solana/src/request_stage.rs

190 lines
6.9 KiB
Rust

//! The `request_stage` processes thin client Request messages.
use packet;
use packet::SharedPackets;
use recorder::Signal;
use request_processor::RequestProcessor;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::{channel, Receiver};
use std::thread::{spawn, JoinHandle};
use streamer;
pub struct RequestStage {
pub thread_hdl: JoinHandle<()>,
pub signal_receiver: Receiver<Signal>,
pub blob_receiver: streamer::BlobReceiver,
pub request_processor: Arc<RequestProcessor>,
}
impl RequestStage {
pub fn new(
request_processor: RequestProcessor,
exit: Arc<AtomicBool>,
verified_receiver: Receiver<Vec<(SharedPackets, Vec<u8>)>>,
packet_recycler: packet::PacketRecycler,
blob_recycler: packet::BlobRecycler,
) -> Self {
let request_processor = Arc::new(request_processor);
let request_processor_ = request_processor.clone();
let (signal_sender, signal_receiver) = channel();
let (blob_sender, blob_receiver) = channel();
let thread_hdl = spawn(move || loop {
let e = request_processor_.process_request_packets(
&verified_receiver,
&signal_sender,
&blob_sender,
&packet_recycler,
&blob_recycler,
);
if e.is_err() {
if exit.load(Ordering::Relaxed) {
break;
}
}
});
RequestStage {
thread_hdl,
signal_receiver,
blob_receiver,
request_processor,
}
}
}
// TODO: When banking is pulled out of RequestStage, add this test back in.
//use bank::Bank;
//use entry::Entry;
//use event::Event;
//use hash::Hash;
//use record_stage::RecordStage;
//use recorder::Signal;
//use result::Result;
//use std::sync::mpsc::{channel, Sender};
//use std::sync::{Arc, Mutex};
//use std::time::Duration;
//
//#[cfg(test)]
//mod tests {
// use bank::Bank;
// use event::Event;
// use event_processor::EventProcessor;
// use mint::Mint;
// use signature::{KeyPair, KeyPairUtil};
// use transaction::Transaction;
//
// #[test]
// // TODO: Move this test banking_stage. Calling process_events() directly
// // defeats the purpose of this test.
// fn test_banking_sequential_consistency() {
// // In this attack we'll demonstrate that a verifier can interpret the ledger
// // differently if either the server doesn't signal the ledger to add an
// // Entry OR if the verifier tries to parallelize across multiple Entries.
// let mint = Mint::new(2);
// let bank = Bank::new(&mint);
// let event_processor = EventProcessor::new(bank, &mint.last_id(), None);
//
// // Process a batch that includes a transaction that receives two tokens.
// let alice = KeyPair::new();
// let tr = Transaction::new(&mint.keypair(), alice.pubkey(), 2, mint.last_id());
// let events = vec![Event::Transaction(tr)];
// let entry0 = event_processor.process_events(events).unwrap();
//
// // Process a second batch that spends one of those tokens.
// let tr = Transaction::new(&alice, mint.pubkey(), 1, mint.last_id());
// let events = vec![Event::Transaction(tr)];
// let entry1 = event_processor.process_events(events).unwrap();
//
// // Collect the ledger and feed it to a new bank.
// let entries = vec![entry0, entry1];
//
// // Assert the user holds one token, not two. If the server only output one
// // entry, then the second transaction will be rejected, because it drives
// // the account balance below zero before the credit is added.
// let bank = Bank::new(&mint);
// for entry in entries {
// assert!(
// bank
// .process_verified_events(entry.events)
// .into_iter()
// .all(|x| x.is_ok())
// );
// }
// assert_eq!(bank.get_balance(&alice.pubkey()), Some(1));
// }
//}
//
//#[cfg(all(feature = "unstable", test))]
//mod bench {
// extern crate test;
// use self::test::Bencher;
// use bank::{Bank, MAX_ENTRY_IDS};
// use bincode::serialize;
// use event_processor::*;
// use hash::hash;
// use mint::Mint;
// use rayon::prelude::*;
// use signature::{KeyPair, KeyPairUtil};
// use std::collections::HashSet;
// use std::time::Instant;
// use transaction::Transaction;
//
// #[bench]
// fn process_events_bench(_bencher: &mut Bencher) {
// let mint = Mint::new(100_000_000);
// let bank = Bank::new(&mint);
// // Create transactions between unrelated parties.
// let txs = 100_000;
// let last_ids: Mutex<HashSet<Hash>> = Mutex::new(HashSet::new());
// let transactions: Vec<_> = (0..txs)
// .into_par_iter()
// .map(|i| {
// // Seed the 'to' account and a cell for its signature.
// let dummy_id = i % (MAX_ENTRY_IDS as i32);
// let last_id = hash(&serialize(&dummy_id).unwrap()); // Semi-unique hash
// {
// let mut last_ids = last_ids.lock().unwrap();
// if !last_ids.contains(&last_id) {
// last_ids.insert(last_id);
// bank.register_entry_id(&last_id);
// }
// }
//
// // Seed the 'from' account.
// let rando0 = KeyPair::new();
// let tr = Transaction::new(&mint.keypair(), rando0.pubkey(), 1_000, last_id);
// bank.process_verified_transaction(&tr).unwrap();
//
// let rando1 = KeyPair::new();
// let tr = Transaction::new(&rando0, rando1.pubkey(), 2, last_id);
// bank.process_verified_transaction(&tr).unwrap();
//
// // Finally, return a transaction that's unique
// Transaction::new(&rando0, rando1.pubkey(), 1, last_id)
// })
// .collect();
//
// let events: Vec<_> = transactions
// .into_iter()
// .map(|tr| Event::Transaction(tr))
// .collect();
//
// let event_processor = EventProcessor::new(bank, &mint.last_id(), None);
//
// let now = Instant::now();
// assert!(event_processor.process_events(events).is_ok());
// let duration = now.elapsed();
// let sec = duration.as_secs() as f64 + duration.subsec_nanos() as f64 / 1_000_000_000.0;
// let tps = txs as f64 / sec;
//
// // Ensure that all transactions were successfully logged.
// drop(event_processor.historian_input);
// let entries: Vec<Entry> = event_processor.output.lock().unwrap().iter().collect();
// assert_eq!(entries.len(), 1);
// assert_eq!(entries[0].events.len(), txs as usize);
//
// println!("{} tps", tps);
// }
//}