698 lines
23 KiB
Rust
698 lines
23 KiB
Rust
//! The `entry` module is a fundamental building block of Proof of History. It contains a
|
|
//! unique ID that is the hash of the Entry before it, plus the hash of the
|
|
//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
|
|
//! represents an approximate amount of time since the last Entry was created.
|
|
use crate::packet::{Blob, SharedBlob, BLOB_DATA_SIZE};
|
|
use crate::poh::Poh;
|
|
use crate::result::Result;
|
|
use bincode::{deserialize, serialize_into, serialized_size};
|
|
use chrono::prelude::Utc;
|
|
use rayon::prelude::*;
|
|
use solana_sdk::budget_transaction::BudgetTransaction;
|
|
use solana_sdk::hash::{hash, Hash};
|
|
use solana_sdk::pubkey::Pubkey;
|
|
use solana_sdk::signature::{Keypair, KeypairUtil};
|
|
use solana_sdk::transaction::Transaction;
|
|
use solana_sdk::vote_program::Vote;
|
|
use solana_sdk::vote_transaction::VoteTransaction;
|
|
use std::borrow::Borrow;
|
|
use std::io::Cursor;
|
|
use std::mem::size_of;
|
|
use std::sync::mpsc::{Receiver, Sender};
|
|
use std::sync::{Arc, RwLock};
|
|
|
|
pub type EntrySender = Sender<Vec<Entry>>;
|
|
pub type EntryReceiver = Receiver<Vec<Entry>>;
|
|
|
|
/// Each Entry contains three pieces of data. The `num_hashes` field is the number
|
|
/// of hashes performed since the previous entry. The `id` field is the result
|
|
/// of hashing `id` from the previous entry `num_hashes` times. The `transactions`
|
|
/// field points to Transactions that took place shortly before `id` was generated.
|
|
///
|
|
/// If you divide `num_hashes` by the amount of time it takes to generate a new hash, you
|
|
/// get a duration estimate since the last Entry. Since processing power increases
|
|
/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
|
|
/// An upper bound on Duration can be estimated by assuming each hash was generated by the
|
|
/// world's fastest processor at the time the entry was recorded. Or said another way, it
|
|
/// is physically not possible for a shorter duration to have occurred if one assumes the
|
|
/// hash was computed by the world's fastest processor at that time. The hash chain is both
|
|
/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
|
|
/// Work consensus!)
|
|
|
|
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
|
|
pub struct Entry {
|
|
/// tick height of the ledger, not including any tick implied by this Entry
|
|
pub tick_height: u64,
|
|
|
|
/// The number of hashes since the previous Entry ID.
|
|
pub num_hashes: u64,
|
|
|
|
/// The SHA-256 hash `num_hashes` after the previous Entry ID.
|
|
pub id: Hash,
|
|
|
|
/// An unordered list of transactions that were observed before the Entry ID was
|
|
/// generated. They may have been observed before a previous Entry ID but were
|
|
/// pushed back into this list to ensure deterministic interpretation of the ledger.
|
|
pub transactions: Vec<Transaction>,
|
|
}
|
|
|
|
impl Entry {
|
|
/// Creates the next Entry `num_hashes` after `start_hash`.
|
|
pub fn new(
|
|
prev_id: &Hash,
|
|
tick_height: u64,
|
|
num_hashes: u64,
|
|
transactions: Vec<Transaction>,
|
|
) -> Self {
|
|
let entry = {
|
|
if num_hashes == 0 && transactions.is_empty() {
|
|
Entry {
|
|
tick_height,
|
|
num_hashes: 0,
|
|
id: *prev_id,
|
|
transactions,
|
|
}
|
|
} else if num_hashes == 0 {
|
|
// If you passed in transactions, but passed in num_hashes == 0, then
|
|
// next_hash will generate the next hash and set num_hashes == 1
|
|
let id = next_hash(prev_id, 1, &transactions);
|
|
Entry {
|
|
tick_height,
|
|
num_hashes: 1,
|
|
id,
|
|
transactions,
|
|
}
|
|
} else {
|
|
// Otherwise, the next Entry `num_hashes` after `start_hash`.
|
|
// If you wanted a tick for instance, then pass in num_hashes = 1
|
|
// and transactions = empty
|
|
let id = next_hash(prev_id, num_hashes, &transactions);
|
|
Entry {
|
|
tick_height,
|
|
num_hashes,
|
|
id,
|
|
transactions,
|
|
}
|
|
}
|
|
};
|
|
|
|
let size = Entry::serialized_size(&entry.transactions[..]);
|
|
if size > BLOB_DATA_SIZE as u64 {
|
|
panic!(
|
|
"Serialized entry size too large: {} ({} transactions):",
|
|
size,
|
|
entry.transactions.len()
|
|
);
|
|
}
|
|
entry
|
|
}
|
|
|
|
pub fn to_shared_blob(&self) -> SharedBlob {
|
|
let blob = self.to_blob();
|
|
Arc::new(RwLock::new(blob))
|
|
}
|
|
|
|
pub fn to_blob(&self) -> Blob {
|
|
let mut blob = Blob::default();
|
|
let pos = {
|
|
let mut out = Cursor::new(blob.data_mut());
|
|
serialize_into(&mut out, &self).expect("failed to serialize output");
|
|
out.position() as usize
|
|
};
|
|
blob.set_size(pos);
|
|
blob
|
|
}
|
|
|
|
/// Estimate serialized_size of Entry without creating an Entry.
|
|
pub fn serialized_size(transactions: &[Transaction]) -> u64 {
|
|
let txs_size: u64 = transactions
|
|
.iter()
|
|
.map(|tx| tx.serialized_size().unwrap())
|
|
.sum();
|
|
// tick_height+num_hashes + id + txs
|
|
|
|
(3 * size_of::<u64>() + size_of::<Hash>()) as u64 + txs_size
|
|
}
|
|
|
|
pub fn num_will_fit(transactions: &[Transaction]) -> usize {
|
|
if transactions.is_empty() {
|
|
return 0;
|
|
}
|
|
let mut num = transactions.len();
|
|
let mut upper = transactions.len();
|
|
let mut lower = 1; // if one won't fit, we have a lot of TODOs
|
|
let mut next = transactions.len(); // optimistic
|
|
loop {
|
|
debug!(
|
|
"num {}, upper {} lower {} next {} transactions.len() {}",
|
|
num,
|
|
upper,
|
|
lower,
|
|
next,
|
|
transactions.len()
|
|
);
|
|
if Self::serialized_size(&transactions[..num]) <= BLOB_DATA_SIZE as u64 {
|
|
next = (upper + num) / 2;
|
|
lower = num;
|
|
debug!("num {} fits, maybe too well? trying {}", num, next);
|
|
} else {
|
|
next = (lower + num) / 2;
|
|
upper = num;
|
|
debug!("num {} doesn't fit! trying {}", num, next);
|
|
}
|
|
// same as last time
|
|
if next == num {
|
|
debug!("converged on num {}", num);
|
|
break;
|
|
}
|
|
num = next;
|
|
}
|
|
num
|
|
}
|
|
|
|
/// Creates the next Tick Entry `num_hashes` after `start_hash`.
|
|
pub fn new_mut(
|
|
start_hash: &mut Hash,
|
|
num_hashes: &mut u64,
|
|
transactions: Vec<Transaction>,
|
|
) -> Self {
|
|
let entry = Self::new(start_hash, 0, *num_hashes, transactions);
|
|
*start_hash = entry.id;
|
|
*num_hashes = 0;
|
|
assert!(serialized_size(&entry).unwrap() <= BLOB_DATA_SIZE as u64);
|
|
entry
|
|
}
|
|
|
|
/// Creates a Entry from the number of hashes `num_hashes`
|
|
/// since the previous transaction and that resulting `id`.
|
|
|
|
#[cfg(test)]
|
|
pub fn new_tick(tick_height: u64, num_hashes: u64, id: &Hash) -> Self {
|
|
Entry {
|
|
tick_height,
|
|
num_hashes,
|
|
id: *id,
|
|
transactions: vec![],
|
|
}
|
|
}
|
|
|
|
/// Verifies self.id is the result of hashing a `start_hash` `self.num_hashes` times.
|
|
/// If the transaction is not a Tick, then hash that as well.
|
|
pub fn verify(&self, start_hash: &Hash) -> bool {
|
|
let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
|
|
if self.id != ref_hash {
|
|
warn!(
|
|
"next_hash is invalid expected: {:?} actual: {:?}",
|
|
self.id, ref_hash
|
|
);
|
|
return false;
|
|
}
|
|
true
|
|
}
|
|
|
|
pub fn is_tick(&self) -> bool {
|
|
self.transactions.is_empty()
|
|
}
|
|
}
|
|
|
|
/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
|
|
/// a signature, the final hash will be a hash of both the previous ID and
|
|
/// the signature. If num_hashes is zero and there's no transaction data,
|
|
/// start_hash is returned.
|
|
fn next_hash(start_hash: &Hash, num_hashes: u64, transactions: &[Transaction]) -> Hash {
|
|
if num_hashes == 0 && transactions.is_empty() {
|
|
return *start_hash;
|
|
}
|
|
|
|
let mut poh = Poh::new(*start_hash, 0);
|
|
|
|
for _ in 1..num_hashes {
|
|
poh.hash();
|
|
}
|
|
|
|
if transactions.is_empty() {
|
|
poh.tick().id
|
|
} else {
|
|
poh.record(Transaction::hash(transactions)).id
|
|
}
|
|
}
|
|
|
|
pub fn reconstruct_entries_from_blobs<I>(blobs: I) -> Result<(Vec<Entry>, u64)>
|
|
where
|
|
I: IntoIterator,
|
|
I::Item: Borrow<Blob>,
|
|
{
|
|
let mut entries: Vec<Entry> = vec![];
|
|
let mut num_ticks = 0;
|
|
|
|
for blob in blobs.into_iter() {
|
|
let entry: Entry = {
|
|
let msg_size = blob.borrow().size();
|
|
deserialize(&blob.borrow().data()[..msg_size])?
|
|
};
|
|
|
|
if entry.is_tick() {
|
|
num_ticks += 1
|
|
}
|
|
entries.push(entry)
|
|
}
|
|
Ok((entries, num_ticks))
|
|
}
|
|
|
|
// an EntrySlice is a slice of Entries
|
|
pub trait EntrySlice {
|
|
/// Verifies the hashes and counts of a slice of transactions are all consistent.
|
|
fn verify(&self, start_hash: &Hash) -> bool;
|
|
fn to_shared_blobs(&self) -> Vec<SharedBlob>;
|
|
fn to_blobs(&self) -> Vec<Blob>;
|
|
fn votes(&self) -> Vec<(Pubkey, Vote, Hash)>;
|
|
}
|
|
|
|
impl EntrySlice for [Entry] {
|
|
fn verify(&self, start_hash: &Hash) -> bool {
|
|
let genesis = [Entry {
|
|
tick_height: 0,
|
|
num_hashes: 0,
|
|
id: *start_hash,
|
|
transactions: vec![],
|
|
}];
|
|
let entry_pairs = genesis.par_iter().chain(self).zip(self);
|
|
entry_pairs.all(|(x0, x1)| {
|
|
let r = x1.verify(&x0.id);
|
|
if !r {
|
|
warn!(
|
|
"entry invalid!: x0: {:?}, x1: {:?} num txs: {}",
|
|
x0.id,
|
|
x1.id,
|
|
x1.transactions.len()
|
|
);
|
|
}
|
|
r
|
|
})
|
|
}
|
|
|
|
fn to_blobs(&self) -> Vec<Blob> {
|
|
self.iter().map(|entry| entry.to_blob()).collect()
|
|
}
|
|
|
|
fn to_shared_blobs(&self) -> Vec<SharedBlob> {
|
|
self.iter().map(|entry| entry.to_shared_blob()).collect()
|
|
}
|
|
|
|
fn votes(&self) -> Vec<(Pubkey, Vote, Hash)> {
|
|
self.iter()
|
|
.flat_map(|entry| {
|
|
entry
|
|
.transactions
|
|
.iter()
|
|
.flat_map(VoteTransaction::get_votes)
|
|
})
|
|
.collect()
|
|
}
|
|
}
|
|
|
|
/// Creates the next entries for given transactions, outputs
|
|
/// updates start_hash to id of last Entry, sets num_hashes to 0
|
|
pub fn next_entries_mut(
|
|
start_hash: &mut Hash,
|
|
num_hashes: &mut u64,
|
|
transactions: Vec<Transaction>,
|
|
) -> Vec<Entry> {
|
|
// TODO: ?? find a number that works better than |?
|
|
// V
|
|
if transactions.is_empty() || transactions.len() == 1 {
|
|
vec![Entry::new_mut(start_hash, num_hashes, transactions)]
|
|
} else {
|
|
let mut chunk_start = 0;
|
|
let mut entries = Vec::new();
|
|
|
|
while chunk_start < transactions.len() {
|
|
let mut chunk_end = transactions.len();
|
|
let mut upper = chunk_end;
|
|
let mut lower = chunk_start;
|
|
let mut next = chunk_end; // be optimistic that all will fit
|
|
|
|
// binary search for how many transactions will fit in an Entry (i.e. a BLOB)
|
|
loop {
|
|
debug!(
|
|
"chunk_end {}, upper {} lower {} next {} transactions.len() {}",
|
|
chunk_end,
|
|
upper,
|
|
lower,
|
|
next,
|
|
transactions.len()
|
|
);
|
|
if Entry::serialized_size(&transactions[chunk_start..chunk_end])
|
|
<= BLOB_DATA_SIZE as u64
|
|
{
|
|
next = (upper + chunk_end) / 2;
|
|
lower = chunk_end;
|
|
debug!(
|
|
"chunk_end {} fits, maybe too well? trying {}",
|
|
chunk_end, next
|
|
);
|
|
} else {
|
|
next = (lower + chunk_end) / 2;
|
|
upper = chunk_end;
|
|
debug!("chunk_end {} doesn't fit! trying {}", chunk_end, next);
|
|
}
|
|
// same as last time
|
|
if next == chunk_end {
|
|
debug!("converged on chunk_end {}", chunk_end);
|
|
break;
|
|
}
|
|
chunk_end = next;
|
|
}
|
|
entries.push(Entry::new_mut(
|
|
start_hash,
|
|
num_hashes,
|
|
transactions[chunk_start..chunk_end].to_vec(),
|
|
));
|
|
chunk_start = chunk_end;
|
|
}
|
|
|
|
entries
|
|
}
|
|
}
|
|
|
|
/// Creates the next Entries for given transactions
|
|
pub fn next_entries(
|
|
start_hash: &Hash,
|
|
num_hashes: u64,
|
|
transactions: Vec<Transaction>,
|
|
) -> Vec<Entry> {
|
|
let mut id = *start_hash;
|
|
let mut num_hashes = num_hashes;
|
|
next_entries_mut(&mut id, &mut num_hashes, transactions)
|
|
}
|
|
|
|
pub fn create_ticks(num_ticks: u64, mut hash: Hash) -> Vec<Entry> {
|
|
let mut ticks = Vec::with_capacity(num_ticks as usize);
|
|
for _ in 0..num_ticks {
|
|
let new_tick = Entry::new(&hash, 0, 1, vec![]);
|
|
hash = new_tick.id;
|
|
ticks.push(new_tick);
|
|
}
|
|
|
|
ticks
|
|
}
|
|
|
|
pub fn make_tiny_test_entries_from_id(start: &Hash, num: usize) -> Vec<Entry> {
|
|
let keypair = Keypair::new();
|
|
|
|
let mut id = *start;
|
|
let mut num_hashes = 0;
|
|
(0..num)
|
|
.map(|_| {
|
|
Entry::new_mut(
|
|
&mut id,
|
|
&mut num_hashes,
|
|
vec![BudgetTransaction::new_timestamp(
|
|
&keypair,
|
|
keypair.pubkey(),
|
|
keypair.pubkey(),
|
|
Utc::now(),
|
|
*start,
|
|
)],
|
|
)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
pub fn make_tiny_test_entries(num: usize) -> Vec<Entry> {
|
|
let zero = Hash::default();
|
|
let one = hash(&zero.as_ref());
|
|
make_tiny_test_entries_from_id(&one, num)
|
|
}
|
|
|
|
pub fn make_large_test_entries(num_entries: usize) -> Vec<Entry> {
|
|
let zero = Hash::default();
|
|
let one = hash(&zero.as_ref());
|
|
let keypair = Keypair::new();
|
|
|
|
let tx = BudgetTransaction::new_timestamp(
|
|
&keypair,
|
|
keypair.pubkey(),
|
|
keypair.pubkey(),
|
|
Utc::now(),
|
|
one,
|
|
);
|
|
|
|
let serialized_size = tx.serialized_size().unwrap();
|
|
let num_txs = BLOB_DATA_SIZE / serialized_size as usize;
|
|
let txs = vec![tx; num_txs];
|
|
let entry = next_entries(&one, 1, txs)[0].clone();
|
|
vec![entry; num_entries]
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub fn make_consecutive_blobs(
|
|
id: &Pubkey,
|
|
num_blobs_to_make: u64,
|
|
start_height: u64,
|
|
start_hash: Hash,
|
|
addr: &std::net::SocketAddr,
|
|
) -> Vec<SharedBlob> {
|
|
let entries = create_ticks(num_blobs_to_make, start_hash);
|
|
|
|
let blobs = entries.to_shared_blobs();
|
|
let mut index = start_height;
|
|
for blob in &blobs {
|
|
let mut blob = blob.write().unwrap();
|
|
blob.set_index(index);
|
|
blob.set_id(id);
|
|
blob.meta.set_addr(addr);
|
|
index += 1;
|
|
}
|
|
blobs
|
|
}
|
|
|
|
#[cfg(test)]
|
|
/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
|
|
pub fn next_entry(prev_id: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
|
|
assert!(num_hashes > 0 || transactions.is_empty());
|
|
Entry {
|
|
tick_height: 0,
|
|
num_hashes,
|
|
id: next_hash(prev_id, num_hashes, &transactions),
|
|
transactions,
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::entry::Entry;
|
|
use crate::packet::{to_blobs, BLOB_DATA_SIZE, PACKET_DATA_SIZE};
|
|
use solana_sdk::hash::hash;
|
|
use solana_sdk::signature::{Keypair, KeypairUtil};
|
|
use solana_sdk::system_transaction::SystemTransaction;
|
|
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
|
|
|
|
#[test]
|
|
fn test_entry_verify() {
|
|
let zero = Hash::default();
|
|
let one = hash(&zero.as_ref());
|
|
assert!(Entry::new_tick(0, 0, &zero).verify(&zero)); // base case, never used
|
|
assert!(!Entry::new_tick(1, 0, &zero).verify(&one)); // base case, bad
|
|
assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
|
|
assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
|
|
}
|
|
|
|
#[test]
|
|
fn test_transaction_reorder_attack() {
|
|
let zero = Hash::default();
|
|
|
|
// First, verify entries
|
|
let keypair = Keypair::new();
|
|
let tx0 = SystemTransaction::new_account(&keypair, keypair.pubkey(), 0, zero, 0);
|
|
let tx1 = SystemTransaction::new_account(&keypair, keypair.pubkey(), 1, zero, 0);
|
|
let mut e0 = Entry::new(&zero, 0, 0, vec![tx0.clone(), tx1.clone()]);
|
|
assert!(e0.verify(&zero));
|
|
|
|
// Next, swap two transactions and ensure verification fails.
|
|
e0.transactions[0] = tx1; // <-- attack
|
|
e0.transactions[1] = tx0;
|
|
assert!(!e0.verify(&zero));
|
|
}
|
|
|
|
#[test]
|
|
fn test_witness_reorder_attack() {
|
|
let zero = Hash::default();
|
|
|
|
// First, verify entries
|
|
let keypair = Keypair::new();
|
|
let tx0 = BudgetTransaction::new_timestamp(
|
|
&keypair,
|
|
keypair.pubkey(),
|
|
keypair.pubkey(),
|
|
Utc::now(),
|
|
zero,
|
|
);
|
|
let tx1 =
|
|
BudgetTransaction::new_signature(&keypair, keypair.pubkey(), keypair.pubkey(), zero);
|
|
let mut e0 = Entry::new(&zero, 0, 0, vec![tx0.clone(), tx1.clone()]);
|
|
assert!(e0.verify(&zero));
|
|
|
|
// Next, swap two witness transactions and ensure verification fails.
|
|
e0.transactions[0] = tx1; // <-- attack
|
|
e0.transactions[1] = tx0;
|
|
assert!(!e0.verify(&zero));
|
|
}
|
|
|
|
#[test]
|
|
fn test_next_entry() {
|
|
let zero = Hash::default();
|
|
let tick = next_entry(&zero, 1, vec![]);
|
|
assert_eq!(tick.num_hashes, 1);
|
|
assert_ne!(tick.id, zero);
|
|
|
|
let tick = next_entry(&zero, 0, vec![]);
|
|
assert_eq!(tick.num_hashes, 0);
|
|
assert_eq!(tick.id, zero);
|
|
|
|
let keypair = Keypair::new();
|
|
let tx0 = BudgetTransaction::new_timestamp(
|
|
&keypair,
|
|
keypair.pubkey(),
|
|
keypair.pubkey(),
|
|
Utc::now(),
|
|
zero,
|
|
);
|
|
let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
|
|
assert_eq!(entry0.num_hashes, 1);
|
|
assert_eq!(entry0.id, next_hash(&zero, 1, &vec![tx0]));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_next_entry_panic() {
|
|
let zero = Hash::default();
|
|
let keypair = Keypair::new();
|
|
let tx = SystemTransaction::new_account(&keypair, keypair.pubkey(), 0, zero, 0);
|
|
next_entry(&zero, 0, vec![tx]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_serialized_size() {
|
|
let zero = Hash::default();
|
|
let keypair = Keypair::new();
|
|
let tx = SystemTransaction::new_account(&keypair, keypair.pubkey(), 0, zero, 0);
|
|
let entry = next_entry(&zero, 1, vec![tx.clone()]);
|
|
assert_eq!(
|
|
Entry::serialized_size(&[tx]),
|
|
serialized_size(&entry).unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_verify_slice() {
|
|
solana_logger::setup();
|
|
let zero = Hash::default();
|
|
let one = hash(&zero.as_ref());
|
|
assert!(vec![][..].verify(&zero)); // base case
|
|
assert!(vec![Entry::new_tick(0, 0, &zero)][..].verify(&zero)); // singleton case 1
|
|
assert!(!vec![Entry::new_tick(0, 0, &zero)][..].verify(&one)); // singleton case 2, bad
|
|
assert!(vec![next_entry(&zero, 0, vec![]); 2][..].verify(&zero)); // inductive step
|
|
|
|
let mut bad_ticks = vec![next_entry(&zero, 0, vec![]); 2];
|
|
bad_ticks[1].id = one;
|
|
assert!(!bad_ticks.verify(&zero)); // inductive step, bad
|
|
}
|
|
|
|
fn make_test_entries() -> Vec<Entry> {
|
|
let zero = Hash::default();
|
|
let one = hash(&zero.as_ref());
|
|
let keypair = Keypair::new();
|
|
let vote_account = Keypair::new();
|
|
let tx0 = VoteTransaction::new_vote(&vote_account, 1, one, 1);
|
|
let tx1 = BudgetTransaction::new_timestamp(
|
|
&keypair,
|
|
keypair.pubkey(),
|
|
keypair.pubkey(),
|
|
Utc::now(),
|
|
one,
|
|
);
|
|
//
|
|
// TODO: this magic number and the mix of transaction types
|
|
// is designed to fill up a Blob more or less exactly,
|
|
// to get near enough the threshold that
|
|
// deserialization falls over if it uses the wrong size()
|
|
// parameter to index into blob.data()
|
|
//
|
|
// magic numbers -----------------+
|
|
// |
|
|
// V
|
|
let mut transactions = vec![tx0; 362];
|
|
transactions.extend(vec![tx1; 100]);
|
|
next_entries(&zero, 0, transactions)
|
|
}
|
|
|
|
#[test]
|
|
fn test_entries_to_shared_blobs() {
|
|
solana_logger::setup();
|
|
let entries = make_test_entries();
|
|
|
|
let blob_q = entries.to_blobs();
|
|
|
|
assert_eq!(reconstruct_entries_from_blobs(blob_q).unwrap().0, entries);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bad_blobs_attack() {
|
|
solana_logger::setup();
|
|
let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 8000);
|
|
let blobs_q = to_blobs(vec![(0, addr)]).unwrap(); // <-- attack!
|
|
assert!(reconstruct_entries_from_blobs(blobs_q).is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_next_entries() {
|
|
solana_logger::setup();
|
|
let id = Hash::default();
|
|
let next_id = hash(&id.as_ref());
|
|
let keypair = Keypair::new();
|
|
let vote_account = Keypair::new();
|
|
let tx_small = VoteTransaction::new_vote(&vote_account, 1, next_id, 2);
|
|
let tx_large = BudgetTransaction::new(&keypair, keypair.pubkey(), 1, next_id);
|
|
|
|
let tx_small_size = tx_small.serialized_size().unwrap() as usize;
|
|
let tx_large_size = tx_large.serialized_size().unwrap() as usize;
|
|
let entry_size = serialized_size(&Entry {
|
|
tick_height: 0,
|
|
num_hashes: 0,
|
|
id: Hash::default(),
|
|
transactions: vec![],
|
|
})
|
|
.unwrap() as usize;
|
|
assert!(tx_small_size < tx_large_size);
|
|
assert!(tx_large_size < PACKET_DATA_SIZE);
|
|
|
|
let threshold = (BLOB_DATA_SIZE - entry_size) / tx_small_size;
|
|
|
|
// verify no split
|
|
let transactions = vec![tx_small.clone(); threshold];
|
|
let entries0 = next_entries(&id, 0, transactions.clone());
|
|
assert_eq!(entries0.len(), 1);
|
|
assert!(entries0.verify(&id));
|
|
|
|
// verify the split with uniform transactions
|
|
let transactions = vec![tx_small.clone(); threshold * 2];
|
|
let entries0 = next_entries(&id, 0, transactions.clone());
|
|
assert_eq!(entries0.len(), 2);
|
|
assert!(entries0.verify(&id));
|
|
|
|
// verify the split with small transactions followed by large
|
|
// transactions
|
|
let mut transactions = vec![tx_small.clone(); BLOB_DATA_SIZE / tx_small_size];
|
|
let large_transactions = vec![tx_large.clone(); BLOB_DATA_SIZE / tx_large_size];
|
|
|
|
transactions.extend(large_transactions);
|
|
|
|
let entries0 = next_entries(&id, 0, transactions.clone());
|
|
assert!(entries0.len() >= 2);
|
|
assert!(entries0.verify(&id));
|
|
}
|
|
|
|
}
|