases like this, we default to a scan on the latest roots by
removing all `ancestors`.
*/
&empty
};
/*
Now there are two cases, either `ancestors` is empty or nonempty:
1) If ancestors is empty, then this is the same as a scan on a rooted bank,
and `ongoing_scan_roots` provides protection against cleanup of roots necessary
for the scan, and passing `Some(max_root)` to `do_scan_accounts()` ensures newer
roots don't appear in the scan.
2) If ancestors is non-empty, then from the `ancestors_contains(&max_root)` above, we know
that the fork structure must look something like:
Diagram 2:
Build fork structure:
slot 0
|
slot 1 (max_root)
/ \
slot 2 |
| slot 3 (potential newer max root)
slot 4
|
slot 5 (scan)
Consider both types of ancestors, ancestor <= `max_root` and
ancestor > `max_root`, where `max_root == 1` as illustrated above.
a) The set of `ancestors <= max_root` are all rooted, which means their state
is protected by the same guarantees as 1).
b) As for the `ancestors > max_root`, those banks have at least one reference discoverable
through the chain of `Bank::BankRc::parent` starting from the calling bank. For instance
bank 5's parent reference keeps bank 4 alive, which will prevent the `Bank::drop()` from
running and cleaning up bank 4. Furthermore, no cleans can happen past the saved max_root == 1,
so a potential newer max root at 3 will not clean up any of the ancestors > 1, so slot 4
will not be cleaned in the middle of the scan either. (NOTE similar reasoning is employed for
assert!() justification in AccountsDb::retry_to_get_account_accessor)
*/
match scan_type {
ScanTypes::Unindexed(range) => {
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_scan_accounts(metric_name, ancestors, func, range, Some(max_root), config);
}
ScanTypes::Indexed(IndexKey::ProgramId(program_id)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.program_id_index,
&program_id,
Some(max_root),
config,
);
}
ScanTypes::Indexed(IndexKey::SplTokenMint(mint_key)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.spl_token_mint_index,
&mint_key,
Some(max_root),
config,
);
}
ScanTypes::Indexed(IndexKey::SplTokenOwner(owner_key)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.spl_token_owner_index,
&owner_key,
Some(max_root),
config,
);
}
}
{
self.active_scans.fetch_sub(1, Ordering::Relaxed);
let mut ongoing_scan_roots = self.ongoing_scan_roots.write().unwrap();
let count = ongoing_scan_roots.get_mut(&max_root).unwrap();
*count -= 1;
if *count == 0 {
ongoing_scan_roots.remove(&max_root);
}
}
// If the fork with tip at bank `scan_bank_id` was removed during our scan, then the scan
// may have been corrupted, so abort the results.
let was_scan_corrupted = self
.removed_bank_ids
.lock()
.unwrap()
.contains(&scan_bank_id);
if was_scan_corrupted {
Err(ScanError::SlotRemoved {
slot: ancestors.max_slot(),
bank_id: scan_bank_id,
})
} else {
Ok(())
}
}
fn do_unchecked_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
func: F,
range: Option<R>,
config: &ScanConfig,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey> + std::fmt::Debug,
{
self.do_scan_accounts(metric_name, ancestors, func, range, None, config);
}
// Scan accounts and return latest version of each account that is either:
// 1) rooted or
// 2) present in ancestors
fn do_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
mut func: F,
range: Option<R>,
max_root: Option<Slot>,
config: &ScanConfig,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey> + std::fmt::Debug,
{
// TODO: expand to use mint index to find the `pubkey_list` below more efficiently
// instead of scanning the entire range
let mut total_elapsed_timer = Measure::start("total");
let mut num_keys_iterated = 0;
let mut latest_slot_elapsed = 0;
let mut load_account_elapsed = 0;
let mut read_lock_elapsed = 0;
let mut iterator_elapsed = 0;
let mut iterator_timer = Measure::start("iterator_elapsed");
for pubkey_list in self.iter(range.as_ref(), config.collect_all_unsorted) {
iterator_timer.stop();
iterator_elapsed += iterator_timer.as_us();
for (pubkey, list) in pubkey_list {
num_keys_iterated += 1;
let mut read_lock_timer = Measure::start("read_lock");
let list_r = &list.slot_list.read().unwrap();
read_lock_timer.stop();
read_lock_elapsed += read_lock_timer.as_us();
let mut latest_slot_timer = Measure::start("latest_slot");
if let Some(index) = self.latest_slot(Some(ancestors), list_r, max_root) {
latest_slot_timer.stop();
latest_slot_elapsed += latest_slot_timer.as_us();
let mut load_account_timer = Measure::start("load_account");
func(&pubkey, (&list_r[index].1, list_r[index].0));
load_account_timer.stop();
load_account_elapsed += load_account_timer.as_us();
}
if config.is_aborted() {
return;
}
}
iterator_timer = Measure::start("iterator_elapsed");
}
total_elapsed_timer.stop();
if !metric_name.is_empty() {
datapoint_info!(
metric_name,
("total_elapsed", total_elapsed_timer.as_us(), i64),
("latest_slot_elapsed", latest_slot_elapsed, i64),
("read_lock_elapsed", read_lock_elapsed, i64),
("load_account_elapsed", load_account_elapsed, i64),
("iterator_elapsed", iterator_elapsed, i64),
("num_keys_iterated", num_keys_iterated, i64),
)
}
}
fn do_scan_secondary_index<
F,
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
&self,
ancestors: &Ancestors,
mut func: F,
index: &SecondaryIndex<SecondaryIndexEntryType>,
index_key: &Pubkey,
max_root: Option<Slot>,
config: &ScanConfig,
) where
F: FnMut(&Pubkey, (&T, Slot)),
{
for pubkey in index.get(index_key) {
// Maybe these reads from the AccountsIndex can be batched every time it
// grabs the read lock as well...
if let AccountIndexGetResult::Found(list_r, index) =
self.get(&pubkey, Some(ancestors), max_root)
{
let entry = &list_r.slot_list()[index];
func(&pubkey, (&entry.1, entry.0));
}
if config.is_aborted() {
break;
}
}
}
pub fn get_account_read_entry(&self, pubkey: &Pubkey) -> Option<ReadAccountMapEntry<T>> {
let lock = self.get_bin(pubkey);
self.get_account_read_entry_with_lock(pubkey, &lock)
}
pub fn get_account_read_entry_with_lock(
&self,
pubkey: &Pubkey,
lock: &AccountMaps<'_, T, U>,
) -> Option<ReadAccountMapEntry<T>> {
lock.get(pubkey)
.map(ReadAccountMapEntry::from_account_map_entry)
}
fn slot_list_mut<RT>(
&self,
pubkey: &Pubkey,
user: impl for<'a> FnOnce(&mut RwLockWriteGuard<'a, SlotList<T>>) -> RT,
) -> Option<RT> {
let read_lock = self.get_bin(pubkey);
read_lock.slot_list_mut(pubkey, user)
}
/// Remove keys from the account index if the key's slot list is empty.
/// Returns the keys that were removed from the index. These keys should not be accessed again in the current code path.
#[must_use]
pub fn handle_dead_keys(
&self,
dead_keys: &[&Pubkey],
account_indexes: &AccountSecondaryIndexes,
) -> HashSet<Pubkey> {
let mut pubkeys_removed_from_accounts_index = HashSet::default();
if !dead_keys.is_empty() {
for key in dead_keys.iter() {
let w_index = self.get_bin(key);
if w_index.remove_if_slot_list_empty(**key) {
pubkeys_removed_from_accounts_index.insert(**key);
// Note it's only safe to remove all the entries for this key
// because we have the lock for this key's entry in the AccountsIndex,
// so no other thread is also updating the index
self.purge_secondary_indexes_by_inner_key(key, account_indexes);
}
}
}
pubkeys_removed_from_accounts_index
}
/// call func with every pubkey and index visible from a given set of ancestors
pub(crate) fn scan_accounts<F>(
&self,
ancestors: &Ancestors,
scan_bank_id: BankId,
func: F,
config: &ScanConfig,
) -> Result<(), ScanError>
where
F: FnMut(&Pubkey, (&T, Slot)),
{
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_checked_scan_accounts(
"",
ancestors,
scan_bank_id,
func,
ScanTypes::Unindexed(None::<Range<Pubkey>>),
config,
)
}
pub(crate) fn unchecked_scan_accounts<F>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
func: F,
config: &ScanConfig,
) where
F: FnMut(&Pubkey, (&T, Slot)),
{
self.do_unchecked_scan_accounts(
metric_name,
ancestors,
func,
None::<Range<Pubkey>>,
config,
);
}
/// call func with every pubkey and index visible from a given set of ancestors with range
/// Only guaranteed to be safe when called from rent collection
pub(crate) fn range_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
range: R,
config: &ScanConfig,
func: F,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey> + std::fmt::Debug,
{
// Only the rent logic should be calling this, which doesn't need the safety checks
self.do_unchecked_scan_accounts(metric_name, ancestors, func, Some(range), config);
}
/// call func with every pubkey and index visible from a given set of ancestors
pub(crate) fn index_scan_accounts<F>(
&self,
ancestors: &Ancestors,
scan_bank_id: BankId,
index_key: IndexKey,
func: F,
config: &ScanConfig,
) -> Result<(), ScanError>
where
F: FnMut(&Pubkey, (&T, Slot)),
{
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_checked_scan_accounts(
"",
ancestors,
scan_bank_id,
func,
ScanTypes::<Range<Pubkey>>::Indexed(index_key),
config,
)
}
pub fn get_rooted_entries(
&self,
slice: SlotSlice<T>,
max_inclusive: Option<Slot>,
) -> SlotList<T> {
let max_inclusive = max_inclusive.unwrap_or(Slot::MAX);
let lock = &self.roots_tracker.read().unwrap().alive_roots;
slice
.iter()
.filter(|(slot, _)| *slot <= max_inclusive && lock.contains(slot))
.cloned()
.collect()
}
pub fn purge_exact<'a, C>(
&'a self,
pubkey: &Pubkey,
slots_to_purge: &'a C,
reclaims: &mut SlotList<T>,
) -> bool
where
C: Contains<'a, Slot>,
{
self.slot_list_mut(pubkey, |slot_list| {
slot_list.retain(|(slot, item)| {
let should_purge = slots_to_purge.contains(slot);
if should_purge {
reclaims.push((*slot, *item));
false
} else {
true
}
});
slot_list.is_empty()
})
.unwrap_or(true)
}
pub fn min_ongoing_scan_root(&self) -> Option<Slot> {
Self::min_ongoing_scan_root_from_btree(&self.ongoing_scan_roots.read().unwrap())
}
// Given a SlotSlice `L`, a list of ancestors and a maximum slot, find the latest element
// in `L`, where the slot `S` is an ancestor or root, and if `S` is a root, then `S <= max_root`
pub(crate) fn latest_slot(
&self,
ancestors: Option<&Ancestors>,
slice: SlotSlice<T>,
max_root_inclusive: Option<Slot>,
) -> Option<usize> {
let mut current_max = 0;
let mut rv = None;
if let Some(ancestors) = ancestors {
if !ancestors.is_empty() {
for (i, (slot, _t)) in slice.iter().rev().enumerate() {
if (rv.is_none() || *slot > current_max) && ancestors.contains_key(slot) {
rv = Some(i);
current_max = *slot;
}
}
}
}
let max_root_inclusive = max_root_inclusive.unwrap_or(Slot::MAX);
let mut tracker = None;
for (i, (slot, _t)) in slice.iter().rev().enumerate() {
if (rv.is_none() || *slot > current_max) && *slot <= max_root_inclusive {
let lock = match tracker {
Some(inner) => inner,
None => self.roots_tracker.read().unwrap(),
};
if lock.alive_roots.contains(slot) {
rv = Some(i);
current_max = *slot;
}
tracker = Some(lock);
}
}
rv.map(|index| slice.len() - 1 - index)
}
pub fn hold_range_in_memory<R>(&self, range: &R, start_holding: bool, thread_pool: &ThreadPool)
where
R: RangeBounds<Pubkey> + Debug + Sync,
{
let iter = self.iter(Some(range), true);
iter.hold_range_in_memory(range, start_holding, thread_pool);
}
pub fn set_startup(&self, value: Startup) {
self.storage.set_startup(value);
}
pub fn get_startup_remaining_items_to_flush_estimate(&self) -> usize {
self.storage.get_startup_remaining_items_to_flush_estimate()
}
/// For each pubkey, find the slot list in the accounts index
/// apply 'avoid_callback_result' if specified.
/// otherwise, call `callback`
/// if 'provide_entry_in_callback' is true, populate callback with the Arc of the entry itself.
pub(crate) fn scan<'a, F, I>(
&self,
pubkeys: I,
mut callback: F,
avoid_callback_result: Option<AccountsIndexScanResult>,
provide_entry_in_callback: bool,
) where
// params:
// pubkey looked up
// slots_refs is Option<(slot_list, ref_count)>
// None if 'pubkey' is not in accounts index.
// slot_list: comes from accounts index for 'pubkey'
// ref_count: refcount of entry in index
// entry, if 'provide_entry_in_callback' is true
// if 'avoid_callback_result' is Some(_), then callback is NOT called
// and _ is returned as if callback were called.
F: FnMut(
&'a Pubkey,
Option<(&SlotList<T>, RefCount)>,
Option<&AccountMapEntry<T>>,
) -> AccountsIndexScanResult,
I: Iterator<Item = &'a Pubkey>,
{
let mut lock = None;
let mut last_bin = self.bins(); // too big, won't match
pubkeys.into_iter().for_each(|pubkey| {
let bin = self.bin_calculator.bin_from_pubkey(pubkey);
if bin != last_bin {
// cannot re-use lock since next pubkey is in a different bin than previous one
lock = Some(&self.account_maps[bin]);
last_bin = bin;
}
lock.as_ref().unwrap().get_internal(pubkey, |entry| {
let mut cache = false;
match entry {
Some(locked_entry) => {
let result = if let Some(result) = avoid_callback_result.as_ref() {
*result
} else {
let slot_list = &locked_entry.slot_list.read().unwrap();
callback(
pubkey,
Some((slot_list, locked_entry.ref_count())),
provide_entry_in_callback.then_some(locked_entry),
)
};
cache = match result {
AccountsIndexScanResult::Unref => {
if locked_entry.unref() {
info!("scan: refcount of item already at 0: {pubkey}");
}
true
}
AccountsIndexScanResult::KeepInMemory => true,
AccountsIndexScanResult::None => false,
};
}
None => {
avoid_callback_result.unwrap_or_else(|| callback(pubkey, None, None));
}
}
(cache, ())
});
});
}
/// Get an account
/// The latest account that appears in `ancestors` or `roots` is returned.
pub(crate) fn get(
&self,
pubkey: &Pubkey,
ancestors: Option<&Ancestors>,
max_root: Option<Slot>,
) -> AccountIndexGetResult<T> {
let read_lock = self.get_bin(pubkey);
let account = read_lock
.get(pubkey)
.map(ReadAccountMapEntry::from_account_map_entry);
match account {
Some(locked_entry) => {
let slot_list = locked_entry.slot_list();
let found_index = self.latest_slot(ancestors, slot_list, max_root);
match found_index {
Some(found_index) => AccountIndexGetResult::Found(locked_entry, found_index),
None => AccountIndexGetResult::NotFound,
}
}
None => AccountIndexGetResult::NotFound,
}
}
// Get the maximum root <= `max_allowed_root` from the given `slice`
fn get_newest_root_in_slot_list(
alive_roots: &RollingBitField,
slice: SlotSlice<T>,
max_allowed_root_inclusive: Option<Slot>,
) -> Slot {
let mut max_root = 0;
for (slot, _) in slice.iter() {
if let Some(max_allowed_root_inclusive) = max_allowed_root_inclusive {
if *slot > max_allowed_root_inclusive {
continue;
}
}
if *slot > max_root && alive_roots.contains(slot) {
max_root = *slot;
}
}
max_root
}
fn update_spl_token_secondary_indexes<G: GenericTokenAccount>(
&self,
token_id: &Pubkey,
pubkey: &Pubkey,
account_owner: &Pubkey,
account_data: &[u8],
account_indexes: &AccountSecondaryIndexes,
) {
if *account_owner == *token_id {
if account_indexes.contains(&AccountIndex::SplTokenOwner) {
if let Some(owner_key) = G::unpack_account_owner(account_data) {
if account_indexes.include_key(owner_key) {
self.spl_token_owner_index.insert(owner_key, pubkey);
}
}
}
if account_indexes.contains(&AccountIndex::SplTokenMint) {
if let Some(mint_key) = G::unpack_account_mint(account_data) {
if account_indexes.include_key(mint_key) {
self.spl_token_mint_index.insert(mint_key, pubkey);
}
}
}
}
}
pub fn get_index_key_size(&self, index: &AccountIndex, index_key: &Pubkey) -> Option<usize> {
match index {
AccountIndex::ProgramId => self.program_id_index.index.get(index_key).map(|x| x.len()),
AccountIndex::SplTokenOwner => self
.spl_token_owner_index
.index
.get(index_key)
.map(|x| x.len()),
AccountIndex::SplTokenMint => self
.spl_token_mint_index
.index
.get(index_key)
.map(|x| x.len()),
}
}
pub fn get_largest_keys(
&self,
index: &AccountIndex,
max_entries: usize,
) -> Vec<(usize, Pubkey)> {
match index {
AccountIndex::ProgramId => self
.program_id_index
.key_size_index
.get_largest_keys(max_entries),
AccountIndex::SplTokenOwner => self
.spl_token_owner_index
.key_size_index
.get_largest_keys(max_entries),
AccountIndex::SplTokenMint => self
.spl_token_mint_index
.key_size_index
.get_largest_keys(max_entries),
}
}
/// log any secondary index counts, if non-zero
pub(crate) fn log_secondary_indexes(&self) {
if !self.program_id_index.index.is_empty() {
info!("secondary index: {:?}", AccountIndex::ProgramId);
self.program_id_index.log_contents();
}
if !self.spl_token_mint_index.index.is_empty() {
info!("secondary index: {:?}", AccountIndex::SplTokenMint);
self.spl_token_mint_index.log_contents();
}
if !self.spl_token_owner_index.index.is_empty() {
info!("secondary index: {:?}", AccountIndex::SplTokenOwner);
self.spl_token_owner_index.log_contents();
}
}
pub(crate) fn update_secondary_indexes(
&self,
pubkey: &Pubkey,
account: &impl ReadableAccount,
account_indexes: &AccountSecondaryIndexes,
) {
if account_indexes.is_empty() {
return;
}
let account_owner = account.owner();
let account_data = account.data();
if account_indexes.contains(&AccountIndex::ProgramId)
&& account_indexes.include_key(account_owner)
{
self.program_id_index.insert(account_owner, pubkey);
}
// Note because of the below check below on the account data length, when an
// account hits zero lamports and is reset to AccountSharedData::Default, then we skip
// the below updates to the secondary indexes.
//
// Skipping means not updating secondary index to mark the account as missing.
// This doesn't introduce false positives during a scan because the caller to scan
// provides the ancestors to check. So even if a zero-lamport account is not yet
// removed from the secondary index, the scan function will:
// 1) consult the primary index via `get(&pubkey, Some(ancestors), max_root)`
// and find the zero-lamport version
// 2) When the fetch from storage occurs, it will return AccountSharedData::Default
// (as persisted tombstone for snapshots). This will then ultimately be
// filtered out by post-scan filters, like in `get_filtered_spl_token_accounts_by_owner()`.
self.update_spl_token_secondary_indexes::<inline_spl_token::Account>(
&inline_spl_token::id(),
pubkey,
account_owner,
account_data,
account_indexes,
);
self.update_spl_token_secondary_indexes::<inline_spl_token_2022::Account>(
&inline_spl_token_2022::id(),
pubkey,
account_owner,
account_data,
account_indexes,
);
}
pub(crate) fn get_bin(&self, pubkey: &Pubkey) -> AccountMaps<T, U> {
&self.account_maps[self.bin_calculator.bin_from_pubkey(pubkey)]
}
pub fn bins(&self) -> usize {
self.account_maps.len()
}
// Same functionally to upsert, but:
// 1. operates on a batch of items
// 2. holds the write lock for the duration of adding the items
// Can save time when inserting lots of new keys.
// But, does NOT update secondary index
// This is designed to be called at startup time.
#[allow(clippy::needless_collect)]
pub(crate) fn insert_new_if_missing_into_primary_index(
&self,
slot: Slot,
item_len: usize,
items: impl Iterator<Item = (Pubkey, T)>,
) -> (Vec<Pubkey>, u64) {
// big enough so not likely to re-allocate, small enough to not over-allocate by too much
// this assumes the largest bin contains twice the expected amount of the average size per bin
let bins = self.bins();
let expected_items_per_bin = item_len * 2 / bins;
// offset bin 0 in the 'binned' array by a random amount.
// This results in calls to insert_new_entry_if_missing_with_lock from different threads starting at different bins.
let random_offset = thread_rng().gen_range(0, bins);
let use_disk = self.storage.storage.disk.is_some();
let mut binned = (0..bins)
.map(|mut pubkey_bin| {
// opposite of (pubkey_bin + random_offset) % bins
pubkey_bin = if pubkey_bin < random_offset {
pubkey_bin + bins - random_offset
} else {
pubkey_bin - random_offset
};
(pubkey_bin, Vec::with_capacity(expected_items_per_bin))
})
.collect::<Vec<_>>();
let mut dirty_pubkeys = items
.filter_map(|(pubkey, account_info)| {
let pubkey_bin = self.bin_calculator.bin_from_pubkey(&pubkey);
let binned_index = (pubkey_bin + random_offset) % bins;
// this value is equivalent to what update() below would have created if we inserted a new item
let is_zero_lamport = account_info.is_zero_lamport();
let result = if is_zero_lamport { Some(pubkey) } else { None };
binned[binned_index].1.push((pubkey, account_info));
result
})
.collect::<Vec<_>>();
binned.retain(|x| !x.1.is_empty());
let insertion_time = AtomicU64::new(0);
binned.into_iter().for_each(|(pubkey_bin, items)| {
let r_account_maps = &self.account_maps[pubkey_bin];
let mut insert_time = Measure::start("insert_into_primary_index");
if use_disk {
r_account_maps.startup_insert_only(slot, items.into_iter());
} else {
// not using disk buckets, so just write to in-mem
// this is no longer the default case
items.into_iter().for_each(|(pubkey, account_info)| {
let new_entry = PreAllocatedAccountMapEntry::new(
slot,
account_info,
&self.storage.storage,
use_disk,
);
match r_account_maps.insert_new_entry_if_missing_with_lock(pubkey, new_entry) {
InsertNewEntryResults::DidNotExist => {}
InsertNewEntryResults::ExistedNewEntryZeroLamports => {}
InsertNewEntryResults::ExistedNewEntryNonZeroLamports => {
dirty_pubkeys.push(pubkey);
}
}
});
}
insert_time.stop();
insertion_time.fetch_add(insert_time.as_us(), Ordering::Relaxed);
});
(dirty_pubkeys, insertion_time.load(Ordering::Relaxed))
}
/// return Vec<Vec<>> because the internal vecs are already allocated per bin
pub(crate) fn populate_and_retrieve_duplicate_keys_from_startup(
&self,
) -> Vec<Vec<(Slot, Pubkey)>> {
(0..self.bins())
.into_par_iter()
.map(|pubkey_bin| {
let r_account_maps = &self.account_maps[pubkey_bin];
r_account_maps.populate_and_retrieve_duplicate_keys_from_startup()
})
.collect()
}
/// Updates the given pubkey at the given slot with the new account information.
/// on return, the index's previous account info may be returned in 'reclaims' depending on 'previous_slot_entry_was_cached'
pub fn upsert(
&self,
new_slot: Slot,
old_slot: Slot,
pubkey: &Pubkey,
account: &impl ReadableAccount,
account_indexes: &AccountSecondaryIndexes,
account_info: T,
reclaims: &mut SlotList<T>,
reclaim: UpsertReclaim,
) {
// vast majority of updates are to item already in accounts index, so store as raw to avoid unnecessary allocations
let store_raw = true;
// We don't atomically update both primary index and secondary index together.
// This certainly creates a small time window with inconsistent state across the two indexes.
// However, this is acceptable because:
//
// - A strict consistent view at any given moment of time is not necessary, because the only
// use case for the secondary index is `scan`, and `scans` are only supported/require consistency
// on frozen banks, and this inconsistency is only possible on working banks.
//
// - The secondary index is never consulted as primary source of truth for gets/stores.
// So, what the accounts_index sees alone is sufficient as a source of truth for other non-scan
// account operations.
let new_item = PreAllocatedAccountMapEntry::new(
new_slot,
account_info,
&self.storage.storage,
store_raw,
);
let map = self.get_bin(pubkey);
map.upsert(pubkey, new_item, Some(old_slot), reclaims, reclaim);
self.update_secondary_indexes(pubkey, account, account_indexes);
}
pub fn ref_count_from_storage(&self, pubkey: &Pubkey) -> RefCount {
let map = self.get_bin(pubkey);
map.get_internal(pubkey, |entry| {
(
false,
entry.map(|entry| entry.ref_count()).unwrap_or_default(),
)
})
}
fn purge_secondary_indexes_by_inner_key(
&self,
inner_key: &Pubkey,
account_indexes: &AccountSecondaryIndexes,
) {
if account_indexes.contains(&AccountIndex::ProgramId) {
self.program_id_index.remove_by_inner_key(inner_key);
}
if account_indexes.contains(&AccountIndex::SplTokenOwner) {
self.spl_token_owner_index.remove_by_inner_key(inner_key);
}
if account_indexes.contains(&AccountIndex::SplTokenMint) {
self.spl_token_mint_index.remove_by_inner_key(inner_key);
}
}
fn purge_older_root_entries(
&self,
slot_list: &mut SlotList<T>,
reclaims: &mut SlotList<T>,
max_clean_root_inclusive: Option<Slot>,
) {
let newest_root_in_slot_list;
let max_clean_root_inclusive = {
let roots_tracker = &self.roots_tracker.read().unwrap();
newest_root_in_slot_list = Self::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
slot_list,
max_clean_root_inclusive,
);
max_clean_root_inclusive.unwrap_or_else(|| roots_tracker.alive_roots.max_inclusive())
};
slot_list.retain(|(slot, value)| {
let should_purge = Self::can_purge_older_entries(
// Note that we have a root that is inclusive here.
// Calling a function that expects 'exclusive'
// This is expected behavior for this call.
max_clean_root_inclusive,
newest_root_in_slot_list,
*slot,
) && !value.is_cached();
if should_purge {
reclaims.push((*slot, *value));
}
!should_purge
});
}
/// return true if pubkey was removed from the accounts index
/// or does not exist in the accounts index
/// This means it should NOT be unref'd later.
#[must_use]
pub fn clean_rooted_entries(
&self,
pubkey: &Pubkey,
reclaims: &mut SlotList<T>,
max_clean_root_inclusive: Option<Slot>,
) -> bool {
let mut is_slot_list_empty = false;
let missing_in_accounts_index = self
.slot_list_mut(pubkey, |slot_list| {
self.purge_older_root_entries(slot_list, reclaims, max_clean_root_inclusive);
is_slot_list_empty = slot_list.is_empty();
})
.is_none();
let mut removed = false;
// If the slot list is empty, remove the pubkey from `account_maps`. Make sure to grab the
// lock and double check the slot list is still empty, because another writer could have
// locked and inserted the pubkey in-between when `is_slot_list_empty=true` and the call to
// remove() below.
if is_slot_list_empty {
let w_maps = self.get_bin(pubkey);
removed = w_maps.remove_if_slot_list_empty(*pubkey);
}
removed || missing_in_accounts_index
}
/// When can an entry be purged?
///
/// If we get a slot update where slot != newest_root_in_slot_list for an account where slot <
/// max_clean_root_exclusive, then we know it's safe to delete because:
///
/// a) If slot < newest_root_in_slot_list, then we know the update is outdated by a later rooted
/// update, namely the one in newest_root_in_slot_list
///
/// b) If slot > newest_root_in_slot_list, then because slot < max_clean_root_exclusive and we know there are
/// no roots in the slot list between newest_root_in_slot_list and max_clean_root_exclusive, (otherwise there
/// would be a bigger newest_root_in_slot_list, which is a contradiction), then we know slot must be
/// an unrooted slot less than max_clean_root_exclusive and thus safe to clean as well.
fn can_purge_older_entries(
max_clean_root_exclusive: Slot,
newest_root_in_slot_list: Slot,
slot: Slot,
) -> bool {
slot < max_clean_root_exclusive && slot != newest_root_in_slot_list
}
/// Given a list of slots, return a new list of only the slots that are rooted
pub fn get_rooted_from_list<'a>(&self, slots: impl Iterator<Item = &'a Slot>) -> Vec<Slot> {
let roots_tracker = self.roots_tracker.read().unwrap();
slots
.filter_map(|s| {
if roots_tracker.alive_roots.contains(s) {
Some(*s)
} else {
None
}
})
.collect()
}
pub fn is_alive_root(&self, slot: Slot) -> bool {
self.roots_tracker
.read()
.unwrap()
.alive_roots
.contains(&slot)
}
pub fn add_root(&self, slot: Slot) {
self.roots_added.fetch_add(1, Ordering::Relaxed);
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
// `AccountsDb::flush_accounts_cache()` relies on roots being added in order
assert!(slot >= w_roots_tracker.alive_roots.max_inclusive());
// 'slot' is a root, so it is both 'root' and 'original'
w_roots_tracker.alive_roots.insert(slot);
w_roots_tracker.historical_roots.insert(slot);
}
pub fn add_uncleaned_roots<I>(&self, roots: I)
where
I: IntoIterator<Item = Slot>,
{
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.extend(roots);
}
pub fn max_root_inclusive(&self) -> Slot {
self.roots_tracker
.read()
.unwrap()
.alive_roots
.max_inclusive()
}
/// return the lowest original root >= slot, including historical_roots and ancestors
pub fn get_next_original_root(
&self,
slot: Slot,
ancestors: Option<&Ancestors>,
) -> Option<Slot> {
{
let roots_tracker = self.roots_tracker.read().unwrap();
for root in slot..roots_tracker.historical_roots.max_exclusive() {
if roots_tracker.historical_roots.contains(&root) {
return Some(root);
}
}
}
// ancestors are higher than roots, so look for roots first
if let Some(ancestors) = ancestors {
let min = std::cmp::max(slot, ancestors.min_slot());
for root in min..=ancestors.max_slot() {
if ancestors.contains_key(&root) {
return Some(root);
}
}
}
None
}
/// roots are inserted into 'historical_roots' and 'roots' as a new root is made.
/// roots are removed form 'roots' as all entries in the append vec become outdated.
/// This function exists to clean older entries from 'historical_roots'.
/// all roots < 'oldest_slot_to_keep' are removed from 'historical_roots'.
pub fn remove_old_historical_roots(&self, oldest_slot_to_keep: Slot, keep: &HashSet<Slot>) {
let mut roots = self
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all_less_than(oldest_slot_to_keep);
roots.retain(|root| !keep.contains(root));
if !roots.is_empty() {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
roots.into_iter().for_each(|root| {
w_roots_tracker.historical_roots.remove(&root);
});
}
}
/// Remove the slot when the storage for the slot is freed
/// Accounts no longer reference this slot.
/// return true if slot was a root
pub fn clean_dead_slot(&self, slot: Slot, stats: &mut AccountsIndexRootsStats) -> bool {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
let removed_from_unclean_roots = w_roots_tracker.uncleaned_roots.remove(&slot);
let removed_from_previous_uncleaned_roots =
w_roots_tracker.previous_uncleaned_roots.remove(&slot);
if !w_roots_tracker.alive_roots.remove(&slot) {
if removed_from_unclean_roots {
error!("clean_dead_slot-removed_from_unclean_roots: {}", slot);
inc_new_counter_error!("clean_dead_slot-removed_from_unclean_roots", 1, 1);
}
if removed_from_previous_uncleaned_roots {
error!(
"clean_dead_slot-removed_from_previous_uncleaned_roots: {}",
slot
);
inc_new_counter_error!(
"clean_dead_slot-removed_from_previous_uncleaned_roots",
1,
1
);
}
false
} else {
stats.roots_len = Some(w_roots_tracker.alive_roots.len());
stats.uncleaned_roots_len = Some(w_roots_tracker.uncleaned_roots.len());
stats.previous_uncleaned_roots_len =
Some(w_roots_tracker.previous_uncleaned_roots.len());
stats.roots_range = Some(w_roots_tracker.alive_roots.range_width());
stats.historical_roots_len = Some(w_roots_tracker.historical_roots.len());
drop(w_roots_tracker);
self.roots_removed.fetch_add(1, Ordering::Relaxed);
true
}
}
pub fn min_alive_root(&self) -> Option<Slot> {
self.roots_tracker.read().unwrap().min_alive_root()
}
pub fn reset_uncleaned_roots(&self, max_clean_root: Option<Slot>) -> HashSet<Slot> {
let mut cleaned_roots = HashSet::new();
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.retain(|root| {
let is_cleaned = max_clean_root
.map(|max_clean_root| *root <= max_clean_root)
.unwrap_or(true);
if is_cleaned {
cleaned_roots.insert(*root);
}
// Only keep the slots that have yet to be cleaned
!is_cleaned
});
std::mem::replace(&mut w_roots_tracker.previous_uncleaned_roots, cleaned_roots)
}
#[cfg(test)]
pub fn clear_uncleaned_roots(&self, max_clean_root: Option<Slot>) -> HashSet<Slot> {
let mut cleaned_roots = HashSet::new();
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.retain(|root| {
let is_cleaned = max_clean_root
.map(|max_clean_root| *root <= max_clean_root)
.unwrap_or(true);
if is_cleaned {
cleaned_roots.insert(*root);
}
// Only keep the slots that have yet to be cleaned
!is_cleaned
});
cleaned_roots
}
pub fn is_uncleaned_root(&self, slot: Slot) -> bool {
self.roots_tracker
.read()
.unwrap()
.uncleaned_roots
.contains(&slot)
}
pub fn num_alive_roots(&self) -> usize {
self.roots_tracker.read().unwrap().alive_roots.len()
}
pub fn all_alive_roots(&self) -> Vec<Slot> {
let tracker = self.roots_tracker.read().unwrap();
tracker.alive_roots.get_all()
}
#[cfg(test)]
pub fn clear_roots(&self) {
self.roots_tracker.write().unwrap().alive_roots.clear()
}
pub fn clone_uncleaned_roots(&self) -> HashSet<Slot> {
self.roots_tracker.read().unwrap().uncleaned_roots.clone()
}
pub fn uncleaned_roots_len(&self) -> usize {
self.roots_tracker.read().unwrap().uncleaned_roots.len()
}
#[cfg(test)]
// filter any rooted entries and return them along with a bool that indicates
// if this account has no more entries. Note this does not update the secondary
// indexes!
pub fn purge_roots(&self, pubkey: &Pubkey) -> (SlotList<T>, bool) {
self.slot_list_mut(pubkey, |slot_list| {
let reclaims = self.get_rooted_entries(slot_list, None);
slot_list.retain(|(slot, _)| !self.is_alive_root(*slot));
(reclaims, slot_list.is_empty())
})
.unwrap()
}
}
#[cfg(test)]
pub mod tests {
use {
super::*,
crate::inline_spl_token::*,
solana_sdk::{
account::{AccountSharedData, WritableAccount},
pubkey::PUBKEY_BYTES,
},
std::ops::RangeInclusive,
};
pub enum SecondaryIndexTypes<'a> {
RwLock(&'a SecondaryIndex<RwLockSecondaryIndexEntry>),
DashMap(&'a SecondaryIndex<DashMapSecondaryIndexEntry>),
}
pub fn spl_token_mint_index_enabled() -> AccountSecondaryIndexes {
let mut account_indexes = HashSet::new();
account_indexes.insert(AccountIndex::SplTokenMint);
AccountSecondaryIndexes {
indexes: account_indexes,
keys: None,
}
}
pub fn spl_token_owner_index_enabled() -> AccountSecondaryIndexes {
let mut account_indexes = HashSet::new();
account_indexes.insert(AccountIndex::SplTokenOwner);
AccountSecondaryIndexes {
indexes: account_indexes,
keys: None,
}
}
impl<T: IndexValue> AccountIndexGetResult<T> {
pub fn unwrap(self) -> (ReadAccountMapEntry<T>, usize) {
match self {
AccountIndexGetResult::Found(lock, size) => (lock, size),
_ => {
panic!("trying to unwrap AccountIndexGetResult with non-Success result");
}
}
}
pub fn is_none(&self) -> bool {
!self.is_some()
}
pub fn is_some(&self) -> bool {
matches!(self, AccountIndexGetResult::Found(_lock, _size))
}
pub fn map<V, F: FnOnce((ReadAccountMapEntry<T>, usize)) -> V>(self, f: F) -> Option<V> {
match self {
AccountIndexGetResult::Found(lock, size) => Some(f((lock, size))),
_ => None,
}
}
}
fn create_dashmap_secondary_index_state() -> (usize, usize, AccountSecondaryIndexes) {
{
// Check that we're actually testing the correct variant
let index = AccountsIndex::<bool, bool>::default_for_tests();
let _type_check = SecondaryIndexTypes::DashMap(&index.spl_token_mint_index);
}
(0, PUBKEY_BYTES, spl_token_mint_index_enabled())
}
fn create_rwlock_secondary_index_state() -> (usize, usize, AccountSecondaryIndexes) {
{
// Check that we're actually testing the correct variant
let index = AccountsIndex::<bool, bool>::default_for_tests();
let _type_check = SecondaryIndexTypes::RwLock(&index.spl_token_owner_index);
}
(
SPL_TOKEN_ACCOUNT_OWNER_OFFSET,
SPL_TOKEN_ACCOUNT_OWNER_OFFSET + PUBKEY_BYTES,
spl_token_owner_index_enabled(),
)
}
impl<T: IndexValue> Clone for PreAllocatedAccountMapEntry<T> {
fn clone(&self) -> Self {
// clone the AccountMapEntryInner into a new Arc
match self {
PreAllocatedAccountMapEntry::Entry(entry) => {
let (slot, account_info) = entry.slot_list.read().unwrap()[0];
let meta = AccountMapEntryMeta {
dirty: AtomicBool::new(entry.dirty()),
age: AtomicU8::new(entry.age()),
};
PreAllocatedAccountMapEntry::Entry(Arc::new(AccountMapEntryInner::new(
vec![(slot, account_info)],
entry.ref_count(),
meta,
)))
}
PreAllocatedAccountMapEntry::Raw(raw) => PreAllocatedAccountMapEntry::Raw(*raw),
}
}
}
impl<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> AccountsIndex<T, U> {
/// provides the ability to refactor this function on the api without bloody changes
pub fn get_for_tests(
&self,
pubkey: &Pubkey,
ancestors: Option<&Ancestors>,
max_root: Option<Slot>,
) -> AccountIndexGetResult<T> {
self.get(pubkey, ancestors, max_root)
}
}
#[test]
fn test_get_next_original_root() {
let ancestors = None;
let index = AccountsIndex::<bool, bool>::default_for_tests();
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), None);
}
// roots are now [1]. 0 and 1 both return 1
index.add_root(1);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
assert_eq!(index.get_next_original_root(2, ancestors), None); // no roots after 1, so asking for root >= 2 is None
// roots are now [1, 3]. 0 and 1 both return 1. 2 and 3 both return 3
index.add_root(3);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
for slot in 2..4 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(3));
}
assert_eq!(index.get_next_original_root(4, ancestors), None); // no roots after 3, so asking for root >= 4 is None
}
#[test]
fn test_get_next_original_root_ancestors() {
let orig_ancestors = Ancestors::default();
let ancestors = Some(&orig_ancestors);
let index = AccountsIndex::<bool, bool>::default_for_tests();
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), None);
}
// ancestors are now [1]. 0 and 1 both return 1
let orig_ancestors = Ancestors::from(vec![1]);
let ancestors = Some(&orig_ancestors);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
assert_eq!(index.get_next_original_root(2, ancestors), None); // no roots after 1, so asking for root >= 2 is None
// ancestors are now [1, 3]. 0 and 1 both return 1. 2 and 3 both return 3
let orig_ancestors = Ancestors::from(vec![1, 3]);
let ancestors = Some(&orig_ancestors);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
for slot in 2..4 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(3));
}
assert_eq!(index.get_next_original_root(4, ancestors), None); // no roots after 3, so asking for root >= 4 is None
}
#[test]
fn test_get_next_original_root_roots_and_ancestors() {
let orig_ancestors = Ancestors::default();
let ancestors = Some(&orig_ancestors);
let index = AccountsIndex::<bool, bool>::default_for_tests();
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), None);
}
// roots are now [1]. 0 and 1 both return 1
index.add_root(1);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
assert_eq!(index.get_next_original_root(2, ancestors), None); // no roots after 1, so asking for root >= 2 is None
// roots are now [1] and ancestors are now [3]. 0 and 1 both return 1. 2 and 3 both return 3
let orig_ancestors = Ancestors::from(vec![3]);
let ancestors = Some(&orig_ancestors);
for slot in 0..2 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(1));
}
for slot in 2..4 {
assert_eq!(index.get_next_original_root(slot, ancestors), Some(3));
}
assert_eq!(index.get_next_original_root(4, ancestors), None); // no roots after 3, so asking for root >= 4 is None
}
#[test]
fn test_remove_old_historical_roots() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
index.add_root(1);
index.add_root(2);
assert_eq!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all(),
vec![1, 2]
);
let empty_hash_set = HashSet::default();
index.remove_old_historical_roots(2, &empty_hash_set);
assert_eq!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all(),
vec![2]
);
index.remove_old_historical_roots(3, &empty_hash_set);
assert!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.is_empty(),
"{:?}",
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all()
);
// now use 'keep'
let index = AccountsIndex::<bool, bool>::default_for_tests();
index.add_root(1);
index.add_root(2);
let hash_set_1 = vec![1].into_iter().collect();
assert_eq!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all(),
vec![1, 2]
);
index.remove_old_historical_roots(2, &hash_set_1);
assert_eq!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all(),
vec![1, 2]
);
index.remove_old_historical_roots(3, &hash_set_1);
assert_eq!(
index
.roots_tracker
.read()
.unwrap()
.historical_roots
.get_all(),
vec![1]
);
}
const COLLECT_ALL_UNSORTED_FALSE: bool = false;
#[test]
fn test_get_empty() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let ancestors = Ancestors::default();
let key = &key;
assert!(index.get_for_tests(key, Some(&ancestors), None).is_none());
assert!(index.get_for_tests(key, None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
}
#[test]
fn test_secondary_index_include_exclude() {
let pk1 = Pubkey::new_unique();
let pk2 = Pubkey::new_unique();
let mut index = AccountSecondaryIndexes::default();
assert!(!index.contains(&AccountIndex::ProgramId));
index.indexes.insert(AccountIndex::ProgramId);
assert!(index.contains(&AccountIndex::ProgramId));
assert!(index.include_key(&pk1));
assert!(index.include_key(&pk2));
let exclude = false;
index.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [pk1].iter().cloned().collect::<HashSet<_>>(),
exclude,
});
assert!(index.include_key(&pk1));
assert!(!index.include_key(&pk2));
let exclude = true;
index.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [pk1].iter().cloned().collect::<HashSet<_>>(),
exclude,
});
assert!(!index.include_key(&pk1));
assert!(index.include_key(&pk2));
let exclude = true;
index.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [pk1, pk2].iter().cloned().collect::<HashSet<_>>(),
exclude,
});
assert!(!index.include_key(&pk1));
assert!(!index.include_key(&pk2));
let exclude = false;
index.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [pk1, pk2].iter().cloned().collect::<HashSet<_>>(),
exclude,
});
assert!(index.include_key(&pk1));
assert!(index.include_key(&pk2));
}
const UPSERT_POPULATE_RECLAIMS: UpsertReclaim = UpsertReclaim::PopulateReclaims;
#[test]
fn test_insert_no_ancestors() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
let ancestors = Ancestors::default();
assert!(index.get_for_tests(&key, Some(&ancestors), None).is_none());
assert!(index.get_for_tests(&key, None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
}
type AccountInfoTest = f64;
impl IndexValue for AccountInfoTest {}
impl DiskIndexValue for AccountInfoTest {}
impl IsCached for AccountInfoTest {
fn is_cached(&self) -> bool {
true
}
}
impl ZeroLamport for AccountInfoTest {
fn is_zero_lamport(&self) -> bool {
true
}
}
#[test]
fn test_insert_new_with_lock_no_ancestors() {
let key = solana_sdk::pubkey::new_rand();
let pubkey = &key;
let slot = 0;
let index = AccountsIndex::<bool, bool>::default_for_tests();
let account_info = true;
let items = vec![(*pubkey, account_info)];
index.set_startup(Startup::Startup);
index.insert_new_if_missing_into_primary_index(slot, items.len(), items.into_iter());
index.set_startup(Startup::Normal);
let mut ancestors = Ancestors::default();
assert!(index
.get_for_tests(pubkey, Some(&ancestors), None)
.is_none());
assert!(index.get_for_tests(pubkey, None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
ancestors.insert(slot, 0);
assert!(index
.get_for_tests(pubkey, Some(&ancestors), None)
.is_some());
assert_eq!(index.ref_count_from_storage(pubkey), 1);
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 1);
// not zero lamports
let index = AccountsIndex::<bool, bool>::default_for_tests();
let account_info = false;
let items = vec![(*pubkey, account_info)];
index.set_startup(Startup::Startup);
index.insert_new_if_missing_into_primary_index(slot, items.len(), items.into_iter());
index.set_startup(Startup::Normal);
let mut ancestors = Ancestors::default();
assert!(index
.get_for_tests(pubkey, Some(&ancestors), None)
.is_none());
assert!(index.get_for_tests(pubkey, None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
ancestors.insert(slot, 0);
assert!(index
.get_for_tests(pubkey, Some(&ancestors), None)
.is_some());
assert_eq!(index.ref_count_from_storage(pubkey), 1);
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 1);
}
fn get_pre_allocated<T: IndexValue>(
slot: Slot,
account_info: T,
storage: &Arc<BucketMapHolder<T, T>>,
store_raw: bool,
to_raw_first: bool,
) -> PreAllocatedAccountMapEntry<T> {
let entry = PreAllocatedAccountMapEntry::new(slot, account_info, storage, store_raw);
if to_raw_first {
// convert to raw
let (slot2, account_info2) = entry.into();
// recreate using extracted raw
PreAllocatedAccountMapEntry::new(slot2, account_info2, storage, store_raw)
} else {
entry
}
}
#[test]
fn test_new_entry() {
for store_raw in [false, true] {
for to_raw_first in [false, true] {
let slot = 0;
// account_info type that IS cached
let account_info = AccountInfoTest::default();
let index = AccountsIndex::default_for_tests();
let new_entry = get_pre_allocated(
slot,
account_info,
&index.storage.storage,
store_raw,
to_raw_first,
)
.into_account_map_entry(&index.storage.storage);
assert_eq!(new_entry.ref_count(), 0);
assert_eq!(new_entry.slot_list.read().unwrap().capacity(), 1);
assert_eq!(
new_entry.slot_list.read().unwrap().to_vec(),
vec![(slot, account_info)]
);
// account_info type that is NOT cached
let account_info = true;
let index = AccountsIndex::default_for_tests();
let new_entry = get_pre_allocated(
slot,
account_info,
&index.storage.storage,
store_raw,
to_raw_first,
)
.into_account_map_entry(&index.storage.storage);
assert_eq!(new_entry.ref_count(), 1);
assert_eq!(new_entry.slot_list.read().unwrap().capacity(), 1);
assert_eq!(
new_entry.slot_list.read().unwrap().to_vec(),
vec![(slot, account_info)]
);
}
}
}
#[test]
fn test_batch_insert() {
let slot0 = 0;
let key0 = solana_sdk::pubkey::new_rand();
let key1 = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let account_infos = [true, false];
index.set_startup(Startup::Startup);
let items = vec![(key0, account_infos[0]), (key1, account_infos[1])];
index.insert_new_if_missing_into_primary_index(slot0, items.len(), items.into_iter());
index.set_startup(Startup::Normal);
for (i, key) in [key0, key1].iter().enumerate() {
let entry = index.get_account_read_entry(key).unwrap();
assert_eq!(entry.ref_count(), 1);
assert_eq!(entry.slot_list().to_vec(), vec![(slot0, account_infos[i]),]);
}
}
fn test_new_entry_code_paths_helper<T: IndexValue>(
account_infos: [T; 2],
is_cached: bool,
upsert: bool,
use_disk: bool,
) {
if is_cached && !upsert {
// This is an illegal combination when we are using queued lazy inserts.
// Cached items don't ever leave the in-mem cache.
// But the queued lazy insert code relies on there being nothing in the in-mem cache.
return;
}
let slot0 = 0;
let slot1 = 1;
let key = solana_sdk::pubkey::new_rand();
let mut config = ACCOUNTS_INDEX_CONFIG_FOR_TESTING;
config.index_limit_mb = if use_disk {
IndexLimitMb::Limit(10_000)
} else {
IndexLimitMb::InMemOnly // in-mem only
};
let index = AccountsIndex::<T, T>::new(Some(config), &Arc::default());
let mut gc = Vec::new();
if upsert {
// insert first entry for pubkey. This will use new_entry_after_update and not call update.
index.upsert(
slot0,
slot0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
account_infos[0],
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
} else {
let items = vec![(key, account_infos[0])];
index.set_startup(Startup::Startup);
index.insert_new_if_missing_into_primary_index(slot0, items.len(), items.into_iter());
index.set_startup(Startup::Normal);
}
assert!(gc.is_empty());
// verify the added entry matches expected
{
let entry = index.get_account_read_entry(&key).unwrap();
assert_eq!(entry.ref_count(), u64::from(!is_cached));
let expected = vec![(slot0, account_infos[0])];
assert_eq!(entry.slot_list().to_vec(), expected);
let new_entry: AccountMapEntry<_> = PreAllocatedAccountMapEntry::new(
slot0,
account_infos[0],
&index.storage.storage,
false,
)
.into_account_map_entry(&index.storage.storage);
assert_eq!(
entry.slot_list().to_vec(),
new_entry.slot_list.read().unwrap().to_vec(),
);
}
// insert second entry for pubkey. This will use update and NOT use new_entry_after_update.
if upsert {
index.upsert(
slot1,
slot1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
account_infos[1],
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
} else {
// this has the effect of aging out everything in the in-mem cache
for _ in 0..5 {
index.set_startup(Startup::Startup);
index.set_startup(Startup::Normal);
}
let items = vec![(key, account_infos[1])];
index.set_startup(Startup::Startup);
index.insert_new_if_missing_into_primary_index(slot1, items.len(), items.into_iter());
index.set_startup(Startup::Normal);
}
assert!(gc.is_empty());
index.populate_and_retrieve_duplicate_keys_from_startup();
for lock in &[false, true] {
let read_lock = if *lock {
Some(index.get_bin(&key))
} else {
None
};
let entry = if *lock {
index
.get_account_read_entry_with_lock(&key, read_lock.as_ref().unwrap())
.unwrap()
} else {
index.get_account_read_entry(&key).unwrap()
};
assert_eq!(entry.ref_count(), if is_cached { 0 } else { 2 });
assert_eq!(
entry.slot_list().to_vec(),
vec![(slot0, account_infos[0]), (slot1, account_infos[1])]
);
let new_entry = PreAllocatedAccountMapEntry::new(
slot1,
account_infos[1],
&index.storage.storage,
false,
);
assert_eq!(entry.slot_list()[1], new_entry.into());
}
}
#[test]
fn test_new_entry_and_update_code_paths() {
for use_disk in [false, true] {
for is_upsert in &[false, true] {
// account_info type that IS cached
test_new_entry_code_paths_helper([1.0, 2.0], true, *is_upsert, use_disk);
// account_info type that is NOT cached
test_new_entry_code_paths_helper([true, false], false, *is_upsert, use_disk);
}
}
}
#[test]
fn test_insert_with_lock_no_ancestors() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let slot = 0;
let account_info = true;
let new_entry =
PreAllocatedAccountMapEntry::new(slot, account_info, &index.storage.storage, false);
assert_eq!(0, account_maps_stats_len(&index));
assert_eq!((slot, account_info), new_entry.clone().into());
assert_eq!(0, account_maps_stats_len(&index));
let r_account_maps = index.get_bin(&key);
r_account_maps.upsert(
&key,
new_entry,
None,
&mut SlotList::default(),
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(1, account_maps_stats_len(&index));
let mut ancestors = Ancestors::default();
assert!(index.get_for_tests(&key, Some(&ancestors), None).is_none());
assert!(index.get_for_tests(&key, None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
ancestors.insert(slot, 0);
assert!(index.get_for_tests(&key, Some(&ancestors), None).is_some());
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 1);
}
#[test]
fn test_insert_wrong_ancestors() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
let ancestors = vec![(1, 1)].into_iter().collect();
assert!(index.get_for_tests(&key, Some(&ancestors), None).is_none());
let mut num = 0;
index.unchecked_scan_accounts(
"",
&ancestors,
|_pubkey, _index| num += 1,
&ScanConfig::default(),
);
assert_eq!(num, 0);
}
#[test]
fn test_insert_ignore_reclaims() {
{
// non-cached
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<u64, u64>::default_for_tests();
let mut reclaims = Vec::new();
let slot = 0;
let value = 1;
assert!(!value.is_cached());
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
UpsertReclaim::PopulateReclaims,
);
assert!(reclaims.is_empty());
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
UpsertReclaim::PopulateReclaims,
);
// reclaimed
assert!(!reclaims.is_empty());
reclaims.clear();
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
// since IgnoreReclaims, we should expect reclaims to be empty
UpsertReclaim::IgnoreReclaims,
);
// reclaims is ignored
assert!(reclaims.is_empty());
}
{
// cached
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<AccountInfoTest, AccountInfoTest>::default_for_tests();
let mut reclaims = Vec::new();
let slot = 0;
let value = 1.0;
assert!(value.is_cached());
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
UpsertReclaim::PopulateReclaims,
);
assert!(reclaims.is_empty());
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
UpsertReclaim::PopulateReclaims,
);
// reclaimed
assert!(!reclaims.is_empty());
reclaims.clear();
index.upsert(
slot,
slot,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut reclaims,
// since IgnoreReclaims, we should expect reclaims to be empty
UpsertReclaim::IgnoreReclaims,
);
// reclaims is ignored
assert!(reclaims.is_empty());
}
}
#[test]
fn test_insert_with_ancestors() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
let ancestors = vec![(0, 0)].into_iter().collect();
let (list, idx) = index.get_for_tests(&key, Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts(
"",
&ancestors,
|pubkey, _index| {
if pubkey == &key {
found_key = true
};
num += 1
},
&ScanConfig::default(),
);
assert_eq!(num, 1);
assert!(found_key);
}
fn setup_accounts_index_keys(num_pubkeys: usize) -> (AccountsIndex<bool, bool>, Vec<Pubkey>) {
let index = AccountsIndex::<bool, bool>::default_for_tests();
let root_slot = 0;
let mut pubkeys: Vec<Pubkey> = std::iter::repeat_with(|| {
let new_pubkey = solana_sdk::pubkey::new_rand();
index.upsert(
root_slot,
root_slot,
&new_pubkey,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
new_pubkey
})
.take(num_pubkeys.saturating_sub(1))
.collect();
if num_pubkeys != 0 {
pubkeys.push(Pubkey::default());
index.upsert(
root_slot,
root_slot,
&Pubkey::default(),
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
}
index.add_root(root_slot);
(index, pubkeys)
}
fn run_test_range(
index: &AccountsIndex<bool, bool>,
pubkeys: &[Pubkey],
start_bound: Bound<usize>,
end_bound: Bound<usize>,
) {
// Exclusive `index_start`
let (pubkey_start, index_start) = match start_bound {
Unbounded => (Unbounded, 0),
Included(i) => (Included(pubkeys[i]), i),
Excluded(i) => (Excluded(pubkeys[i]), i + 1),
};
// Exclusive `index_end`
let (pubkey_end, index_end) = match end_bound {
Unbounded => (Unbounded, pubkeys.len()),
Included(i) => (Included(pubkeys[i]), i + 1),
Excluded(i) => (Excluded(pubkeys[i]), i),
};
let pubkey_range = (pubkey_start, pubkey_end);
let ancestors = Ancestors::default();
let mut scanned_keys = HashSet::new();
index.range_scan_accounts(
"",
&ancestors,
pubkey_range,
&ScanConfig::default(),
|pubkey, _index| {
scanned_keys.insert(*pubkey);
},
);
let mut expected_len = 0;
for key in &pubkeys[index_start..index_end] {
expected_len += 1;
assert!(scanned_keys.contains(key));
}
assert_eq!(scanned_keys.len(), expected_len);
}
fn run_test_range_indexes(
index: &AccountsIndex<bool, bool>,
pubkeys: &[Pubkey],
start: Option<usize>,
end: Option<usize>,
) {
let start_options = start
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
let end_options = end
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
for start in &start_options {
for end in &end_options {
run_test_range(index, pubkeys, *start, *end);
}
}
}
#[test]
fn test_range_scan_accounts() {
let (index, mut pubkeys) = setup_accounts_index_keys(3 * ITER_BATCH_SIZE);
pubkeys.sort();
run_test_range_indexes(&index, &pubkeys, None, None);
run_test_range_indexes(&index, &pubkeys, Some(ITER_BATCH_SIZE), None);
run_test_range_indexes(&index, &pubkeys, None, Some(2 * ITER_BATCH_SIZE));
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE),
Some(2 * ITER_BATCH_SIZE),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE),
Some(2 * ITER_BATCH_SIZE - 1),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE - 1_usize),
Some(2 * ITER_BATCH_SIZE + 1),
);
}
fn run_test_scan_accounts(num_pubkeys: usize) {
let (index, _) = setup_accounts_index_keys(num_pubkeys);
let ancestors = Ancestors::default();
let mut scanned_keys = HashSet::new();
index.unchecked_scan_accounts(
"",
&ancestors,
|pubkey, _index| {
scanned_keys.insert(*pubkey);
},
&ScanConfig::default(),
);
assert_eq!(scanned_keys.len(), num_pubkeys);
}
#[test]
fn test_scan_accounts() {
run_test_scan_accounts(0);
run_test_scan_accounts(1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 - 1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 + 1);
}
#[test]
fn test_accounts_iter_finished() {
let (index, _) = setup_accounts_index_keys(0);
let mut iter = index.iter(None::<&Range<Pubkey>>, COLLECT_ALL_UNSORTED_FALSE);
assert!(iter.next().is_none());
let mut gc = vec![];
index.upsert(
0,
0,
&solana_sdk::pubkey::new_rand(),
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(iter.next().is_none());
}
#[test]
fn test_is_alive_root() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
assert!(!index.is_alive_root(0));
index.add_root(0);
assert!(index.is_alive_root(0));
}
#[test]
fn test_insert_with_root() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
index.add_root(0);
let (list, idx) = index.get_for_tests(&key, None, None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
}
#[test]
fn test_clean_first() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
index.add_root(0);
index.add_root(1);
index.clean_dead_slot(0, &mut AccountsIndexRootsStats::default());
assert!(index.is_alive_root(1));
assert!(!index.is_alive_root(0));
}
#[test]
fn test_clean_last() {
//this behavior might be undefined, clean up should only occur on older slots
let index = AccountsIndex::<bool, bool>::default_for_tests();
index.add_root(0);
index.add_root(1);
index.clean_dead_slot(1, &mut AccountsIndexRootsStats::default());
assert!(!index.is_alive_root(1));
assert!(index.is_alive_root(0));
}
#[test]
fn test_clean_and_unclean_slot() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
index.add_root(0);
index.add_root(1);
index.add_uncleaned_roots([0, 1].into_iter());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
0,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.reset_uncleaned_roots(None);
assert_eq!(2, index.roots_tracker.read().unwrap().alive_roots.len());
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.add_root(2);
index.add_root(3);
index.add_uncleaned_roots([2, 3].into_iter());
assert_eq!(4, index.roots_tracker.read().unwrap().alive_roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(1, &mut AccountsIndexRootsStats::default());
assert_eq!(3, index.roots_tracker.read().unwrap().alive_roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(2, &mut AccountsIndexRootsStats::default());
assert_eq!(2, index.roots_tracker.read().unwrap().alive_roots.len());
assert_eq!(1, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
}
#[test]
fn test_update_last_wins() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
let (list, idx) = index.get_for_tests(&key, Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
drop(list);
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
false,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(gc, vec![(0, true)]);
let (list, idx) = index.get_for_tests(&key, Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, false));
}
#[test]
fn test_update_new_slot() {
solana_logger::setup();
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
index.upsert(
1,
1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
false,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
let (list, idx) = index.get_for_tests(&key, Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let ancestors = vec![(1, 0)].into_iter().collect();
let (list, idx) = index.get_for_tests(&key, Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (1, false));
}
#[test]
fn test_update_gc_purged_slot() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut gc = Vec::new();
index.upsert(
0,
0,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
index.upsert(
1,
1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
false,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
index.upsert(
2,
2,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
index.upsert(
3,
3,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
index.add_root(0);
index.add_root(1);
index.add_root(3);
index.upsert(
4,
4,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
true,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
// Updating index should not purge older roots, only purges
// previous updates within the same slot
assert_eq!(gc, vec![]);
let (list, idx) = index.get_for_tests(&key, None, None).unwrap();
assert_eq!(list.slot_list()[idx], (3, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts(
"",
&Ancestors::default(),
|pubkey, index| {
if pubkey == &key {
found_key = true;
assert_eq!(index, (&true, 3));
};
num += 1
},
&ScanConfig::default(),
);
assert_eq!(num, 1);
assert!(found_key);
}
fn account_maps_stats_len<T: IndexValue>(index: &AccountsIndex<T, T>) -> usize {
index.storage.storage.stats.total_count()
}
#[test]
fn test_purge() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<u64, u64>::default_for_tests();
let mut gc = Vec::new();
assert_eq!(0, account_maps_stats_len(&index));
index.upsert(
1,
1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
12,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(1, account_maps_stats_len(&index));
index.upsert(
1,
1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
10,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(1, account_maps_stats_len(&index));
let purges = index.purge_roots(&key);
assert_eq!(purges, (vec![], false));
index.add_root(1);
let purges = index.purge_roots(&key);
assert_eq!(purges, (vec![(1, 10)], true));
assert_eq!(1, account_maps_stats_len(&index));
index.upsert(
1,
1,
&key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
9,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(1, account_maps_stats_len(&index));
}
#[test]
fn test_latest_slot() {
let slot_slice = vec![(0, true), (5, true), (3, true), (7, true)];
let index = AccountsIndex::<bool, bool>::default_for_tests();
// No ancestors, no root, should return None
assert!(index.latest_slot(None, &slot_slice, None).is_none());
// Given a root, should return the root
index.add_root(5);
assert_eq!(index.latest_slot(None, &slot_slice, None).unwrap(), 1);
// Given a max_root == root, should still return the root
assert_eq!(index.latest_slot(None, &slot_slice, Some(5)).unwrap(), 1);
// Given a max_root < root, should filter out the root
assert!(index.latest_slot(None, &slot_slice, Some(4)).is_none());
// Given a max_root, should filter out roots < max_root, but specified
// ancestors should not be affected
let ancestors = vec![(3, 1), (7, 1)].into_iter().collect();
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(4))
.unwrap(),
3
);
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(7))
.unwrap(),
3
);
// Given no max_root, should just return the greatest ancestor or root
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, None)
.unwrap(),
3
);
}
fn run_test_purge_exact_secondary_index<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
index: &AccountsIndex<bool, bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
key_start: usize,
key_end: usize,
secondary_indexes: &AccountSecondaryIndexes,
) {
// No roots, should be no reclaims
let slots = vec![1, 2, 5, 9];
let index_key = Pubkey::new_unique();
let account_key = Pubkey::new_unique();
let mut account_data = vec![0; inline_spl_token::Account::get_packed_len()];
account_data[key_start..key_end].clone_from_slice(&(index_key.to_bytes()));
// Insert slots into secondary index
for slot in &slots {
index.upsert(
*slot,
*slot,
&account_key,
// Make sure these accounts are added to secondary index
&AccountSharedData::create(
0,
account_data.to_vec(),
inline_spl_token::id(),
false,
0,
),
secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
}
// Only one top level index entry exists
assert_eq!(secondary_index.index.get(&index_key).unwrap().len(), 1);
// In the reverse index, one account maps across multiple slots
// to the same top level key
assert_eq!(
secondary_index
.reverse_index
.get(&account_key)
.unwrap()
.value()
.read()
.unwrap()
.len(),
1
);
index.purge_exact(
&account_key,
&slots.into_iter().collect::<HashSet<Slot>>(),
&mut vec![],
);
let _ = index.handle_dead_keys(&[&account_key], secondary_indexes);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
}
#[test]
fn test_purge_exact_dashmap_secondary_index() {
let (key_start, key_end, secondary_indexes) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
run_test_purge_exact_secondary_index(
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&secondary_indexes,
);
}
#[test]
fn test_purge_exact_rwlock_secondary_index() {
let (key_start, key_end, secondary_indexes) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
run_test_purge_exact_secondary_index(
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&secondary_indexes,
);
}
#[test]
fn test_purge_older_root_entries() {
// No roots, should be no reclaims
let index = AccountsIndex::<bool, bool>::default_for_tests();
let mut slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
let mut reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Add a later root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(1);
// Note 2 is not a root
index.add_root(5);
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Add a later root that is not in the list, should not affect the outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(6);
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, None);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root >= than any root in the slot list, should not affect
// outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(6));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(5));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root 2. This means the latest root < 2 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(2));
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root 1. This means the latest root < 3 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(1));
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root that doesn't exist in the list but is greater than
// some of the roots in the list, shouldn't return those smaller roots
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(&mut slot_list, &mut reclaims, Some(7));
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
}
fn check_secondary_index_mapping_correct<SecondaryIndexEntryType>(
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
secondary_index_keys: &[Pubkey],
account_key: &Pubkey,
) where
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
{
// Check secondary index has unique mapping from secondary index key
// to the account key and slot
for secondary_index_key in secondary_index_keys {
assert_eq!(secondary_index.index.len(), secondary_index_keys.len());
let account_key_map = secondary_index.get(secondary_index_key);
assert_eq!(account_key_map.len(), 1);
assert_eq!(account_key_map, vec![*account_key]);
}
// Check reverse index contains all of the `secondary_index_keys`
let secondary_index_key_map = secondary_index.reverse_index.get(account_key).unwrap();
assert_eq!(
&*secondary_index_key_map.value().read().unwrap(),
secondary_index_keys
);
}
fn run_test_spl_token_secondary_indexes<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
token_id: &Pubkey,
index: &AccountsIndex<bool, bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
key_start: usize,
key_end: usize,
secondary_indexes: &AccountSecondaryIndexes,
) {
let mut secondary_indexes = secondary_indexes.clone();
let account_key = Pubkey::new_unique();
let index_key = Pubkey::new_unique();
let mut account_data = vec![0; inline_spl_token::Account::get_packed_len()];
account_data[key_start..key_end].clone_from_slice(&(index_key.to_bytes()));
// Wrong program id
index.upsert(
0,
0,
&account_key,
&AccountSharedData::create(0, account_data.to_vec(), Pubkey::default(), false, 0),
&secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
// Wrong account data size
index.upsert(
0,
0,
&account_key,
&AccountSharedData::create(0, account_data[1..].to_vec(), *token_id, false, 0),
&secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
secondary_indexes.keys = None;
// Just right. Inserting the same index multiple times should be ok
for _ in 0..2 {
index.update_secondary_indexes(
&account_key,
&AccountSharedData::create(0, account_data.to_vec(), *token_id, false, 0),
&secondary_indexes,
);
check_secondary_index_mapping_correct(secondary_index, &[index_key], &account_key);
}
// included
assert!(!secondary_index.index.is_empty());
assert!(!secondary_index.reverse_index.is_empty());
secondary_indexes.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [index_key].iter().cloned().collect::<HashSet<_>>(),
exclude: false,
});
secondary_index.index.clear();
secondary_index.reverse_index.clear();
index.update_secondary_indexes(
&account_key,
&AccountSharedData::create(0, account_data.to_vec(), *token_id, false, 0),
&secondary_indexes,
);
assert!(!secondary_index.index.is_empty());
assert!(!secondary_index.reverse_index.is_empty());
check_secondary_index_mapping_correct(secondary_index, &[index_key], &account_key);
// not-excluded
secondary_indexes.keys = Some(AccountSecondaryIndexesIncludeExclude {
keys: [].iter().cloned().collect::<HashSet<_>>(),
exclude: true,
});
secondary_index.index.clear();
secondary_index.reverse_index.clear();
index.update_secondary_indexes(
&account_key,
&AccountSharedData::create(0, account_data.to_vec(), *token_id, false, 0),
&secondary_indexes,
);
assert!(!secondary_index.index.is_empty());
assert!(!secondary_index.reverse_index.is_empty());
check_secondary_index_mapping_correct(secondary_index, &[index_key], &account_key);
secondary_indexes.keys = None;
index.slot_list_mut(&account_key, |slot_list| slot_list.clear());
// Everything should be deleted
let _ = index.handle_dead_keys(&[&account_key], &secondary_indexes);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
}
#[test]
fn test_dashmap_secondary_index() {
let (key_start, key_end, secondary_indexes) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
for token_id in [inline_spl_token::id(), inline_spl_token_2022::id()] {
run_test_spl_token_secondary_indexes(
&token_id,
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&secondary_indexes,
);
}
}
#[test]
fn test_rwlock_secondary_index() {
let (key_start, key_end, secondary_indexes) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
for token_id in [inline_spl_token::id(), inline_spl_token_2022::id()] {
run_test_spl_token_secondary_indexes(
&token_id,
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&secondary_indexes,
);
}
}
fn run_test_secondary_indexes_same_slot_and_forks<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
token_id: &Pubkey,
index: &AccountsIndex<bool, bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
index_key_start: usize,
index_key_end: usize,
secondary_indexes: &AccountSecondaryIndexes,
) {
let account_key = Pubkey::new_unique();
let secondary_key1 = Pubkey::new_unique();
let secondary_key2 = Pubkey::new_unique();
let slot = 1;
let mut account_data1 = vec![0; inline_spl_token::Account::get_packed_len()];
account_data1[index_key_start..index_key_end]
.clone_from_slice(&(secondary_key1.to_bytes()));
let mut account_data2 = vec![0; inline_spl_token::Account::get_packed_len()];
account_data2[index_key_start..index_key_end]
.clone_from_slice(&(secondary_key2.to_bytes()));
// First write one mint index
index.upsert(
slot,
slot,
&account_key,
&AccountSharedData::create(0, account_data1.to_vec(), *token_id, false, 0),
secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
// Now write a different mint index for the same account
index.upsert(
slot,
slot,
&account_key,
&AccountSharedData::create(0, account_data2.to_vec(), *token_id, false, 0),
secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
// Both pubkeys will now be present in the index
check_secondary_index_mapping_correct(
secondary_index,
&[secondary_key1, secondary_key2],
&account_key,
);
// If a later slot also introduces secondary_key1, then it should still exist in the index
let later_slot = slot + 1;
index.upsert(
later_slot,
later_slot,
&account_key,
&AccountSharedData::create(0, account_data1.to_vec(), *token_id, false, 0),
secondary_indexes,
true,
&mut vec![],
UPSERT_POPULATE_RECLAIMS,
);
assert_eq!(secondary_index.get(&secondary_key1), vec![account_key]);
// If we set a root at `later_slot`, and clean, then even though the account with secondary_key1
// was outdated by the update in the later slot, the primary account key is still alive,
// so both secondary keys will still be kept alive.
index.add_root(later_slot);
index.slot_list_mut(&account_key, |slot_list| {
index.purge_older_root_entries(slot_list, &mut vec![], None)
});
check_secondary_index_mapping_correct(
secondary_index,
&[secondary_key1, secondary_key2],
&account_key,
);
// Removing the remaining entry for this pubkey in the index should mark the
// pubkey as dead and finally remove all the secondary indexes
let mut reclaims = vec![];
index.purge_exact(&account_key, &later_slot, &mut reclaims);
let _ = index.handle_dead_keys(&[&account_key], secondary_indexes);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
}
#[test]
fn test_dashmap_secondary_index_same_slot_and_forks() {
let (key_start, key_end, account_index) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
for token_id in [inline_spl_token::id(), inline_spl_token_2022::id()] {
run_test_secondary_indexes_same_slot_and_forks(
&token_id,
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&account_index,
);
}
}
#[test]
fn test_rwlock_secondary_index_same_slot_and_forks() {
let (key_start, key_end, account_index) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool, bool>::default_for_tests();
for token_id in [inline_spl_token::id(), inline_spl_token_2022::id()] {
run_test_secondary_indexes_same_slot_and_forks(
&token_id,
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&account_index,
);
}
}
impl IndexValue for bool {}
impl IndexValue for u64 {}
impl DiskIndexValue for bool {}
impl DiskIndexValue for u64 {}
impl IsCached for bool {
fn is_cached(&self) -> bool {
false
}
}
impl IsCached for u64 {
fn is_cached(&self) -> bool {
false
}
}
impl ZeroLamport for bool {
fn is_zero_lamport(&self) -> bool {
false
}
}
impl ZeroLamport for u64 {
fn is_zero_lamport(&self) -> bool {
false
}
}
#[test]
fn test_bin_start_and_range() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
let iter = AccountsIndexIterator::new(
&index,
None::<&RangeInclusive<Pubkey>>,
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!((0, usize::MAX), iter.bin_start_and_range());
let key_0 = Pubkey::from([0; 32]);
let key_ff = Pubkey::from([0xff; 32]);
let iter = AccountsIndexIterator::new(
&index,
Some(&RangeInclusive::new(key_0, key_ff)),
COLLECT_ALL_UNSORTED_FALSE,
);
let bins = index.bins();
assert_eq!((0, bins), iter.bin_start_and_range());
let iter = AccountsIndexIterator::new(
&index,
Some(&RangeInclusive::new(key_ff, key_0)),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!((bins - 1, 0), iter.bin_start_and_range());
let iter = AccountsIndexIterator::new(
&index,
Some(&(Included(key_0), Unbounded)),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!((0, usize::MAX), iter.bin_start_and_range());
let iter = AccountsIndexIterator::new(
&index,
Some(&(Included(key_ff), Unbounded)),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!((bins - 1, usize::MAX), iter.bin_start_and_range());
assert_eq!((0..2).skip(1).take(usize::MAX).collect::<Vec<_>>(), vec![1]);
}
#[test]
fn test_get_newest_root_in_slot_list() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
let return_0 = 0;
let slot1 = 1;
let slot2 = 2;
let slot99 = 99;
// no roots, so always 0
{
let roots_tracker = &index.roots_tracker.read().unwrap();
let slot_list = Vec::<(Slot, bool)>::default();
assert_eq!(
return_0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot1),
)
);
assert_eq!(
return_0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot2),
)
);
assert_eq!(
return_0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot99),
)
);
}
index.add_root(slot2);
{
let roots_tracker = &index.roots_tracker.read().unwrap();
let slot_list = vec![(slot2, true)];
assert_eq!(
slot2,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot2),
)
);
// no newest root
assert_eq!(
return_0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot1),
)
);
assert_eq!(
slot2,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(slot99),
)
);
}
}
impl<T: IndexValue> AccountsIndex<T, T> {
fn upsert_simple_test(&self, key: &Pubkey, slot: Slot, value: T) {
let mut gc = Vec::new();
self.upsert(
slot,
slot,
key,
&AccountSharedData::default(),
&AccountSecondaryIndexes::default(),
value,
&mut gc,
UPSERT_POPULATE_RECLAIMS,
);
assert!(gc.is_empty());
}
}
#[test]
fn test_unref() {
let value = true;
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let slot1 = 1;
index.upsert_simple_test(&key, slot1, value);
let map = index.get_bin(&key);
for expected in [false, true] {
assert!(map.get_internal(&key, |entry| {
// check refcount BEFORE the unref
assert_eq!(u64::from(!expected), entry.unwrap().ref_count());
// first time, ref count was at 1, we can unref once. Unref should return false.
// second time, ref count was at 0, it is an error to unref. Unref should return true
assert_eq!(expected, entry.unwrap().unref());
// check refcount AFTER the unref
assert_eq!(
if expected {
(0 as RefCount).wrapping_sub(1)
} else {
0
},
entry.unwrap().ref_count()
);
(false, true)
}));
}
}
#[test]
fn test_clean_rooted_entries_return() {
solana_logger::setup();
let value = true;
let key = solana_sdk::pubkey::new_rand();
let key_unknown = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
let slot1 = 1;
let mut gc = Vec::new();
// return true if we don't know anything about 'key_unknown'
// the item did not exist in the accounts index at all, so index is up to date
assert!(index.clean_rooted_entries(&key_unknown, &mut gc, None));
index.upsert_simple_test(&key, slot1, value);
let slot2 = 2;
// none for max root because we don't want to delete the entry yet
assert!(!index.clean_rooted_entries(&key, &mut gc, None));
// this is because of inclusive vs exclusive in the call to can_purge_older_entries
assert!(!index.clean_rooted_entries(&key, &mut gc, Some(slot1)));
// this will delete the entry because it is <= max_root_inclusive and NOT a root
// note this has to be slot2 because of inclusive vs exclusive in the call to can_purge_older_entries
{
let mut gc = Vec::new();
assert!(index.clean_rooted_entries(&key, &mut gc, Some(slot2)));
assert_eq!(gc, vec![(slot1, value)]);
}
// re-add it
index.upsert_simple_test(&key, slot1, value);
index.add_root(slot1);
assert!(!index.clean_rooted_entries(&key, &mut gc, Some(slot2)));
index.upsert_simple_test(&key, slot2, value);
assert_eq!(
2,
index
.get_account_read_entry(&key)
.unwrap()
.slot_list()
.len()
);
assert_eq!(
&vec![(slot1, value), (slot2, value)],
index.get_account_read_entry(&key).unwrap().slot_list()
);
assert!(!index.clean_rooted_entries(&key, &mut gc, Some(slot2)));
assert_eq!(
2,
index
.get_account_read_entry(&key)
.unwrap()
.slot_list()
.len()
);
assert!(gc.is_empty());
{
{
let roots_tracker = &index.roots_tracker.read().unwrap();
let slot_list = vec![(slot2, value)];
assert_eq!(
0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
None,
)
);
}
index.add_root(slot2);
{
let roots_tracker = &index.roots_tracker.read().unwrap();
let slot_list = vec![(slot2, value)];
assert_eq!(
slot2,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
None,
)
);
assert_eq!(
0,
AccountsIndex::<bool, bool>::get_newest_root_in_slot_list(
&roots_tracker.alive_roots,
&slot_list,
Some(0),
)
);
}
}
assert!(gc.is_empty());
assert!(!index.clean_rooted_entries(&key, &mut gc, Some(slot2)));
assert_eq!(gc, vec![(slot1, value)]);
gc.clear();
index.clean_dead_slot(slot2, &mut AccountsIndexRootsStats::default());
let slot3 = 3;
assert!(index.clean_rooted_entries(&key, &mut gc, Some(slot3)));
assert_eq!(gc, vec![(slot2, value)]);
}
#[test]
fn test_handle_dead_keys_return() {
let key = solana_sdk::pubkey::new_rand();
let index = AccountsIndex::<bool, bool>::default_for_tests();
assert_eq!(
index.handle_dead_keys(&[&key], &AccountSecondaryIndexes::default()),
vec![key].into_iter().collect::<HashSet<_>>()
);
}
#[test]
fn test_start_end_bin() {
let index = AccountsIndex::<bool, bool>::default_for_tests();
assert_eq!(index.bins(), BINS_FOR_TESTING);
let iter = AccountsIndexIterator::new(
&index,
None::<&RangeInclusive<Pubkey>>,
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), 0); // no range, so 0
assert_eq!(iter.end_bin_inclusive(), usize::MAX); // no range, so max
let key = Pubkey::from([0; 32]);
let iter = AccountsIndexIterator::new(
&index,
Some(&RangeInclusive::new(key, key)),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), 0); // start at pubkey 0, so 0
assert_eq!(iter.end_bin_inclusive(), 0); // end at pubkey 0, so 0
let iter = AccountsIndexIterator::new(
&index,
Some(&(Included(key), Excluded(key))),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), 0); // start at pubkey 0, so 0
assert_eq!(iter.end_bin_inclusive(), 0); // end at pubkey 0, so 0
let iter = AccountsIndexIterator::new(
&index,
Some(&(Excluded(key), Excluded(key))),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), 0); // start at pubkey 0, so 0
assert_eq!(iter.end_bin_inclusive(), 0); // end at pubkey 0, so 0
let key = Pubkey::from([0xff; 32]);
let iter = AccountsIndexIterator::new(
&index,
Some(&RangeInclusive::new(key, key)),
COLLECT_ALL_UNSORTED_FALSE,
);
let bins = index.bins();
assert_eq!(iter.start_bin(), bins - 1); // start at highest possible pubkey, so bins - 1
assert_eq!(iter.end_bin_inclusive(), bins - 1);
let iter = AccountsIndexIterator::new(
&index,
Some(&(Included(key), Excluded(key))),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), bins - 1); // start at highest possible pubkey, so bins - 1
assert_eq!(iter.end_bin_inclusive(), bins - 1);
let iter = AccountsIndexIterator::new(
&index,
Some(&(Excluded(key), Excluded(key))),
COLLECT_ALL_UNSORTED_FALSE,
);
assert_eq!(iter.start_bin(), bins - 1); // start at highest possible pubkey, so bins - 1
assert_eq!(iter.end_bin_inclusive(), bins - 1);
}
#[test]
#[should_panic(expected = "bins.is_power_of_two()")]
#[allow(clippy::field_reassign_with_default)]
fn test_illegal_bins() {
let mut config = AccountsIndexConfig::default();
config.bins = Some(3);
AccountsIndex::<bool, bool>::new(Some(config), &Arc::default());
}
#[test]
fn test_scan_config() {
for collect_all_unsorted in [false, true] {
let config = ScanConfig::new(collect_all_unsorted);
assert_eq!(config.collect_all_unsorted, collect_all_unsorted);
assert!(config.abort.is_none()); // not allocated
assert!(!config.is_aborted());
config.abort(); // has no effect
assert!(!config.is_aborted());
}
let config = ScanConfig::default();
assert!(!config.collect_all_unsorted);
assert!(config.abort.is_none());
let config = config.recreate_with_abort();
assert!(config.abort.is_some());
assert!(!config.is_aborted());
config.abort();
assert!(config.is_aborted());
let config = config.recreate_with_abort();
assert!(config.is_aborted());
}
}