solana/ledger/src/entry.rs

737 lines
27 KiB
Rust

//! The `entry` module is a fundamental building block of Proof of History. It contains a
//! unique ID that is the hash of the Entry before it, plus the hash of the
//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
//! represents an approximate amount of time since the last Entry was created.
use crate::poh::Poh;
use log::*;
use rayon::prelude::*;
use rayon::ThreadPool;
use serde::{Deserialize, Serialize};
use solana_measure::measure::Measure;
use solana_merkle_tree::MerkleTree;
use solana_metrics::*;
use solana_perf::cuda_runtime::PinnedVec;
use solana_perf::perf_libs;
use solana_perf::recycler::Recycler;
use solana_rayon_threadlimit::get_thread_count;
use solana_sdk::hash::Hash;
use solana_sdk::timing;
use solana_sdk::transaction::Transaction;
use std::cell::RefCell;
use std::sync::mpsc::{Receiver, Sender};
use std::sync::{Arc, Mutex};
use std::thread::JoinHandle;
use std::time::Instant;
use std::{cmp, thread};
thread_local!(static PAR_THREAD_POOL: RefCell<ThreadPool> = RefCell::new(rayon::ThreadPoolBuilder::new()
.num_threads(get_thread_count())
.thread_name(|ix| format!("entry_{}", ix))
.build()
.unwrap()));
pub type EntrySender = Sender<Vec<Entry>>;
pub type EntryReceiver = Receiver<Vec<Entry>>;
/// Each Entry contains three pieces of data. The `num_hashes` field is the number
/// of hashes performed since the previous entry. The `hash` field is the result
/// of hashing `hash` from the previous entry `num_hashes` times. The `transactions`
/// field points to Transactions that took place shortly before `hash` was generated.
///
/// If you divide `num_hashes` by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last Entry. Since processing power increases
/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
/// An upper bound on Duration can be estimated by assuming each hash was generated by the
/// world's fastest processor at the time the entry was recorded. Or said another way, it
/// is physically not possible for a shorter duration to have occurred if one assumes the
/// hash was computed by the world's fastest processor at that time. The hash chain is both
/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
/// Work consensus!)
#[derive(Serialize, Deserialize, Debug, Default, PartialEq, Eq, Clone)]
pub struct Entry {
/// The number of hashes since the previous Entry ID.
pub num_hashes: u64,
/// The SHA-256 hash `num_hashes` after the previous Entry ID.
pub hash: Hash,
/// An unordered list of transactions that were observed before the Entry ID was
/// generated. They may have been observed before a previous Entry ID but were
/// pushed back into this list to ensure deterministic interpretation of the ledger.
pub transactions: Vec<Transaction>,
}
impl Entry {
/// Creates the next Entry `num_hashes` after `start_hash`.
pub fn new(prev_hash: &Hash, mut num_hashes: u64, transactions: Vec<Transaction>) -> Self {
// If you passed in transactions, but passed in num_hashes == 0, then
// next_hash will generate the next hash and set num_hashes == 1
if num_hashes == 0 && !transactions.is_empty() {
num_hashes = 1;
}
let hash = next_hash(prev_hash, num_hashes, &transactions);
Entry {
num_hashes,
hash,
transactions,
}
}
pub fn new_mut(
start_hash: &mut Hash,
num_hashes: &mut u64,
transactions: Vec<Transaction>,
) -> Self {
let entry = Self::new(start_hash, *num_hashes, transactions);
*start_hash = entry.hash;
*num_hashes = 0;
entry
}
#[cfg(test)]
pub fn new_tick(num_hashes: u64, hash: &Hash) -> Self {
Entry {
num_hashes,
hash: *hash,
transactions: vec![],
}
}
/// Verifies self.hash is the result of hashing a `start_hash` `self.num_hashes` times.
/// If the transaction is not a Tick, then hash that as well.
pub fn verify(&self, start_hash: &Hash) -> bool {
let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
if self.hash != ref_hash {
warn!(
"next_hash is invalid expected: {:?} actual: {:?}",
self.hash, ref_hash
);
return false;
}
true
}
pub fn is_tick(&self) -> bool {
self.transactions.is_empty()
}
}
pub fn hash_transactions(transactions: &[Transaction]) -> Hash {
// a hash of a slice of transactions only needs to hash the signatures
let signatures: Vec<_> = transactions
.iter()
.flat_map(|tx| tx.signatures.iter())
.collect();
let merkle_tree = MerkleTree::new(&signatures);
if let Some(root_hash) = merkle_tree.get_root() {
*root_hash
} else {
Hash::default()
}
}
/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
/// a signature, the final hash will be a hash of both the previous ID and
/// the signature. If num_hashes is zero and there's no transaction data,
/// start_hash is returned.
pub fn next_hash(start_hash: &Hash, num_hashes: u64, transactions: &[Transaction]) -> Hash {
if num_hashes == 0 && transactions.is_empty() {
return *start_hash;
}
let mut poh = Poh::new(*start_hash, None);
poh.hash(num_hashes.saturating_sub(1));
if transactions.is_empty() {
poh.tick().unwrap().hash
} else {
poh.record(hash_transactions(transactions)).unwrap().hash
}
}
pub struct VerificationData {
thread_h: Option<JoinHandle<u64>>,
verification_status: EntryVerificationStatus,
hashes: Option<Arc<Mutex<PinnedVec<Hash>>>>,
tx_hashes: Vec<Option<Hash>>,
duration_ms: u64,
}
#[derive(Default, Clone)]
pub struct VerifyRecyclers {
hash_recycler: Recycler<PinnedVec<Hash>>,
tick_count_recycler: Recycler<PinnedVec<u64>>,
}
#[derive(PartialEq, Clone, Copy, Debug)]
pub enum EntryVerificationStatus {
Failure,
Success,
Pending,
}
pub enum EntryVerificationState {
CPU(VerificationData),
GPU(VerificationData),
}
impl EntryVerificationState {
pub fn status(&self) -> EntryVerificationStatus {
match self {
EntryVerificationState::CPU(state) => state.verification_status,
EntryVerificationState::GPU(state) => state.verification_status,
}
}
pub fn duration_ms(&self) -> u64 {
match self {
EntryVerificationState::CPU(state) => state.duration_ms,
EntryVerificationState::GPU(state) => state.duration_ms,
}
}
pub fn finish_verify(&mut self, entries: &[Entry]) -> bool {
match self {
EntryVerificationState::GPU(verification_state) => {
let gpu_time_ms = verification_state.thread_h.take().unwrap().join().unwrap();
let mut verify_check_time = Measure::start("verify_check");
let hashes = verification_state.hashes.take().expect("hashes.as_ref");
let hashes = Arc::try_unwrap(hashes)
.expect("unwrap Arc")
.into_inner()
.expect("into_inner");
let res = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
hashes
.into_par_iter()
.zip(&verification_state.tx_hashes)
.zip(entries)
.all(|((hash, tx_hash), answer)| {
if answer.num_hashes == 0 {
*hash == answer.hash
} else {
let mut poh = Poh::new(*hash, None);
if let Some(mixin) = tx_hash {
poh.record(*mixin).unwrap().hash == answer.hash
} else {
poh.tick().unwrap().hash == answer.hash
}
}
})
})
});
verify_check_time.stop();
verification_state.duration_ms += gpu_time_ms + verify_check_time.as_ms();
inc_new_counter_warn!(
"entry_verify-duration",
verification_state.duration_ms as usize
);
verification_state.verification_status = if res {
EntryVerificationStatus::Success
} else {
EntryVerificationStatus::Failure
};
res
}
EntryVerificationState::CPU(verification_state) => {
verification_state.verification_status == EntryVerificationStatus::Success
}
}
}
}
// an EntrySlice is a slice of Entries
pub trait EntrySlice {
/// Verifies the hashes and counts of a slice of transactions are all consistent.
fn verify_cpu(&self, start_hash: &Hash) -> EntryVerificationState;
fn start_verify(&self, start_hash: &Hash, recyclers: VerifyRecyclers)
-> EntryVerificationState;
fn verify(&self, start_hash: &Hash) -> bool;
/// Checks that each entry tick has the correct number of hashes. Entry slices do not
/// necessarily end in a tick, so `tick_hash_count` is used to carry over the hash count
/// for the next entry slice.
fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool;
/// Counts tick entries
fn tick_count(&self) -> u64;
fn verify_transaction_signatures(&self) -> bool;
}
impl EntrySlice for [Entry] {
fn verify(&self, start_hash: &Hash) -> bool {
self.start_verify(start_hash, VerifyRecyclers::default())
.finish_verify(self)
}
fn verify_cpu(&self, start_hash: &Hash) -> EntryVerificationState {
let now = Instant::now();
let genesis = [Entry {
num_hashes: 0,
hash: *start_hash,
transactions: vec![],
}];
let entry_pairs = genesis.par_iter().chain(self).zip(self);
let res = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
entry_pairs.all(|(x0, x1)| {
let r = x1.verify(&x0.hash);
if !r {
warn!(
"entry invalid!: x0: {:?}, x1: {:?} num txs: {}",
x0.hash,
x1.hash,
x1.transactions.len()
);
}
r
})
})
});
let duration_ms = timing::duration_as_ms(&now.elapsed());
inc_new_counter_warn!("entry_verify-duration", duration_ms as usize);
EntryVerificationState::CPU(VerificationData {
thread_h: None,
verification_status: if res {
EntryVerificationStatus::Success
} else {
EntryVerificationStatus::Failure
},
hashes: None,
tx_hashes: vec![],
duration_ms,
})
}
fn verify_transaction_signatures(&self) -> bool {
PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
self.par_iter().all(|e| {
e.transactions
.par_iter()
.all(|transaction| transaction.verify().is_ok())
})
})
})
}
fn start_verify(
&self,
start_hash: &Hash,
recyclers: VerifyRecyclers,
) -> EntryVerificationState {
let start = Instant::now();
let res = self.verify_transaction_signatures();
if !res {
return EntryVerificationState::CPU(VerificationData {
thread_h: None,
verification_status: EntryVerificationStatus::Failure,
duration_ms: timing::duration_as_ms(&start.elapsed()),
hashes: None,
tx_hashes: vec![],
});
}
let api = perf_libs::api();
if api.is_none() {
return self.verify_cpu(start_hash);
}
let api = api.unwrap();
inc_new_counter_warn!("entry_verify-num_entries", self.len() as usize);
let genesis = [Entry {
num_hashes: 0,
hash: *start_hash,
transactions: vec![],
}];
let hashes: Vec<Hash> = genesis
.iter()
.chain(self)
.map(|entry| entry.hash)
.take(self.len())
.collect();
let mut hashes_pinned = recyclers.hash_recycler.allocate("poh_verify_hash");
hashes_pinned.set_pinnable();
hashes_pinned.resize(hashes.len(), Hash::default());
hashes_pinned.copy_from_slice(&hashes);
let mut num_hashes_vec = recyclers
.tick_count_recycler
.allocate("poh_verify_num_hashes");
num_hashes_vec.reserve_and_pin(cmp::max(1, self.len()));
for entry in self {
num_hashes_vec.push(entry.num_hashes.saturating_sub(1));
}
let length = self.len();
let hashes = Arc::new(Mutex::new(hashes_pinned));
let hashes_clone = hashes.clone();
let gpu_verify_thread = thread::spawn(move || {
let mut hashes = hashes_clone.lock().unwrap();
let gpu_wait = Instant::now();
let res;
unsafe {
res = (api.poh_verify_many)(
hashes.as_mut_ptr() as *mut u8,
num_hashes_vec.as_ptr(),
length,
1,
);
}
if res != 0 {
panic!("GPU PoH verify many failed");
}
inc_new_counter_warn!(
"entry_verify-gpu_thread",
timing::duration_as_ms(&gpu_wait.elapsed()) as usize
);
timing::duration_as_ms(&gpu_wait.elapsed())
});
let tx_hashes = PAR_THREAD_POOL.with(|thread_pool| {
thread_pool.borrow().install(|| {
self.into_par_iter()
.map(|entry| {
if entry.transactions.is_empty() {
None
} else {
Some(hash_transactions(&entry.transactions))
}
})
.collect()
})
});
EntryVerificationState::GPU(VerificationData {
thread_h: Some(gpu_verify_thread),
verification_status: EntryVerificationStatus::Pending,
tx_hashes,
duration_ms: timing::duration_as_ms(&start.elapsed()),
hashes: Some(hashes),
})
}
fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool {
// When hashes_per_tick is 0, hashing is disabled.
if hashes_per_tick == 0 {
return true;
}
for entry in self {
*tick_hash_count += entry.num_hashes;
if entry.is_tick() {
if *tick_hash_count != hashes_per_tick {
warn!(
"invalid tick hash count!: entry: {:#?}, tick_hash_count: {}, hashes_per_tick: {}",
entry,
tick_hash_count,
hashes_per_tick
);
return false;
}
*tick_hash_count = 0;
}
}
*tick_hash_count < hashes_per_tick
}
fn tick_count(&self) -> u64 {
self.iter().filter(|e| e.is_tick()).count() as u64
}
}
pub fn next_entry_mut(start: &mut Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
let entry = Entry::new(&start, num_hashes, transactions);
*start = entry.hash;
entry
}
pub fn create_ticks(num_ticks: u64, hashes_per_tick: u64, mut hash: Hash) -> Vec<Entry> {
let mut ticks = Vec::with_capacity(num_ticks as usize);
for _ in 0..num_ticks {
let new_tick = next_entry_mut(&mut hash, hashes_per_tick, vec![]);
ticks.push(new_tick);
}
ticks
}
/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
pub fn next_entry(prev_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
assert!(num_hashes > 0 || transactions.is_empty());
Entry {
num_hashes,
hash: next_hash(prev_hash, num_hashes, &transactions),
transactions,
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::entry::Entry;
use chrono::prelude::Utc;
use solana_budget_program::budget_instruction;
use solana_sdk::{
hash::{hash, Hash},
message::Message,
signature::{Keypair, Signer},
system_transaction,
transaction::Transaction,
};
fn create_sample_payment(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let budget_contract = Keypair::new();
let budget_pubkey = budget_contract.pubkey();
let ixs = budget_instruction::payment(&pubkey, &pubkey, &budget_pubkey, 1);
Transaction::new_signed_instructions(&[keypair, &budget_contract], &ixs, hash)
}
fn create_sample_timestamp(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let ix = budget_instruction::apply_timestamp(&pubkey, &pubkey, &pubkey, Utc::now());
Transaction::new_signed_instructions(&[keypair], &[ix], hash)
}
fn create_sample_apply_signature(keypair: &Keypair, hash: Hash) -> Transaction {
let pubkey = keypair.pubkey();
let ix = budget_instruction::apply_signature(&pubkey, &pubkey, &pubkey);
Transaction::new_signed_instructions(&[keypair], &[ix], hash)
}
#[test]
fn test_entry_verify() {
let zero = Hash::default();
let one = hash(&zero.as_ref());
assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case, never used
assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad
assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
}
#[test]
fn test_transaction_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
let tx1 = system_transaction::transfer(&keypair, &keypair.pubkey(), 1, zero);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
assert!(e0.verify(&zero));
// Next, swap two transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_transaction_signing() {
use solana_sdk::signature::Signature;
let zero = Hash::default();
let keypair = Keypair::new();
let tx0 = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
let tx1 = system_transaction::transfer(&keypair, &keypair.pubkey(), 1, zero);
// Verify entry with 2 transctions
let mut e0 = vec![Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()])];
assert!(e0.verify(&zero));
// Clear signature of the first transaction, see that it does not verify
let orig_sig = e0[0].transactions[0].signatures[0];
e0[0].transactions[0].signatures[0] = Signature::default();
assert!(!e0.verify(&zero));
// restore original signature
e0[0].transactions[0].signatures[0] = orig_sig;
assert!(e0.verify(&zero));
// Resize signatures and see verification fails.
let len = e0[0].transactions[0].signatures.len();
e0[0].transactions[0]
.signatures
.resize(len - 1, Signature::default());
assert!(!e0.verify(&zero));
// Pass an entry with no transactions
let e0 = vec![Entry::new(&zero, 0, vec![])];
assert!(e0.verify(&zero));
}
#[test]
fn test_witness_reorder_attack() {
let zero = Hash::default();
// First, verify entries
let keypair = Keypair::new();
let tx0 = create_sample_timestamp(&keypair, zero);
let tx1 = create_sample_apply_signature(&keypair, zero);
let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
assert!(e0.verify(&zero));
// Next, swap two witness transactions and ensure verification fails.
e0.transactions[0] = tx1; // <-- attack
e0.transactions[1] = tx0;
assert!(!e0.verify(&zero));
}
#[test]
fn test_next_entry() {
let zero = Hash::default();
let tick = next_entry(&zero, 1, vec![]);
assert_eq!(tick.num_hashes, 1);
assert_ne!(tick.hash, zero);
let tick = next_entry(&zero, 0, vec![]);
assert_eq!(tick.num_hashes, 0);
assert_eq!(tick.hash, zero);
let keypair = Keypair::new();
let tx0 = create_sample_timestamp(&keypair, zero);
let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
assert_eq!(entry0.num_hashes, 1);
assert_eq!(entry0.hash, next_hash(&zero, 1, &vec![tx0]));
}
#[test]
#[should_panic]
fn test_next_entry_panic() {
let zero = Hash::default();
let keypair = Keypair::new();
let tx = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
next_entry(&zero, 0, vec![tx]);
}
#[test]
fn test_verify_slice() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
assert_eq!(vec![][..].verify(&zero), true); // base case
assert_eq!(vec![Entry::new_tick(0, &zero)][..].verify(&zero), true); // singleton case 1
assert_eq!(vec![Entry::new_tick(0, &zero)][..].verify(&one), false); // singleton case 2, bad
assert_eq!(
vec![next_entry(&zero, 0, vec![]); 2][..].verify(&zero),
true
); // inductive step
let mut bad_ticks = vec![next_entry(&zero, 0, vec![]); 2];
bad_ticks[1].hash = one;
assert_eq!(bad_ticks.verify(&zero), false); // inductive step, bad
}
#[test]
fn test_verify_slice_with_hashes() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
let two = hash(&one.as_ref());
assert_eq!(vec![][..].verify(&one), true); // base case
assert_eq!(vec![Entry::new_tick(1, &two)][..].verify(&one), true); // singleton case 1
assert_eq!(vec![Entry::new_tick(1, &two)][..].verify(&two), false); // singleton case 2, bad
let mut ticks = vec![next_entry(&one, 1, vec![])];
ticks.push(next_entry(&ticks.last().unwrap().hash, 1, vec![]));
assert_eq!(ticks.verify(&one), true); // inductive step
let mut bad_ticks = vec![next_entry(&one, 1, vec![])];
bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![]));
bad_ticks[1].hash = one;
assert_eq!(bad_ticks.verify(&one), false); // inductive step, bad
}
#[test]
fn test_verify_slice_with_hashes_and_transactions() {
solana_logger::setup();
let zero = Hash::default();
let one = hash(&zero.as_ref());
let two = hash(&one.as_ref());
let alice_pubkey = Keypair::new();
let tx0 = create_sample_payment(&alice_pubkey, one);
let tx1 = create_sample_timestamp(&alice_pubkey, one);
assert_eq!(vec![][..].verify(&one), true); // base case
assert_eq!(
vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&one),
true
); // singleton case 1
assert_eq!(
vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&two),
false
); // singleton case 2, bad
let mut ticks = vec![next_entry(&one, 1, vec![tx0.clone()])];
ticks.push(next_entry(
&ticks.last().unwrap().hash,
1,
vec![tx1.clone()],
));
assert_eq!(ticks.verify(&one), true); // inductive step
let mut bad_ticks = vec![next_entry(&one, 1, vec![tx0])];
bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![tx1]));
bad_ticks[1].hash = one;
assert_eq!(bad_ticks.verify(&one), false); // inductive step, bad
}
#[test]
fn test_verify_tick_hash_count() {
let hashes_per_tick = 10;
let keypairs: Vec<&Keypair> = Vec::new();
let tx: Transaction = Transaction::new(&keypairs, Message::new(&[]), Hash::default());
let tx_entry = Entry::new(&Hash::default(), 1, vec![tx]);
let full_tick_entry = Entry::new_tick(hashes_per_tick, &Hash::default());
let partial_tick_entry = Entry::new_tick(hashes_per_tick - 1, &Hash::default());
let no_hash_tick_entry = Entry::new_tick(0, &Hash::default());
let single_hash_tick_entry = Entry::new_tick(1, &Hash::default());
let no_ticks = vec![];
let mut tick_hash_count = 0;
assert!(no_ticks.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, 0);
// validation is disabled when hashes_per_tick == 0
let no_hash_tick = vec![no_hash_tick_entry.clone()];
assert!(no_hash_tick.verify_tick_hash_count(&mut tick_hash_count, 0));
assert_eq!(tick_hash_count, 0);
// validation is disabled when hashes_per_tick == 0
let tx_and_no_hash_tick = vec![tx_entry.clone(), no_hash_tick_entry];
assert!(tx_and_no_hash_tick.verify_tick_hash_count(&mut tick_hash_count, 0));
assert_eq!(tick_hash_count, 0);
let single_tick = vec![full_tick_entry.clone()];
assert!(single_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, 0);
assert!(!single_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick - 1));
assert_eq!(tick_hash_count, hashes_per_tick);
tick_hash_count = 0;
let ticks_and_txs = vec![tx_entry.clone(), partial_tick_entry.clone()];
assert!(ticks_and_txs.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, 0);
let partial_tick = vec![partial_tick_entry.clone()];
assert!(!partial_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, hashes_per_tick - 1);
tick_hash_count = 0;
let tx_entries: Vec<Entry> = (0..hashes_per_tick - 1).map(|_| tx_entry.clone()).collect();
let tx_entries_and_tick = [tx_entries, vec![single_hash_tick_entry]].concat();
assert!(tx_entries_and_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, 0);
let too_many_tx_entries: Vec<Entry> =
(0..hashes_per_tick).map(|_| tx_entry.clone()).collect();
assert!(!too_many_tx_entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
assert_eq!(tick_hash_count, hashes_per_tick);
}
}