solana/core/src/progress_map.rs

630 lines
21 KiB
Rust

use crate::{
cluster_info_vote_listener::SlotVoteTracker, cluster_slots::SlotPubkeys,
consensus::StakeLockout, pubkey_references::PubkeyReferences,
replay_stage::SUPERMINORITY_THRESHOLD,
};
use solana_ledger::{
bank_forks::BankForks,
blockstore_processor::{ConfirmationProgress, ConfirmationTiming},
};
use solana_runtime::bank::Bank;
use solana_sdk::{account::Account, clock::Slot, hash::Hash, pubkey::Pubkey};
use std::{
collections::{BTreeMap, HashMap, HashSet},
rc::Rc,
sync::{Arc, RwLock},
};
pub(crate) type LockoutIntervals = BTreeMap<Slot, Vec<(Slot, Rc<Pubkey>)>>;
#[derive(Default)]
pub(crate) struct ReplaySlotStats(ConfirmationTiming);
impl std::ops::Deref for ReplaySlotStats {
type Target = ConfirmationTiming;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for ReplaySlotStats {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl ReplaySlotStats {
pub fn report_stats(&self, slot: Slot, num_entries: usize, num_shreds: u64) {
datapoint_info!(
"replay-slot-stats",
("slot", slot as i64, i64),
("fetch_entries_time", self.fetch_elapsed as i64, i64),
(
"fetch_entries_fail_time",
self.fetch_fail_elapsed as i64,
i64
),
("entry_verification_time", self.verify_elapsed as i64, i64),
("replay_time", self.replay_elapsed as i64, i64),
(
"replay_total_elapsed",
self.started.elapsed().as_micros() as i64,
i64
),
("total_entries", num_entries as i64, i64),
("total_shreds", num_shreds as i64, i64),
);
}
}
#[derive(Debug)]
pub(crate) struct ValidatorStakeInfo {
pub validator_vote_pubkey: Pubkey,
pub stake: u64,
pub total_epoch_stake: u64,
}
impl Default for ValidatorStakeInfo {
fn default() -> Self {
Self {
stake: 0,
validator_vote_pubkey: Pubkey::default(),
total_epoch_stake: 1,
}
}
}
impl ValidatorStakeInfo {
pub fn new(validator_vote_pubkey: Pubkey, stake: u64, total_epoch_stake: u64) -> Self {
Self {
validator_vote_pubkey,
stake,
total_epoch_stake,
}
}
}
pub(crate) struct ForkProgress {
pub(crate) is_dead: bool,
pub(crate) fork_stats: ForkStats,
pub(crate) propagated_stats: PropagatedStats,
pub(crate) replay_stats: ReplaySlotStats,
pub(crate) replay_progress: ConfirmationProgress,
// Note `num_blocks_on_fork` and `num_dropped_blocks_on_fork` only
// count new blocks replayed since last restart, which won't include
// blocks already existing in the ledger/before snapshot at start,
// so these stats do not span all of time
pub(crate) num_blocks_on_fork: u64,
pub(crate) num_dropped_blocks_on_fork: u64,
}
impl ForkProgress {
pub fn new(
last_entry: Hash,
prev_leader_slot: Option<Slot>,
validator_stake_info: Option<ValidatorStakeInfo>,
num_blocks_on_fork: u64,
num_dropped_blocks_on_fork: u64,
) -> Self {
let (
is_leader_slot,
propagated_validators_stake,
propagated_validators,
is_propagated,
total_epoch_stake,
) = validator_stake_info
.map(|info| {
(
true,
info.stake,
vec![Rc::new(info.validator_vote_pubkey)]
.into_iter()
.collect(),
{
if info.total_epoch_stake == 0 {
true
} else {
info.stake as f64 / info.total_epoch_stake as f64
> SUPERMINORITY_THRESHOLD
}
},
info.total_epoch_stake,
)
})
.unwrap_or((false, 0, HashSet::new(), false, 0));
Self {
is_dead: false,
fork_stats: ForkStats::default(),
replay_stats: ReplaySlotStats::default(),
replay_progress: ConfirmationProgress::new(last_entry),
num_blocks_on_fork,
num_dropped_blocks_on_fork,
propagated_stats: PropagatedStats {
prev_leader_slot,
is_leader_slot,
propagated_validators_stake,
propagated_validators,
is_propagated,
total_epoch_stake,
..PropagatedStats::default()
},
}
}
pub fn new_from_bank(
bank: &Bank,
my_pubkey: &Pubkey,
voting_pubkey: &Pubkey,
prev_leader_slot: Option<Slot>,
num_blocks_on_fork: u64,
num_dropped_blocks_on_fork: u64,
) -> Self {
let validator_fork_info = {
if bank.collector_id() == my_pubkey {
let stake = bank.epoch_vote_account_stake(voting_pubkey);
Some(ValidatorStakeInfo::new(
*voting_pubkey,
stake,
bank.total_epoch_stake(),
))
} else {
None
}
};
Self::new(
bank.last_blockhash(),
prev_leader_slot,
validator_fork_info,
num_blocks_on_fork,
num_dropped_blocks_on_fork,
)
}
}
#[derive(Debug, Clone, Default)]
pub(crate) struct ForkStats {
pub(crate) weight: u128,
pub(crate) fork_weight: u128,
pub(crate) total_staked: u64,
pub(crate) block_height: u64,
pub(crate) has_voted: bool,
pub(crate) is_recent: bool,
pub(crate) is_empty: bool,
pub(crate) vote_threshold: bool,
pub(crate) is_locked_out: bool,
pub(crate) stake_lockouts: HashMap<u64, StakeLockout>,
pub(crate) confirmation_reported: bool,
pub(crate) computed: bool,
pub(crate) lockout_intervals: LockoutIntervals,
}
#[derive(Clone, Default)]
pub(crate) struct PropagatedStats {
pub(crate) propagated_validators: HashSet<Rc<Pubkey>>,
pub(crate) propagated_node_ids: HashSet<Rc<Pubkey>>,
pub(crate) propagated_validators_stake: u64,
pub(crate) is_propagated: bool,
pub(crate) is_leader_slot: bool,
pub(crate) prev_leader_slot: Option<Slot>,
pub(crate) slot_vote_tracker: Option<Arc<RwLock<SlotVoteTracker>>>,
pub(crate) cluster_slot_pubkeys: Option<Arc<RwLock<SlotPubkeys>>>,
pub(crate) total_epoch_stake: u64,
}
impl PropagatedStats {
pub fn add_vote_pubkey(
&mut self,
vote_pubkey: &Pubkey,
all_pubkeys: &mut PubkeyReferences,
stake: u64,
) {
if !self.propagated_validators.contains(vote_pubkey) {
let cached_pubkey = all_pubkeys.get_or_insert(vote_pubkey);
self.propagated_validators.insert(cached_pubkey);
self.propagated_validators_stake += stake;
}
}
pub fn add_node_pubkey(
&mut self,
node_pubkey: &Pubkey,
all_pubkeys: &mut PubkeyReferences,
bank: &Bank,
) {
if !self.propagated_node_ids.contains(node_pubkey) {
let node_vote_accounts = bank
.epoch_vote_accounts_for_node_id(&node_pubkey)
.map(|v| &v.vote_accounts);
if let Some(node_vote_accounts) = node_vote_accounts {
self.add_node_pubkey_internal(
node_pubkey,
all_pubkeys,
node_vote_accounts,
bank.epoch_vote_accounts(bank.epoch())
.expect("Epoch stakes for bank's own epoch must exist"),
);
}
}
}
fn add_node_pubkey_internal(
&mut self,
node_pubkey: &Pubkey,
all_pubkeys: &mut PubkeyReferences,
vote_account_pubkeys: &[Pubkey],
epoch_vote_accounts: &HashMap<Pubkey, (u64, Account)>,
) {
let cached_pubkey = all_pubkeys.get_or_insert(node_pubkey);
self.propagated_node_ids.insert(cached_pubkey);
for vote_account_pubkey in vote_account_pubkeys.iter() {
let stake = epoch_vote_accounts
.get(vote_account_pubkey)
.map(|(stake, _)| *stake)
.unwrap_or(0);
self.add_vote_pubkey(vote_account_pubkey, all_pubkeys, stake);
}
}
}
#[derive(Default)]
pub(crate) struct ProgressMap {
progress_map: HashMap<Slot, ForkProgress>,
}
impl std::ops::Deref for ProgressMap {
type Target = HashMap<Slot, ForkProgress>;
fn deref(&self) -> &Self::Target {
&self.progress_map
}
}
impl std::ops::DerefMut for ProgressMap {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.progress_map
}
}
impl ProgressMap {
pub fn insert(&mut self, slot: Slot, fork_progress: ForkProgress) {
self.progress_map.insert(slot, fork_progress);
}
pub fn get_propagated_stats(&self, slot: Slot) -> Option<&PropagatedStats> {
self.progress_map
.get(&slot)
.map(|fork_progress| &fork_progress.propagated_stats)
}
pub fn get_propagated_stats_mut(&mut self, slot: Slot) -> Option<&mut PropagatedStats> {
self.progress_map
.get_mut(&slot)
.map(|fork_progress| &mut fork_progress.propagated_stats)
}
pub fn get_fork_stats(&self, slot: Slot) -> Option<&ForkStats> {
self.progress_map
.get(&slot)
.map(|fork_progress| &fork_progress.fork_stats)
}
pub fn get_fork_stats_mut(&mut self, slot: Slot) -> Option<&mut ForkStats> {
self.progress_map
.get_mut(&slot)
.map(|fork_progress| &mut fork_progress.fork_stats)
}
pub fn is_propagated(&self, slot: Slot) -> bool {
let leader_slot_to_check = self.get_latest_leader_slot(slot);
// prev_leader_slot doesn't exist because already rooted
// or this validator hasn't been scheduled as a leader
// yet. In both cases the latest leader is vacuously
// confirmed
leader_slot_to_check
.map(|leader_slot_to_check| {
// If the leader's stats are None (isn't in the
// progress map), this means that prev_leader slot is
// rooted, so return true
self.get_propagated_stats(leader_slot_to_check)
.map(|stats| stats.is_propagated)
.unwrap_or(true)
})
.unwrap_or(true)
}
pub fn get_latest_leader_slot(&self, slot: Slot) -> Option<Slot> {
let propagated_stats = self
.get_propagated_stats(slot)
.expect("All frozen banks must exist in the Progress map");
if propagated_stats.is_leader_slot {
Some(slot)
} else {
propagated_stats.prev_leader_slot
}
}
pub fn get_bank_prev_leader_slot(&self, bank: &Bank) -> Option<Slot> {
let parent_slot = bank.parent_slot();
self.get_propagated_stats(parent_slot)
.map(|stats| {
if stats.is_leader_slot {
Some(parent_slot)
} else {
stats.prev_leader_slot
}
})
.unwrap_or(None)
}
pub fn handle_new_root(&mut self, bank_forks: &BankForks) {
self.progress_map
.retain(|k, _| bank_forks.get(*k).is_some());
}
pub fn log_propagated_stats(&self, slot: Slot, bank_forks: &RwLock<BankForks>) {
if let Some(stats) = self.get_propagated_stats(slot) {
info!(
"Propagated stats:
total staked: {},
observed staked: {},
vote pubkeys: {:?},
node_pubkeys: {:?},
slot: {},
epoch: {:?}",
stats.total_epoch_stake,
stats.propagated_validators_stake,
stats.propagated_validators,
stats.propagated_node_ids,
slot,
bank_forks.read().unwrap().get(slot).map(|x| x.epoch()),
);
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_add_vote_pubkey() {
let mut stats = PropagatedStats::default();
let mut all_pubkeys = PubkeyReferences::default();
let mut vote_pubkey = Pubkey::new_rand();
all_pubkeys.get_or_insert(&vote_pubkey);
// Add a vote pubkey, the number of references in all_pubkeys
// should be 2
stats.add_vote_pubkey(&vote_pubkey, &mut all_pubkeys, 1);
assert!(stats.propagated_validators.contains(&vote_pubkey));
assert_eq!(stats.propagated_validators_stake, 1);
assert_eq!(
Rc::strong_count(&all_pubkeys.get_or_insert(&vote_pubkey)),
3
);
// Adding it again should change no state since the key already existed
stats.add_vote_pubkey(&vote_pubkey, &mut all_pubkeys, 1);
assert!(stats.propagated_validators.contains(&vote_pubkey));
assert_eq!(stats.propagated_validators_stake, 1);
// Addding another pubkey should succeed
vote_pubkey = Pubkey::new_rand();
stats.add_vote_pubkey(&vote_pubkey, &mut all_pubkeys, 2);
assert!(stats.propagated_validators.contains(&vote_pubkey));
assert_eq!(stats.propagated_validators_stake, 3);
assert_eq!(
Rc::strong_count(&all_pubkeys.get_or_insert(&vote_pubkey)),
3
);
}
#[test]
fn test_add_node_pubkey_internal() {
let num_vote_accounts = 10;
let staked_vote_accounts = 5;
let vote_account_pubkeys: Vec<_> = std::iter::repeat_with(|| Pubkey::new_rand())
.take(num_vote_accounts)
.collect();
let epoch_vote_accounts: HashMap<_, _> = vote_account_pubkeys
.iter()
.skip(num_vote_accounts - staked_vote_accounts)
.map(|pubkey| (*pubkey, (1, Account::default())))
.collect();
let mut stats = PropagatedStats::default();
let mut all_pubkeys = PubkeyReferences::default();
let mut node_pubkey = Pubkey::new_rand();
all_pubkeys.get_or_insert(&node_pubkey);
// Add a vote pubkey, the number of references in all_pubkeys
// should be 2
stats.add_node_pubkey_internal(
&node_pubkey,
&mut all_pubkeys,
&vote_account_pubkeys,
&epoch_vote_accounts,
);
assert!(stats.propagated_node_ids.contains(&node_pubkey));
assert_eq!(
stats.propagated_validators_stake,
staked_vote_accounts as u64
);
assert_eq!(
Rc::strong_count(&all_pubkeys.get_or_insert(&node_pubkey)),
3
);
// Adding it again should not change any state
stats.add_node_pubkey_internal(
&node_pubkey,
&mut all_pubkeys,
&vote_account_pubkeys,
&epoch_vote_accounts,
);
assert!(stats.propagated_node_ids.contains(&node_pubkey));
assert_eq!(
stats.propagated_validators_stake,
staked_vote_accounts as u64
);
// Addding another pubkey with same vote accounts should succeed, but stake
// shouldn't increase
node_pubkey = Pubkey::new_rand();
stats.add_node_pubkey_internal(
&node_pubkey,
&mut all_pubkeys,
&vote_account_pubkeys,
&epoch_vote_accounts,
);
assert!(stats.propagated_node_ids.contains(&node_pubkey));
assert_eq!(
stats.propagated_validators_stake,
staked_vote_accounts as u64
);
assert_eq!(
Rc::strong_count(&all_pubkeys.get_or_insert(&node_pubkey)),
3
);
// Addding another pubkey with different vote accounts should succeed
// and increase stake
node_pubkey = Pubkey::new_rand();
let vote_account_pubkeys: Vec<_> = std::iter::repeat_with(|| Pubkey::new_rand())
.take(num_vote_accounts)
.collect();
let epoch_vote_accounts: HashMap<_, _> = vote_account_pubkeys
.iter()
.skip(num_vote_accounts - staked_vote_accounts)
.map(|pubkey| (*pubkey, (1, Account::default())))
.collect();
stats.add_node_pubkey_internal(
&node_pubkey,
&mut all_pubkeys,
&vote_account_pubkeys,
&epoch_vote_accounts,
);
assert!(stats.propagated_node_ids.contains(&node_pubkey));
assert_eq!(
stats.propagated_validators_stake,
2 * staked_vote_accounts as u64
);
assert_eq!(
Rc::strong_count(&all_pubkeys.get_or_insert(&node_pubkey)),
3
);
}
#[test]
fn test_is_propagated_status_on_construction() {
// If the given ValidatorStakeInfo == None, then this is not
// a leader slot and is_propagated == false
let progress = ForkProgress::new(Hash::default(), Some(9), None, 0, 0);
assert!(!progress.propagated_stats.is_propagated);
// If the stake is zero, then threshold is always achieved
let progress = ForkProgress::new(
Hash::default(),
Some(9),
Some(ValidatorStakeInfo {
total_epoch_stake: 0,
..ValidatorStakeInfo::default()
}),
0,
0,
);
assert!(progress.propagated_stats.is_propagated);
// If the stake is non zero, then threshold is not achieved unless
// validator has enough stake by itself to pass threshold
let progress = ForkProgress::new(
Hash::default(),
Some(9),
Some(ValidatorStakeInfo {
total_epoch_stake: 2,
..ValidatorStakeInfo::default()
}),
0,
0,
);
assert!(!progress.propagated_stats.is_propagated);
// Give the validator enough stake by itself to pass threshold
let progress = ForkProgress::new(
Hash::default(),
Some(9),
Some(ValidatorStakeInfo {
stake: 1,
total_epoch_stake: 2,
..ValidatorStakeInfo::default()
}),
0,
0,
);
assert!(progress.propagated_stats.is_propagated);
// Check that the default ValidatorStakeInfo::default() constructs a ForkProgress
// with is_propagated == false, otherwise propagation tests will fail to run
// the proper checks (most will auto-pass without checking anything)
let progress = ForkProgress::new(
Hash::default(),
Some(9),
Some(ValidatorStakeInfo::default()),
0,
0,
);
assert!(!progress.propagated_stats.is_propagated);
}
#[test]
fn test_is_propagated() {
let mut progress_map = ProgressMap::default();
// Insert new ForkProgress for slot 10 (not a leader slot) and its
// previous leader slot 9 (leader slot)
progress_map.insert(10, ForkProgress::new(Hash::default(), Some(9), None, 0, 0));
progress_map.insert(
9,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
// None of these slot have parents which are confirmed
assert!(!progress_map.is_propagated(9));
assert!(!progress_map.is_propagated(10));
// Insert new ForkProgress for slot 8 with no previous leader.
// The previous leader before 8, slot 7, does not exist in
// progress map, so is_propagated(8) should return true as
// this implies the parent is rooted
progress_map.insert(8, ForkProgress::new(Hash::default(), Some(7), None, 0, 0));
assert!(progress_map.is_propagated(8));
// If we set the is_propagated = true, is_propagated should return true
progress_map
.get_propagated_stats_mut(9)
.unwrap()
.is_propagated = true;
assert!(progress_map.is_propagated(9));
assert!(progress_map.get(&9).unwrap().propagated_stats.is_propagated);
// Because slot 9 is now confirmed, then slot 10 is also confirmed b/c 9
// is the last leader slot before 10
assert!(progress_map.is_propagated(10));
// If we make slot 10 a leader slot though, even though its previous
// leader slot 9 has been confirmed, slot 10 itself is not confirmed
progress_map
.get_propagated_stats_mut(10)
.unwrap()
.is_leader_slot = true;
assert!(!progress_map.is_propagated(10));
}
}