solana/core/src/consensus.rs

917 lines
30 KiB
Rust

use solana_ledger::bank_forks::BankForks;
use solana_metrics::datapoint_debug;
use solana_runtime::bank::Bank;
use solana_sdk::{account::Account, clock::Slot, hash::Hash, pubkey::Pubkey};
use solana_vote_api::vote_state::{Lockout, Vote, VoteState, MAX_LOCKOUT_HISTORY};
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
pub const VOTE_THRESHOLD_DEPTH: usize = 8;
pub const VOTE_THRESHOLD_SIZE: f64 = 2f64 / 3f64;
#[derive(Default, Debug)]
pub struct StakeLockout {
lockout: u64,
stake: u64,
}
impl StakeLockout {
pub fn new(lockout: u64, stake: u64) -> Self {
Self { lockout, stake }
}
pub fn lockout(&self) -> u64 {
self.lockout
}
pub fn stake(&self) -> u64 {
self.stake
}
}
#[derive(Default)]
pub struct Tower {
node_pubkey: Pubkey,
threshold_depth: usize,
threshold_size: f64,
lockouts: VoteState,
last_vote: Vote,
}
impl Tower {
pub fn new(node_pubkey: &Pubkey, vote_account_pubkey: &Pubkey, bank_forks: &BankForks) -> Self {
let mut tower = Self {
node_pubkey: *node_pubkey,
threshold_depth: VOTE_THRESHOLD_DEPTH,
threshold_size: VOTE_THRESHOLD_SIZE,
lockouts: VoteState::default(),
last_vote: Vote::default(),
};
tower.initialize_lockouts_from_bank_forks(&bank_forks, vote_account_pubkey);
tower
}
#[cfg(test)]
pub fn new_for_tests(threshold_depth: usize, threshold_size: f64) -> Self {
Self {
threshold_depth,
threshold_size,
..Tower::default()
}
}
pub fn collect_vote_lockouts<F>(
&self,
bank_slot: u64,
vote_accounts: F,
ancestors: &HashMap<Slot, HashSet<u64>>,
) -> (HashMap<Slot, StakeLockout>, u64)
where
F: Iterator<Item = (Pubkey, (u64, Account))>,
{
let mut stake_lockouts = HashMap::new();
let mut total_stake = 0;
for (key, (lamports, account)) in vote_accounts {
if lamports == 0 {
continue;
}
trace!("{} {} with stake {}", self.node_pubkey, key, lamports);
let vote_state = VoteState::from(&account);
if vote_state.is_none() {
datapoint_warn!(
"tower_warn",
(
"warn",
format!("Unable to get vote_state from account {}", key),
String
),
);
continue;
}
let mut vote_state = vote_state.unwrap();
if key == self.node_pubkey || vote_state.node_pubkey == self.node_pubkey {
debug!("vote state {:?}", vote_state);
debug!(
"observed slot {}",
vote_state.nth_recent_vote(0).map(|v| v.slot).unwrap_or(0) as i64
);
debug!("observed root {}", vote_state.root_slot.unwrap_or(0) as i64);
datapoint_debug!(
"tower-observed",
(
"slot",
vote_state.nth_recent_vote(0).map(|v| v.slot).unwrap_or(0),
i64
),
("root", vote_state.root_slot.unwrap_or(0), i64)
);
}
let start_root = vote_state.root_slot;
vote_state.process_slot_vote_unchecked(bank_slot);
for vote in &vote_state.votes {
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
if start_root != vote_state.root_slot {
if let Some(root) = start_root {
let vote = Lockout {
confirmation_count: MAX_LOCKOUT_HISTORY as u32,
slot: root,
};
trace!("ROOT: {}", vote.slot);
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
}
if let Some(root) = vote_state.root_slot {
let vote = Lockout {
confirmation_count: MAX_LOCKOUT_HISTORY as u32,
slot: root,
};
Self::update_ancestor_lockouts(&mut stake_lockouts, &vote, ancestors);
}
// The last vote in the vote stack is a simulated vote on bank_slot, which
// we added to the vote stack earlier in this function by calling process_vote().
// We don't want to update the ancestors stakes of this vote b/c it does not
// represent an actual vote by the validator.
// Note: It should not be possible for any vote state in this bank to have
// a vote for a slot >= bank_slot, so we are guaranteed that the last vote in
// this vote stack is the simulated vote, so this fetch should be sufficient
// to find the last unsimulated vote.
assert_eq!(
vote_state.nth_recent_vote(0).map(|l| l.slot),
Some(bank_slot)
);
if let Some(vote) = vote_state.nth_recent_vote(1) {
// Update all the parents of this last vote with the stake of this vote account
Self::update_ancestor_stakes(&mut stake_lockouts, vote.slot, lamports, ancestors);
}
total_stake += lamports;
}
(stake_lockouts, total_stake)
}
pub fn is_slot_confirmed(
&self,
slot: u64,
lockouts: &HashMap<u64, StakeLockout>,
total_staked: u64,
) -> bool {
lockouts
.get(&slot)
.map(|lockout| (lockout.stake as f64 / total_staked as f64) > self.threshold_size)
.unwrap_or(false)
}
fn new_vote(
local_vote_state: &VoteState,
slot: u64,
hash: Hash,
last_bank_slot: Option<Slot>,
) -> (Vote, usize) {
let mut local_vote_state = local_vote_state.clone();
let vote = Vote {
slots: vec![slot],
hash,
};
local_vote_state.process_vote_unchecked(&vote);
let slots = if let Some(last_bank_slot) = last_bank_slot {
local_vote_state
.votes
.iter()
.map(|v| v.slot)
.skip_while(|s| *s <= last_bank_slot)
.collect()
} else {
local_vote_state.votes.iter().map(|v| v.slot).collect()
};
trace!(
"new vote with {:?} {:?} {:?}",
last_bank_slot,
slots,
local_vote_state.votes
);
(Vote { slots, hash }, local_vote_state.votes.len() - 1)
}
fn last_bank_vote(bank: &Bank, vote_account_pubkey: &Pubkey) -> Option<Slot> {
let vote_account = bank.vote_accounts().get(vote_account_pubkey)?.1.clone();
let bank_vote_state = VoteState::deserialize(&vote_account.data).ok()?;
bank_vote_state.votes.iter().map(|v| v.slot).last()
}
pub fn new_vote_from_bank(&self, bank: &Bank, vote_account_pubkey: &Pubkey) -> (Vote, usize) {
let last_vote = Self::last_bank_vote(bank, vote_account_pubkey);
Self::new_vote(&self.lockouts, bank.slot(), bank.hash(), last_vote)
}
pub fn record_bank_vote(&mut self, vote: Vote) -> Option<Slot> {
let slot = *vote.slots.last().unwrap_or(&0);
trace!("{} record_vote for {}", self.node_pubkey, slot);
let root_slot = self.lockouts.root_slot;
self.lockouts.process_vote_unchecked(&vote);
self.last_vote = vote;
datapoint_debug!(
"tower-vote",
("latest", slot, i64),
("root", self.lockouts.root_slot.unwrap_or(0), i64)
);
if root_slot != self.lockouts.root_slot {
Some(self.lockouts.root_slot.unwrap())
} else {
None
}
}
pub fn record_vote(&mut self, slot: Slot, hash: Hash) -> Option<Slot> {
let vote = Vote {
slots: vec![slot],
hash,
};
self.record_bank_vote(vote)
}
pub fn last_vote(&self) -> Vote {
self.last_vote.clone()
}
pub fn root(&self) -> Option<Slot> {
self.lockouts.root_slot
}
pub fn calculate_weight(&self, stake_lockouts: &HashMap<Slot, StakeLockout>) -> u128 {
let mut sum = 0u128;
let root_slot = self.lockouts.root_slot.unwrap_or(0);
for (slot, stake_lockout) in stake_lockouts {
if self.lockouts.root_slot.is_some() && *slot <= root_slot {
continue;
}
sum += u128::from(stake_lockout.lockout) * u128::from(stake_lockout.stake)
}
sum
}
// a slot is not recent if it's older than the newest vote we have
fn is_recent(&self, slot: u64) -> bool {
if let Some(last_vote) = self.lockouts.votes.back() {
if slot <= last_vote.slot {
return false;
}
}
true
}
pub fn has_voted(&self, slot: u64) -> bool {
for vote in &self.lockouts.votes {
if vote.slot == slot {
return true;
}
}
false
}
pub fn is_locked_out(&self, slot: Slot, ancestors: &HashMap<Slot, HashSet<Slot>>) -> bool {
assert!(ancestors.contains_key(&slot));
if !self.is_recent(slot) {
trace!("slot is not recent: {}", slot);
return true;
}
let mut lockouts = self.lockouts.clone();
lockouts.process_slot_vote_unchecked(slot);
for vote in &lockouts.votes {
if vote.slot == slot {
continue;
}
if !ancestors[&slot].contains(&vote.slot) {
return true;
}
}
if let Some(root_slot) = lockouts.root_slot {
// This case should never happen because bank forks purges all
// non-descendants of the root every time root is set
if slot != root_slot {
assert!(ancestors[&slot].contains(&root_slot));
}
}
false
}
pub fn check_vote_stake_threshold(
&self,
slot: u64,
stake_lockouts: &HashMap<u64, StakeLockout>,
total_staked: u64,
) -> bool {
let mut lockouts = self.lockouts.clone();
lockouts.process_slot_vote_unchecked(slot);
let vote = lockouts.nth_recent_vote(self.threshold_depth);
if let Some(vote) = vote {
if let Some(fork_stake) = stake_lockouts.get(&vote.slot) {
(fork_stake.stake as f64 / total_staked as f64) > self.threshold_size
} else {
false
}
} else {
true
}
}
/// Update lockouts for all the ancestors
fn update_ancestor_lockouts(
stake_lockouts: &mut HashMap<Slot, StakeLockout>,
vote: &Lockout,
ancestors: &HashMap<Slot, HashSet<Slot>>,
) {
// If there's no ancestors, that means this slot must be from before the current root,
// in which case the lockouts won't be calculated in bank_weight anyways, so ignore
// this slot
let vote_slot_ancestors = ancestors.get(&vote.slot);
if vote_slot_ancestors.is_none() {
return;
}
let mut slot_with_ancestors = vec![vote.slot];
slot_with_ancestors.extend(vote_slot_ancestors.unwrap());
for slot in slot_with_ancestors {
let entry = &mut stake_lockouts.entry(slot).or_default();
entry.lockout += vote.lockout();
}
}
/// Update stake for all the ancestors.
/// Note, stake is the same for all the ancestor.
fn update_ancestor_stakes(
stake_lockouts: &mut HashMap<Slot, StakeLockout>,
slot: Slot,
lamports: u64,
ancestors: &HashMap<Slot, HashSet<Slot>>,
) {
// If there's no ancestors, that means this slot must be from before the current root,
// in which case the lockouts won't be calculated in bank_weight anyways, so ignore
// this slot
let vote_slot_ancestors = ancestors.get(&slot);
if vote_slot_ancestors.is_none() {
return;
}
let mut slot_with_ancestors = vec![slot];
slot_with_ancestors.extend(vote_slot_ancestors.unwrap());
for slot in slot_with_ancestors {
let entry = &mut stake_lockouts.entry(slot).or_default();
entry.stake += lamports;
}
}
fn bank_weight(&self, bank: &Bank, ancestors: &HashMap<Slot, HashSet<Slot>>) -> u128 {
let (stake_lockouts, _) =
self.collect_vote_lockouts(bank.slot(), bank.vote_accounts().into_iter(), ancestors);
self.calculate_weight(&stake_lockouts)
}
fn find_heaviest_bank(&self, bank_forks: &BankForks) -> Option<Arc<Bank>> {
let ancestors = bank_forks.ancestors();
let mut bank_weights: Vec<_> = bank_forks
.frozen_banks()
.values()
.map(|b| {
(
self.bank_weight(b, &ancestors),
b.parents().len(),
b.clone(),
)
})
.collect();
bank_weights.sort_by_key(|b| (b.0, b.1));
bank_weights.pop().map(|b| b.2)
}
fn initialize_lockouts_from_bank_forks(
&mut self,
bank_forks: &BankForks,
vote_account_pubkey: &Pubkey,
) {
if let Some(bank) = self.find_heaviest_bank(bank_forks) {
let root = bank_forks.root();
if let Some((_stake, vote_account)) = bank.vote_accounts().get(vote_account_pubkey) {
let mut vote_state = VoteState::deserialize(&vote_account.data)
.expect("vote_account isn't a VoteState?");
vote_state.root_slot = Some(root);
vote_state.votes.retain(|v| v.slot > root);
trace!(
"{} lockouts initialized to {:?}",
self.node_pubkey,
vote_state
);
assert_eq!(
vote_state.node_pubkey, self.node_pubkey,
"vote account's node_pubkey doesn't match",
);
self.lockouts = vote_state;
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn gen_stakes(stake_votes: &[(u64, &[u64])]) -> Vec<(Pubkey, (u64, Account))> {
let mut stakes = vec![];
for (lamports, votes) in stake_votes {
let mut account = Account::default();
account.data = vec![0; 1024];
account.lamports = *lamports;
let mut vote_state = VoteState::default();
for slot in *votes {
vote_state.process_slot_vote_unchecked(*slot);
}
vote_state
.serialize(&mut account.data)
.expect("serialize state");
stakes.push((Pubkey::new_rand(), (*lamports, account)));
}
stakes
}
#[test]
fn test_collect_vote_lockouts_sums() {
//two accounts voting for slot 0 with 1 token staked
let accounts = gen_stakes(&[(1, &[0]), (1, &[0])]);
let tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect()), (0, HashSet::new())]
.into_iter()
.collect();
let (staked_lockouts, total_staked) =
tower.collect_vote_lockouts(1, accounts.into_iter(), &ancestors);
assert_eq!(staked_lockouts[&0].stake, 2);
assert_eq!(staked_lockouts[&0].lockout, 2 + 2 + 4 + 4);
assert_eq!(total_staked, 2);
}
#[test]
fn test_collect_vote_lockouts_root() {
let votes: Vec<u64> = (0..MAX_LOCKOUT_HISTORY as u64).into_iter().collect();
//two accounts voting for slot 0 with 1 token staked
let accounts = gen_stakes(&[(1, &votes), (1, &votes)]);
let mut tower = Tower::new_for_tests(0, 0.67);
let mut ancestors = HashMap::new();
for i in 0..(MAX_LOCKOUT_HISTORY + 1) {
tower.record_vote(i as u64, Hash::default());
ancestors.insert(i as u64, (0..i as u64).into_iter().collect());
}
assert_eq!(tower.lockouts.root_slot, Some(0));
let (staked_lockouts, _total_staked) = tower.collect_vote_lockouts(
MAX_LOCKOUT_HISTORY as u64,
accounts.into_iter(),
&ancestors,
);
for i in 0..MAX_LOCKOUT_HISTORY {
assert_eq!(staked_lockouts[&(i as u64)].stake, 2);
}
// should be the sum of all the weights for root
assert!(staked_lockouts[&0].lockout > (2 * (1 << MAX_LOCKOUT_HISTORY)));
}
#[test]
fn test_calculate_weight_skips_root() {
let mut tower = Tower::new_for_tests(0, 0.67);
tower.lockouts.root_slot = Some(1);
let stakes = vec![
(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
),
(
1,
StakeLockout {
stake: 1,
lockout: 8,
},
),
]
.into_iter()
.collect();
assert_eq!(tower.calculate_weight(&stakes), 0u128);
}
#[test]
fn test_calculate_weight() {
let tower = Tower::new_for_tests(0, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
assert_eq!(tower.calculate_weight(&stakes), 8u128);
}
#[test]
fn test_check_vote_threshold_without_votes() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(tower.check_vote_stake_threshold(0, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_not_enough_stake_failure() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(!tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_unknown_slot() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = HashMap::new();
assert!(!tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_slot_confirmed_pass() {
let tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
assert!(tower.is_slot_confirmed(0, &stakes, 2));
}
#[test]
fn test_is_locked_out_empty() {
let tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(0, HashSet::new())].into_iter().collect();
assert!(!tower.is_locked_out(0, &ancestors));
}
#[test]
fn test_is_locked_out_root_slot_child_pass() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.lockouts.root_slot = Some(0);
assert!(!tower.is_locked_out(1, &ancestors));
}
#[test]
fn test_is_locked_out_root_slot_sibling_fail() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(2, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.lockouts.root_slot = Some(0);
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(2, &ancestors));
}
#[test]
fn test_check_already_voted() {
let mut tower = Tower::new_for_tests(0, 0.67);
tower.record_vote(0, Hash::default());
assert!(tower.has_voted(0));
assert!(!tower.has_voted(1));
}
#[test]
fn test_check_recent_slot() {
let mut tower = Tower::new_for_tests(0, 0.67);
assert!(tower.is_recent(0));
assert!(tower.is_recent(32));
for i in 0..64 {
tower.record_vote(i, Hash::default());
}
assert!(!tower.is_recent(0));
assert!(!tower.is_recent(32));
assert!(!tower.is_recent(63));
assert!(tower.is_recent(65));
}
#[test]
fn test_is_locked_out_double_vote() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect()), (0, HashSet::new())]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(0, &ancestors));
}
#[test]
fn test_is_locked_out_child() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![(1, vec![0].into_iter().collect())]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(!tower.is_locked_out(1, &ancestors));
}
#[test]
fn test_is_locked_out_sibling() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![
(0, HashSet::new()),
(1, vec![0].into_iter().collect()),
(2, vec![0].into_iter().collect()),
]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(tower.is_locked_out(2, &ancestors));
}
#[test]
fn test_is_locked_out_last_vote_expired() {
let mut tower = Tower::new_for_tests(0, 0.67);
let ancestors = vec![
(0, HashSet::new()),
(1, vec![0].into_iter().collect()),
(4, vec![0].into_iter().collect()),
]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
assert!(!tower.is_locked_out(4, &ancestors));
tower.record_vote(4, Hash::default());
assert_eq!(tower.lockouts.votes[0].slot, 0);
assert_eq!(tower.lockouts.votes[0].confirmation_count, 2);
assert_eq!(tower.lockouts.votes[1].slot, 4);
assert_eq!(tower.lockouts.votes[1].confirmation_count, 1);
}
#[test]
fn test_check_vote_threshold_below_threshold() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 1,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(!tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
assert!(tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold_after_pop() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = vec![(
0,
StakeLockout {
stake: 2,
lockout: 8,
},
)]
.into_iter()
.collect();
tower.record_vote(0, Hash::default());
tower.record_vote(1, Hash::default());
tower.record_vote(2, Hash::default());
assert!(tower.check_vote_stake_threshold(6, &stakes, 2));
}
#[test]
fn test_check_vote_threshold_above_threshold_no_stake() {
let mut tower = Tower::new_for_tests(1, 0.67);
let stakes = HashMap::new();
tower.record_vote(0, Hash::default());
assert!(!tower.check_vote_stake_threshold(1, &stakes, 2));
}
#[test]
fn test_lockout_is_updated_for_entire_branch() {
let mut stake_lockouts = HashMap::new();
let vote = Lockout {
slot: 2,
confirmation_count: 1,
};
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let mut ancestors = HashMap::new();
ancestors.insert(2, set);
let set: HashSet<u64> = vec![0u64].into_iter().collect();
ancestors.insert(1, set);
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
assert_eq!(stake_lockouts[&0].lockout, 2);
assert_eq!(stake_lockouts[&1].lockout, 2);
assert_eq!(stake_lockouts[&2].lockout, 2);
}
#[test]
fn test_lockout_is_updated_for_slot_or_lower() {
let mut stake_lockouts = HashMap::new();
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let mut ancestors = HashMap::new();
ancestors.insert(2, set);
let set: HashSet<u64> = vec![0u64].into_iter().collect();
ancestors.insert(1, set);
let vote = Lockout {
slot: 2,
confirmation_count: 1,
};
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
let vote = Lockout {
slot: 1,
confirmation_count: 2,
};
Tower::update_ancestor_lockouts(&mut stake_lockouts, &vote, &ancestors);
assert_eq!(stake_lockouts[&0].lockout, 2 + 4);
assert_eq!(stake_lockouts[&1].lockout, 2 + 4);
assert_eq!(stake_lockouts[&2].lockout, 2);
}
#[test]
fn test_stake_is_updated_for_entire_branch() {
let mut stake_lockouts = HashMap::new();
let mut account = Account::default();
account.lamports = 1;
let set: HashSet<u64> = vec![0u64, 1u64].into_iter().collect();
let ancestors: HashMap<u64, HashSet<u64>> = [(2u64, set)].into_iter().cloned().collect();
Tower::update_ancestor_stakes(&mut stake_lockouts, 2, account.lamports, &ancestors);
assert_eq!(stake_lockouts[&0].stake, 1);
assert_eq!(stake_lockouts[&1].stake, 1);
assert_eq!(stake_lockouts[&2].stake, 1);
}
#[test]
fn test_new_vote() {
let local = VoteState::default();
let vote = Tower::new_vote(&local, 0, Hash::default(), None);
assert_eq!(local.votes.len(), 0);
assert_eq!(vote.0.slots, vec![0]);
assert_eq!(vote.1, 0);
}
#[test]
fn test_new_vote_dup_vote() {
let local = VoteState::default();
let vote = Tower::new_vote(&local, 0, Hash::default(), Some(0));
assert!(vote.0.slots.is_empty());
}
#[test]
fn test_new_vote_next_vote() {
let mut local = VoteState::default();
let vote = Vote {
slots: vec![0],
hash: Hash::default(),
};
local.process_vote_unchecked(&vote);
assert_eq!(local.votes.len(), 1);
let vote = Tower::new_vote(&local, 1, Hash::default(), Some(0));
assert_eq!(vote.0.slots, vec![1]);
assert_eq!(vote.1, 1);
}
#[test]
fn test_new_vote_next_after_expired_vote() {
let mut local = VoteState::default();
let vote = Vote {
slots: vec![0],
hash: Hash::default(),
};
local.process_vote_unchecked(&vote);
assert_eq!(local.votes.len(), 1);
let vote = Tower::new_vote(&local, 3, Hash::default(), Some(0));
//first vote expired, so index should be 0
assert_eq!(vote.0.slots, vec![3]);
assert_eq!(vote.1, 0);
}
#[test]
fn test_check_vote_threshold_forks() {
// Create the ancestor relationships
let ancestors = (0..=(VOTE_THRESHOLD_DEPTH + 1) as u64)
.map(|slot| {
let slot_parents: HashSet<_> = (0..slot).collect();
(slot, slot_parents)
})
.collect();
// Create votes such that
// 1) 3/4 of the stake has voted on slot: VOTE_THRESHOLD_DEPTH - 2, lockout: 2
// 2) 1/4 of the stake has voted on slot: VOTE_THRESHOLD_DEPTH, lockout: 2^9
let total_stake = 4;
let threshold_size = 0.67;
let threshold_stake = (f64::ceil(total_stake as f64 * threshold_size)) as u64;
let tower_votes: Vec<u64> = (0..VOTE_THRESHOLD_DEPTH as u64).collect();
let accounts = gen_stakes(&[
(threshold_stake, &[(VOTE_THRESHOLD_DEPTH - 2) as u64]),
(total_stake - threshold_stake, &tower_votes[..]),
]);
// Initialize tower
let mut tower = Tower::new_for_tests(VOTE_THRESHOLD_DEPTH, threshold_size);
// CASE 1: Record the first VOTE_THRESHOLD tower votes for fork 2. We want to
// evaluate a vote on slot VOTE_THRESHOLD_DEPTH. The nth most recent vote should be
// for slot 0, which is common to all account vote states, so we should pass the
// threshold check
let vote_to_evaluate = VOTE_THRESHOLD_DEPTH as u64;
for vote in &tower_votes {
tower.record_vote(*vote, Hash::default());
}
let (staked_lockouts, total_staked) =
tower.collect_vote_lockouts(vote_to_evaluate, accounts.clone().into_iter(), &ancestors);
assert!(tower.check_vote_stake_threshold(vote_to_evaluate, &staked_lockouts, total_staked));
// CASE 2: Now we want to evaluate a vote for slot VOTE_THRESHOLD_DEPTH + 1. This slot
// will expire the vote in one of the vote accounts, so we should have insufficient
// stake to pass the threshold
let vote_to_evaluate = VOTE_THRESHOLD_DEPTH as u64 + 1;
let (staked_lockouts, total_staked) =
tower.collect_vote_lockouts(vote_to_evaluate, accounts.into_iter(), &ancestors);
assert!(!tower.check_vote_stake_threshold(
vote_to_evaluate,
&staked_lockouts,
total_staked
));
}
fn vote_and_check_recent(num_votes: usize) {
let mut tower = Tower::new_for_tests(1, 0.67);
let slots = if num_votes > 0 {
vec![num_votes as u64 - 1]
} else {
vec![]
};
let expected = Vote::new(slots, Hash::default());
for i in 0..num_votes {
tower.record_vote(i as u64, Hash::default());
}
assert_eq!(expected, tower.last_vote())
}
#[test]
fn test_recent_votes_full() {
vote_and_check_recent(MAX_LOCKOUT_HISTORY)
}
#[test]
fn test_recent_votes_empty() {
vote_and_check_recent(0)
}
#[test]
fn test_recent_votes_exact() {
vote_and_check_recent(5)
}
}