solana/sdk/program/src/entrypoint.rs

438 lines
16 KiB
Rust

//! The Rust-based BPF program entrypoint supported by the latest BPF loader.
//!
//! For more information see the [`bpf_loader`] module.
//!
//! [`bpf_loader`]: crate::bpf_loader
extern crate alloc;
use {
crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey},
alloc::vec::Vec,
std::{
alloc::Layout,
cell::RefCell,
mem::size_of,
ptr::null_mut,
rc::Rc,
result::Result as ResultGeneric,
slice::{from_raw_parts, from_raw_parts_mut},
},
};
pub type ProgramResult = ResultGeneric<(), ProgramError>;
/// User implemented function to process an instruction
///
/// program_id: Program ID of the currently executing program accounts: Accounts
/// passed as part of the instruction instruction_data: Instruction data
pub type ProcessInstruction =
fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult;
/// Programs indicate success with a return value of 0
pub const SUCCESS: u64 = 0;
/// Start address of the memory region used for program heap.
pub const HEAP_START_ADDRESS: u64 = 0x300000000;
/// Length of the heap memory region used for program heap.
pub const HEAP_LENGTH: usize = 32 * 1024;
/// Value used to indicate that a serialized account is not a duplicate
pub const NON_DUP_MARKER: u8 = u8::MAX;
/// Declare the program entrypoint and set up global handlers.
///
/// This macro emits the common boilerplate necessary to begin program
/// execution, calling a provided function to process the program instruction
/// supplied by the runtime, and reporting its result to the runtime.
///
/// It also sets up a [global allocator] and [panic handler], using the
/// [`custom_heap_default`] and [`custom_panic_default`] macros.
///
/// [`custom_heap_default`]: crate::custom_heap_default
/// [`custom_panic_default`]: crate::custom_panic_default
///
/// [global allocator]: https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html
/// [panic handler]: https://doc.rust-lang.org/nomicon/panic-handler.html
///
/// The argument is the name of a function with this type signature:
///
/// ```ignore
/// fn process_instruction(
/// program_id: &Pubkey, // Public key of the account the program was loaded into
/// accounts: &[AccountInfo], // All accounts required to process the instruction
/// instruction_data: &[u8], // Serialized instruction-specific data
/// ) -> ProgramResult;
/// ```
///
/// # Cargo features
///
/// This macro emits symbols and definitions that may only be defined once
/// globally. As such, if linked to other Rust crates it will cause compiler
/// errors. To avoid this, it is common for Solana programs to define an
/// optional [Cargo feature] called `no-entrypoint`, and use it to conditionally
/// disable the `entrypoint` macro invocation, as well as the
/// `process_instruction` function. See a typical pattern for this in the
/// example below.
///
/// [Cargo feature]: https://doc.rust-lang.org/cargo/reference/features.html
///
/// The code emitted by this macro can be customized by adding cargo features
/// _to your own crate_ (the one that calls this macro) and enabling them:
///
/// - If the `custom-heap` feature is defined then the macro will not set up the
/// global allocator, allowing `entrypoint` to be used with your own
/// allocator. See documentation for the [`custom_heap_default`] macro for
/// details of customizing the global allocator.
///
/// - If the `custom-panic` feature is defined then the macro will not define a
/// panic handler, allowing `entrypoint` to be used with your own panic
/// handler. See documentation for the [`custom_panic_default`] macro for
/// details of customizing the panic handler.
///
/// # Examples
///
/// Defining an entrypoint and making it conditional on the `no-entrypoint`
/// feature. Although the `entrypoint` module is written inline in this example,
/// it is common to put it into its own file.
///
/// ```no_run
/// #[cfg(not(feature = "no-entrypoint"))]
/// pub mod entrypoint {
///
/// use solana_program::{
/// account_info::AccountInfo,
/// entrypoint,
/// entrypoint::ProgramResult,
/// msg,
/// pubkey::Pubkey,
/// };
///
/// entrypoint!(process_instruction);
///
/// pub fn process_instruction(
/// program_id: &Pubkey,
/// accounts: &[AccountInfo],
/// instruction_data: &[u8],
/// ) -> ProgramResult {
/// msg!("Hello world");
///
/// Ok(())
/// }
///
/// }
/// ```
#[macro_export]
macro_rules! entrypoint {
($process_instruction:ident) => {
/// # Safety
#[no_mangle]
pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 {
let (program_id, accounts, instruction_data) =
unsafe { $crate::entrypoint::deserialize(input) };
match $process_instruction(&program_id, &accounts, &instruction_data) {
Ok(()) => $crate::entrypoint::SUCCESS,
Err(error) => error.into(),
}
}
$crate::custom_heap_default!();
$crate::custom_panic_default!();
};
}
/// Define the default global allocator.
///
/// The default global allocator is enabled only if the calling crate has not
/// disabled it using [Cargo features] as described below. It is only defined
/// for [BPF] targets.
///
/// [Cargo features]: https://doc.rust-lang.org/cargo/reference/features.html
/// [BPF]: https://docs.solana.com/developing/on-chain-programs/overview#berkeley-packet-filter-bpf
///
/// # Cargo features
///
/// A crate that calls this macro can provide its own custom heap
/// implementation, or allow others to provide their own custom heap
/// implementation, by adding a `custom-heap` feature to its `Cargo.toml`. After
/// enabling the feature, one may define their own [global allocator] in the
/// standard way.
///
/// [global allocator]: https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html
///
#[macro_export]
macro_rules! custom_heap_default {
() => {
#[cfg(all(not(feature = "custom-heap"), target_os = "solana"))]
#[global_allocator]
static A: $crate::entrypoint::BumpAllocator = $crate::entrypoint::BumpAllocator {
start: $crate::entrypoint::HEAP_START_ADDRESS as usize,
len: $crate::entrypoint::HEAP_LENGTH,
};
};
}
/// Define the default global panic handler.
///
/// This must be used if the [`entrypoint`] macro is not used, and no other
/// panic handler has been defined; otherwise compilation will fail with a
/// missing `custom_panic` symbol.
///
/// The default global allocator is enabled only if the calling crate has not
/// disabled it using [Cargo features] as described below. It is only defined
/// for [BPF] targets.
///
/// [Cargo features]: https://doc.rust-lang.org/cargo/reference/features.html
/// [BPF]: https://docs.solana.com/developing/on-chain-programs/overview#berkeley-packet-filter-bpf
///
/// # Cargo features
///
/// A crate that calls this macro can provide its own custom panic handler, or
/// allow others to provide their own custom panic handler, by adding a
/// `custom-panic` feature to its `Cargo.toml`. After enabling the feature, one
/// may define their own panic handler.
///
/// A good way to reduce the final size of the program is to provide a
/// `custom_panic` implementation that does nothing. Doing so will cut ~25kb
/// from a noop program. That number goes down the more the programs pulls in
/// Rust's standard library for other purposes.
///
/// # Defining a panic handler for Solana
///
/// _The mechanism for defining a Solana panic handler is different [from most
/// Rust programs][rpanic]._
///
/// [rpanic]: https://doc.rust-lang.org/nomicon/panic-handler.html
///
/// To define a panic handler one must define a `custom_panic` function
/// with the `#[no_mangle]` attribute, as below:
///
/// ```ignore
/// #[cfg(all(feature = "custom-panic", target_os = "solana"))]
/// #[no_mangle]
/// fn custom_panic(info: &core::panic::PanicInfo<'_>) {
/// $crate::msg!("{}", info);
/// }
/// ```
///
/// The above is how Solana defines the default panic handler.
#[macro_export]
macro_rules! custom_panic_default {
() => {
#[cfg(all(not(feature = "custom-panic"), target_os = "solana"))]
#[no_mangle]
fn custom_panic(info: &core::panic::PanicInfo<'_>) {
// Full panic reporting
$crate::msg!("{}", info);
}
};
}
/// The bump allocator used as the default rust heap when running programs.
pub struct BumpAllocator {
pub start: usize,
pub len: usize,
}
/// Integer arithmetic in this global allocator implementation is safe when
/// operating on the prescribed `HEAP_START_ADDRESS` and `HEAP_LENGTH`. Any
/// other use may overflow and is thus unsupported and at one's own risk.
#[allow(clippy::integer_arithmetic)]
unsafe impl std::alloc::GlobalAlloc for BumpAllocator {
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let pos_ptr = self.start as *mut usize;
let mut pos = *pos_ptr;
if pos == 0 {
// First time, set starting position
pos = self.start + self.len;
}
pos = pos.saturating_sub(layout.size());
pos &= !(layout.align().wrapping_sub(1));
if pos < self.start + size_of::<*mut u8>() {
return null_mut();
}
*pos_ptr = pos;
pos as *mut u8
}
#[inline]
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
// I'm a bump allocator, I don't free
}
}
/// Maximum number of bytes a program may add to an account during a single realloc
pub const MAX_PERMITTED_DATA_INCREASE: usize = 1_024 * 10;
/// `assert_eq(std::mem::align_of::<u128>(), 8)` is true for BPF but not for some host machines
pub const BPF_ALIGN_OF_U128: usize = 8;
/// Deserialize the input arguments
///
/// The integer arithmetic in this method is safe when called on a buffer that was
/// serialized by runtime. Use with buffers serialized otherwise is unsupported and
/// done at one's own risk.
///
/// # Safety
#[allow(clippy::integer_arithmetic)]
#[allow(clippy::type_complexity)]
pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec<AccountInfo<'a>>, &'a [u8]) {
let mut offset: usize = 0;
// Number of accounts present
#[allow(clippy::cast_ptr_alignment)]
let num_accounts = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
// Account Infos
let mut accounts = Vec::with_capacity(num_accounts);
for _ in 0..num_accounts {
let dup_info = *(input.add(offset) as *const u8);
offset += size_of::<u8>();
if dup_info == NON_DUP_MARKER {
#[allow(clippy::cast_ptr_alignment)]
let is_signer = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let is_writable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
#[allow(clippy::cast_ptr_alignment)]
let executable = *(input.add(offset) as *const u8) != 0;
offset += size_of::<u8>();
// The original data length is stored here because these 4 bytes were
// originally only used for padding and served as a good location to
// track the original size of the account data in a compatible way.
let original_data_len_offset = offset;
offset += size_of::<u32>();
let key: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
let owner: &Pubkey = &*(input.add(offset) as *const Pubkey);
offset += size_of::<Pubkey>();
#[allow(clippy::cast_ptr_alignment)]
let lamports = Rc::new(RefCell::new(&mut *(input.add(offset) as *mut u64)));
offset += size_of::<u64>();
#[allow(clippy::cast_ptr_alignment)]
let data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
// Store the original data length for detecting invalid reallocations and
// requires that MAX_PERMITTED_DATA_LENGTH fits in a u32
*(input.add(original_data_len_offset) as *mut u32) = data_len as u32;
let data = Rc::new(RefCell::new({
from_raw_parts_mut(input.add(offset), data_len)
}));
offset += data_len + MAX_PERMITTED_DATA_INCREASE;
offset += (offset as *const u8).align_offset(BPF_ALIGN_OF_U128); // padding
#[allow(clippy::cast_ptr_alignment)]
let rent_epoch = *(input.add(offset) as *const u64);
offset += size_of::<u64>();
accounts.push(AccountInfo {
key,
is_signer,
is_writable,
lamports,
data,
owner,
executable,
rent_epoch,
});
} else {
offset += 7; // padding
// Duplicate account, clone the original
accounts.push(accounts[dup_info as usize].clone());
}
}
// Instruction data
#[allow(clippy::cast_ptr_alignment)]
let instruction_data_len = *(input.add(offset) as *const u64) as usize;
offset += size_of::<u64>();
let instruction_data = { from_raw_parts(input.add(offset), instruction_data_len) };
offset += instruction_data_len;
// Program Id
let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey);
(program_id, accounts, instruction_data)
}
#[cfg(test)]
mod test {
use {super::*, std::alloc::GlobalAlloc};
#[test]
fn test_bump_allocator() {
// alloc the entire
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
for i in 0..128 - size_of::<*mut u8>() {
let ptr = unsafe {
allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap())
};
assert_eq!(
ptr as *const _ as usize,
heap.as_ptr() as *const _ as usize + heap.len() - 1 - i
);
}
assert_eq!(null_mut(), unsafe {
allocator.alloc(Layout::from_size_align(1, 1).unwrap())
});
}
// check alignment
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u8>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u8>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u16>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u16>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u32>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u32>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u64>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(1, size_of::<u128>()).unwrap()) };
assert_eq!(0, ptr.align_offset(size_of::<u128>()));
let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, 64).unwrap()) };
assert_eq!(0, ptr.align_offset(64));
}
// alloc entire block (minus the pos ptr)
{
let heap = vec![0u8; 128];
let allocator = BumpAllocator {
start: heap.as_ptr() as *const _ as usize,
len: heap.len(),
};
let ptr =
unsafe { allocator.alloc(Layout::from_size_align(120, size_of::<u8>()).unwrap()) };
assert_ne!(ptr, null_mut());
assert_eq!(0, ptr.align_offset(size_of::<u64>()));
}
}
}