solana/accounts-db/src/rolling_bit_field.rs

996 lines
34 KiB
Rust

//! functionally similar to a hashset
//! Relies on there being a sliding window of key values. The key values continue to increase.
//! Old key values are removed from the lesser values and do not accumulate.
use {bv::BitVec, solana_sdk::clock::Slot, std::collections::HashSet};
#[derive(Debug, Default, AbiExample, Clone)]
pub struct RollingBitField {
max_width: u64,
min: u64,
max_exclusive: u64,
bits: BitVec,
count: usize,
// These are items that are true and lower than min.
// They would cause us to exceed max_width if we stored them in our bit field.
// We only expect these items in conditions where there is some other bug in the system
// or in testing when large ranges are created.
excess: HashSet<u64>,
}
impl PartialEq<RollingBitField> for RollingBitField {
fn eq(&self, other: &Self) -> bool {
// 2 instances could have different internal data for the same values,
// so we have to compare data.
self.len() == other.len() && {
for item in self.get_all() {
if !other.contains(&item) {
return false;
}
}
true
}
}
}
/// functionally similar to a hashset
/// Relies on there being a sliding window of key values. The key values continue to increase.
/// Old key values are removed from the lesser values and do not accumulate.
impl RollingBitField {
pub fn new(max_width: u64) -> Self {
assert!(max_width > 0);
assert!(max_width.is_power_of_two()); // power of 2 to make dividing a shift
let bits = BitVec::new_fill(false, max_width);
Self {
max_width,
bits,
count: 0,
min: 0,
max_exclusive: 0,
excess: HashSet::new(),
}
}
// find the array index
fn get_address(&self, key: &u64) -> u64 {
key % self.max_width
}
pub fn range_width(&self) -> u64 {
// note that max isn't updated on remove, so it can be above the current max
self.max_exclusive - self.min
}
pub fn min(&self) -> Option<u64> {
if self.is_empty() {
None
} else if self.excess.is_empty() {
Some(self.min)
} else {
let mut min = if self.all_items_in_excess() {
u64::MAX
} else {
self.min
};
for item in &self.excess {
min = std::cmp::min(min, *item);
}
Some(min)
}
}
pub fn insert(&mut self, key: u64) {
let mut bits_empty = self.count == 0 || self.all_items_in_excess();
let update_bits = if bits_empty {
true // nothing in bits, so in range
} else if key < self.min {
// bits not empty and this insert is before min, so add to excess
if self.excess.insert(key) {
self.count += 1;
}
false
} else if key < self.max_exclusive {
true // fits current bit field range
} else {
// key is >= max
let new_max = key + 1;
loop {
let new_width = new_max.saturating_sub(self.min);
if new_width <= self.max_width {
// this key will fit the max range
break;
}
// move the min item from bits to excess and then purge from min to make room for this new max
let inserted = self.excess.insert(self.min);
assert!(inserted);
let key = self.min;
let address = self.get_address(&key);
self.bits.set(address, false);
self.purge(&key);
if self.all_items_in_excess() {
// if we moved the last existing item to excess, then we are ready to insert the new item in the bits
bits_empty = true;
break;
}
}
true // moved things to excess if necessary, so update bits with the new entry
};
if update_bits {
let address = self.get_address(&key);
let value = self.bits.get(address);
if !value {
self.bits.set(address, true);
if bits_empty {
self.min = key;
self.max_exclusive = key + 1;
} else {
self.min = std::cmp::min(self.min, key);
self.max_exclusive = std::cmp::max(self.max_exclusive, key + 1);
assert!(
self.min + self.max_width >= self.max_exclusive,
"min: {}, max: {}, max_width: {}",
self.min,
self.max_exclusive,
self.max_width
);
}
self.count += 1;
}
}
}
/// remove key from set, return if item was in the set
pub fn remove(&mut self, key: &u64) -> bool {
if key >= &self.min {
// if asked to remove something bigger than max, then no-op
if key < &self.max_exclusive {
let address = self.get_address(key);
let get = self.bits.get(address);
if get {
self.count -= 1;
self.bits.set(address, false);
self.purge(key);
}
get
} else {
false
}
} else {
// asked to remove something < min. would be in excess if it exists
let remove = self.excess.remove(key);
if remove {
self.count -= 1;
}
remove
}
}
fn all_items_in_excess(&self) -> bool {
self.excess.len() == self.count
}
// after removing 'key' where 'key' = min, make min the correct new min value
fn purge(&mut self, key: &u64) {
if self.count > 0 && !self.all_items_in_excess() {
if key == &self.min {
let start = self.min + 1; // min just got removed
for key in start..self.max_exclusive {
if self.contains_assume_in_range(&key) {
self.min = key;
break;
}
}
}
} else {
// The idea is that there are no items in the bitfield anymore.
// But, there MAY be items in excess. The model works such that items < min go into excess.
// So, after purging all items from bitfield, we hold max to be what it previously was, but set min to max.
// Thus, if we lookup >= max, answer is always false without having to look in excess.
// If we changed max here to 0, we would lose the ability to know the range of items in excess (if any).
// So, now, with min updated = max:
// If we lookup < max, then we first check min.
// If >= min, then we look in bitfield.
// Otherwise, we look in excess since the request is < min.
// So, resetting min like this after a remove results in the correct behavior for the model.
// Later, if we insert and there are 0 items total (excess + bitfield), then we reset min/max to reflect the new item only.
self.min = self.max_exclusive;
}
}
fn contains_assume_in_range(&self, key: &u64) -> bool {
// the result may be aliased. Caller is responsible for determining key is in range.
let address = self.get_address(key);
self.bits.get(address)
}
// This is the 99% use case.
// This needs be fast for the most common case of asking for key >= min.
pub fn contains(&self, key: &u64) -> bool {
if key < &self.max_exclusive {
if key >= &self.min {
// in the bitfield range
self.contains_assume_in_range(key)
} else {
self.excess.contains(key)
}
} else {
false
}
}
pub fn len(&self) -> usize {
self.count
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn max_exclusive(&self) -> u64 {
self.max_exclusive
}
pub fn max_inclusive(&self) -> u64 {
self.max_exclusive.saturating_sub(1)
}
/// return all items < 'max_slot_exclusive'
pub fn get_all_less_than(&self, max_slot_exclusive: Slot) -> Vec<u64> {
let mut all = Vec::with_capacity(self.count);
self.excess.iter().for_each(|slot| {
if slot < &max_slot_exclusive {
all.push(*slot)
}
});
for key in self.min..self.max_exclusive {
if key >= max_slot_exclusive {
break;
}
if self.contains_assume_in_range(&key) {
all.push(key);
}
}
all
}
/// return highest item < 'max_slot_exclusive'
pub fn get_prior(&self, max_slot_exclusive: Slot) -> Option<Slot> {
let mut slot = max_slot_exclusive.saturating_sub(1);
self.min().and_then(|min| {
loop {
if self.contains(&slot) {
return Some(slot);
}
slot = slot.saturating_sub(1);
if slot == 0 || slot < min {
break;
}
}
None
})
}
pub fn get_all(&self) -> Vec<u64> {
let mut all = Vec::with_capacity(self.count);
self.excess.iter().for_each(|slot| all.push(*slot));
for key in self.min..self.max_exclusive {
if self.contains_assume_in_range(&key) {
all.push(key);
}
}
all
}
}
#[cfg(test)]
pub mod tests {
use {super::*, log::*, solana_measure::measure::Measure};
impl RollingBitField {
pub fn clear(&mut self) {
*self = Self::new(self.max_width);
}
}
#[test]
fn test_get_all_less_than() {
solana_logger::setup();
let len = 16;
let mut bitfield = RollingBitField::new(len);
assert!(bitfield.get_all_less_than(0).is_empty());
bitfield.insert(0);
assert!(bitfield.get_all_less_than(0).is_empty());
assert_eq!(bitfield.get_all_less_than(1), vec![0]);
bitfield.insert(1);
assert_eq!(bitfield.get_all_less_than(1), vec![0]);
let last_item_not_in_excess = len - 1;
bitfield.insert(last_item_not_in_excess);
assert!(bitfield.excess.is_empty());
assert_eq!(
bitfield.get_all_less_than(last_item_not_in_excess),
vec![0, 1]
);
assert_eq!(
bitfield.get_all_less_than(last_item_not_in_excess + 1),
vec![0, 1, last_item_not_in_excess]
);
let first_item_in_excess = last_item_not_in_excess + 1;
bitfield.insert(first_item_in_excess);
assert!(bitfield.excess.contains(&0));
assert_eq!(
bitfield.get_all_less_than(last_item_not_in_excess),
vec![0, 1]
);
assert_eq!(
bitfield.get_all_less_than(last_item_not_in_excess + 1),
vec![0, 1, last_item_not_in_excess]
);
assert_eq!(
bitfield.get_all_less_than(first_item_in_excess + 1),
vec![0, 1, last_item_not_in_excess, first_item_in_excess]
);
bitfield.insert(len * 2);
let mut less = bitfield.get_all_less_than(len * 2);
less.sort_unstable();
assert_eq!(
vec![0, 1, last_item_not_in_excess, first_item_in_excess],
less
);
let mut less = bitfield.get_all_less_than(len * 2 + 1);
less.sort_unstable();
assert_eq!(
vec![0, 1, last_item_not_in_excess, first_item_in_excess, len * 2],
less
);
}
#[test]
fn test_bitfield_delete_non_excess() {
solana_logger::setup();
let len = 16;
let mut bitfield = RollingBitField::new(len);
assert_eq!(bitfield.min(), None);
bitfield.insert(0);
assert_eq!(bitfield.min(), Some(0));
let too_big = len + 1;
bitfield.insert(too_big);
assert!(bitfield.contains(&0));
assert!(bitfield.contains(&too_big));
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.excess.len(), 1);
assert_eq!(bitfield.min, too_big);
assert_eq!(bitfield.min(), Some(0));
assert_eq!(bitfield.max_exclusive, too_big + 1);
// delete the thing that is NOT in excess
bitfield.remove(&too_big);
assert_eq!(bitfield.min, too_big + 1);
assert_eq!(bitfield.max_exclusive, too_big + 1);
let too_big_times_2 = too_big * 2;
bitfield.insert(too_big_times_2);
assert!(bitfield.contains(&0));
assert!(bitfield.contains(&too_big_times_2));
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.excess.len(), 1);
assert_eq!(bitfield.min(), bitfield.excess.iter().min().copied());
assert_eq!(bitfield.min, too_big_times_2);
assert_eq!(bitfield.max_exclusive, too_big_times_2 + 1);
bitfield.remove(&0);
bitfield.remove(&too_big_times_2);
assert!(bitfield.is_empty());
let other = 5;
bitfield.insert(other);
assert!(bitfield.contains(&other));
assert!(bitfield.excess.is_empty());
assert_eq!(bitfield.min, other);
assert_eq!(bitfield.max_exclusive, other + 1);
}
#[test]
fn test_bitfield_insert_excess() {
solana_logger::setup();
let len = 16;
let mut bitfield = RollingBitField::new(len);
bitfield.insert(0);
let too_big = len + 1;
bitfield.insert(too_big);
assert!(bitfield.contains(&0));
assert!(bitfield.contains(&too_big));
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.excess.len(), 1);
assert!(bitfield.excess.contains(&0));
assert_eq!(bitfield.min, too_big);
assert_eq!(bitfield.max_exclusive, too_big + 1);
// delete the thing that IS in excess
// this does NOT affect min/max
bitfield.remove(&0);
assert_eq!(bitfield.min, too_big);
assert_eq!(bitfield.max_exclusive, too_big + 1);
// re-add to excess
bitfield.insert(0);
assert!(bitfield.contains(&0));
assert!(bitfield.contains(&too_big));
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.excess.len(), 1);
assert_eq!(bitfield.min, too_big);
assert_eq!(bitfield.max_exclusive, too_big + 1);
}
#[test]
fn test_bitfield_permutations() {
solana_logger::setup();
let mut bitfield = RollingBitField::new(2097152);
let mut hash = HashSet::new();
let min = 101_000;
let width = 400_000;
let dead = 19;
let mut slot = min;
while hash.len() < width {
slot += 1;
if slot % dead == 0 {
continue;
}
hash.insert(slot);
bitfield.insert(slot);
}
compare(&hash, &bitfield);
let max = slot + 1;
let mut time = Measure::start("");
let mut count = 0;
for slot in (min - 10)..max + 100 {
if hash.contains(&slot) {
count += 1;
}
}
time.stop();
let mut time2 = Measure::start("");
let mut count2 = 0;
for slot in (min - 10)..max + 100 {
if bitfield.contains(&slot) {
count2 += 1;
}
}
time2.stop();
info!(
"{}ms, {}ms, {} ratio",
time.as_ms(),
time2.as_ms(),
time.as_ns() / time2.as_ns()
);
assert_eq!(count, count2);
}
#[test]
#[should_panic(expected = "assertion failed: max_width.is_power_of_two()")]
fn test_bitfield_power_2() {
let _ = RollingBitField::new(3);
}
#[test]
#[should_panic(expected = "assertion failed: max_width > 0")]
fn test_bitfield_0() {
let _ = RollingBitField::new(0);
}
fn setup_empty(width: u64) -> RollingBitFieldTester {
let bitfield = RollingBitField::new(width);
let hash_set = HashSet::new();
RollingBitFieldTester { bitfield, hash_set }
}
struct RollingBitFieldTester {
pub bitfield: RollingBitField,
pub hash_set: HashSet<u64>,
}
impl RollingBitFieldTester {
fn insert(&mut self, slot: u64) {
self.bitfield.insert(slot);
self.hash_set.insert(slot);
assert!(self.bitfield.contains(&slot));
compare(&self.hash_set, &self.bitfield);
}
fn remove(&mut self, slot: &u64) -> bool {
let result = self.bitfield.remove(slot);
assert_eq!(result, self.hash_set.remove(slot));
assert!(!self.bitfield.contains(slot));
self.compare();
result
}
fn compare(&self) {
compare(&self.hash_set, &self.bitfield);
}
}
fn setup_wide(width: u64, start: u64) -> RollingBitFieldTester {
let mut tester = setup_empty(width);
tester.compare();
tester.insert(start);
tester.insert(start + 1);
tester
}
#[test]
fn test_bitfield_insert_wide() {
solana_logger::setup();
let width = 16;
let start = 0;
let mut tester = setup_wide(width, start);
let slot = start + width;
let all = tester.bitfield.get_all();
// higher than max range by 1
tester.insert(slot);
let bitfield = tester.bitfield;
for slot in all {
assert!(bitfield.contains(&slot));
}
assert_eq!(bitfield.excess.len(), 1);
assert_eq!(bitfield.count, 3);
}
#[test]
fn test_bitfield_insert_wide_before() {
solana_logger::setup();
let width = 16;
let start = 100;
let mut bitfield = setup_wide(width, start).bitfield;
let slot = start + 1 - width;
// assert here - would make min too low, causing too wide of a range
bitfield.insert(slot);
assert_eq!(1, bitfield.excess.len());
assert_eq!(3, bitfield.count);
assert!(bitfield.contains(&slot));
}
#[test]
fn test_bitfield_insert_wide_before_ok() {
solana_logger::setup();
let width = 16;
let start = 100;
let mut bitfield = setup_wide(width, start).bitfield;
let slot = start + 2 - width; // this item would make our width exactly equal to what is allowed, but it is also inserting prior to min
bitfield.insert(slot);
assert_eq!(1, bitfield.excess.len());
assert!(bitfield.contains(&slot));
assert_eq!(3, bitfield.count);
}
#[test]
fn test_bitfield_contains_wide_no_assert() {
{
let width = 16;
let start = 0;
let bitfield = setup_wide(width, start).bitfield;
let mut slot = width;
assert!(!bitfield.contains(&slot));
slot += 1;
assert!(!bitfield.contains(&slot));
}
{
let width = 16;
let start = 100;
let bitfield = setup_wide(width, start).bitfield;
// too large
let mut slot = width;
assert!(!bitfield.contains(&slot));
slot += 1;
assert!(!bitfield.contains(&slot));
// too small, before min
slot = 0;
assert!(!bitfield.contains(&slot));
}
}
#[test]
fn test_bitfield_remove_wide() {
let width = 16;
let start = 0;
let mut tester = setup_wide(width, start);
let slot = width;
assert!(!tester.remove(&slot));
}
#[test]
fn test_bitfield_excess2() {
solana_logger::setup();
let width = 16;
let mut tester = setup_empty(width);
let slot = 100;
// insert 1st slot
tester.insert(slot);
assert!(tester.bitfield.excess.is_empty());
// insert a slot before the previous one. this is 'excess' since we don't use this pattern in normal operation
let slot2 = slot - 1;
tester.insert(slot2);
assert_eq!(tester.bitfield.excess.len(), 1);
// remove the 1st slot. we will be left with only excess
tester.remove(&slot);
assert!(tester.bitfield.contains(&slot2));
assert_eq!(tester.bitfield.excess.len(), 1);
// re-insert at valid range, making sure we don't insert into excess
tester.insert(slot);
assert_eq!(tester.bitfield.excess.len(), 1);
// remove the excess slot.
tester.remove(&slot2);
assert!(tester.bitfield.contains(&slot));
assert!(tester.bitfield.excess.is_empty());
// re-insert the excess slot
tester.insert(slot2);
assert_eq!(tester.bitfield.excess.len(), 1);
}
#[test]
fn test_bitfield_excess() {
solana_logger::setup();
// start at slot 0 or a separate, higher slot
for width in [16, 4194304].iter() {
let width = *width;
let mut tester = setup_empty(width);
for start in [0, width * 5].iter().cloned() {
// recreate means create empty bitfield with each iteration, otherwise re-use
for recreate in [false, true].iter().cloned() {
let max = start + 3;
// first root to add
for slot in start..max {
// subsequent roots to add
for slot2 in (slot + 1)..max {
// reverse_slots = 1 means add slots in reverse order (max to min). This causes us to add second and later slots to excess.
for reverse_slots in [false, true].iter().cloned() {
let maybe_reverse = |slot| {
if reverse_slots {
max - slot
} else {
slot
}
};
if recreate {
let recreated = setup_empty(width);
tester = recreated;
}
// insert
for slot in slot..=slot2 {
let slot_use = maybe_reverse(slot);
tester.insert(slot_use);
/*
this is noisy on build machine
debug!(
"slot: {}, bitfield: {:?}, reverse: {}, len: {}, excess: {:?}",
slot_use,
tester.bitfield,
reverse_slots,
tester.bitfield.len(),
tester.bitfield.excess
);*/
assert!(
(reverse_slots && tester.bitfield.len() > 1)
^ tester.bitfield.excess.is_empty()
);
}
if start > width * 2 {
assert!(!tester.bitfield.contains(&(start - width * 2)));
}
assert!(!tester.bitfield.contains(&(start + width * 2)));
let len = (slot2 - slot + 1) as usize;
assert_eq!(tester.bitfield.len(), len);
assert_eq!(tester.bitfield.count, len);
// remove
for slot in slot..=slot2 {
let slot_use = maybe_reverse(slot);
assert!(tester.remove(&slot_use));
assert!(
(reverse_slots && !tester.bitfield.is_empty())
^ tester.bitfield.excess.is_empty()
);
}
assert!(tester.bitfield.is_empty());
assert_eq!(tester.bitfield.count, 0);
if start > width * 2 {
assert!(!tester.bitfield.contains(&(start - width * 2)));
}
assert!(!tester.bitfield.contains(&(start + width * 2)));
}
}
}
}
}
}
}
#[test]
fn test_bitfield_remove_wide_before() {
let width = 16;
let start = 100;
let mut tester = setup_wide(width, start);
let slot = start + 1 - width;
assert!(!tester.remove(&slot));
}
fn compare_internal(hashset: &HashSet<u64>, bitfield: &RollingBitField) {
assert_eq!(hashset.len(), bitfield.len());
assert_eq!(hashset.is_empty(), bitfield.is_empty());
if !bitfield.is_empty() {
let mut min = Slot::MAX;
let mut overall_min = Slot::MAX;
let mut max = Slot::MIN;
for item in bitfield.get_all() {
assert!(hashset.contains(&item));
if !bitfield.excess.contains(&item) {
min = std::cmp::min(min, item);
max = std::cmp::max(max, item);
}
overall_min = std::cmp::min(overall_min, item);
}
assert_eq!(bitfield.min(), Some(overall_min));
assert_eq!(bitfield.get_all().len(), hashset.len());
// range isn't tracked for excess items
if bitfield.excess.len() != bitfield.len() {
let width = if bitfield.is_empty() {
0
} else {
max + 1 - min
};
assert!(
bitfield.range_width() >= width,
"hashset: {:?}, bitfield: {:?}, bitfield.range_width: {}, width: {}",
hashset,
bitfield.get_all(),
bitfield.range_width(),
width,
);
}
} else {
assert_eq!(bitfield.min(), None);
}
}
fn compare(hashset: &HashSet<u64>, bitfield: &RollingBitField) {
compare_internal(hashset, bitfield);
let clone = bitfield.clone();
compare_internal(hashset, &clone);
assert!(clone.eq(bitfield));
assert_eq!(clone, *bitfield);
}
#[test]
fn test_bitfield_functionality() {
solana_logger::setup();
// bitfield sizes are powers of 2, cycle through values of 1, 2, 4, .. 2^9
for power in 0..10 {
let max_bitfield_width = 2u64.pow(power);
let width_iteration_max = if max_bitfield_width > 1 {
// add up to 2 items so we can test out multiple items
3
} else {
// 0 or 1 items is all we can fit with a width of 1 item
2
};
for width in 0..width_iteration_max {
let mut tester = setup_empty(max_bitfield_width);
let min = 101_000;
let dead = 19;
let mut slot = min;
while tester.hash_set.len() < width {
slot += 1;
if max_bitfield_width > 2 && slot % dead == 0 {
// with max_bitfield_width of 1 and 2, there is no room for dead slots
continue;
}
tester.insert(slot);
}
let max = slot + 1;
for slot in (min - 10)..max + 100 {
assert_eq!(
tester.bitfield.contains(&slot),
tester.hash_set.contains(&slot)
);
}
if width > 0 {
assert!(tester.remove(&slot));
assert!(!tester.remove(&slot));
}
let all = tester.bitfield.get_all();
// remove the rest, including a call that removes slot again
for item in all.iter() {
assert!(tester.remove(item));
assert!(!tester.remove(item));
}
let min = max + ((width * 2) as u64) + 3;
let slot = min; // several widths past previous min
let max = slot + 1;
tester.insert(slot);
for slot in (min - 10)..max + 100 {
assert_eq!(
tester.bitfield.contains(&slot),
tester.hash_set.contains(&slot)
);
}
}
}
}
fn bitfield_insert_and_test(bitfield: &mut RollingBitField, slot: Slot) {
let len = bitfield.len();
let old_all = bitfield.get_all();
let (new_min, new_max) = if bitfield.is_empty() {
(slot, slot + 1)
} else {
(
std::cmp::min(bitfield.min, slot),
std::cmp::max(bitfield.max_exclusive, slot + 1),
)
};
bitfield.insert(slot);
assert_eq!(bitfield.min, new_min);
assert_eq!(bitfield.max_exclusive, new_max);
assert_eq!(bitfield.len(), len + 1);
assert!(!bitfield.is_empty());
assert!(bitfield.contains(&slot));
// verify aliasing is what we expect
assert!(bitfield.contains_assume_in_range(&(slot + bitfield.max_width)));
let get_all = bitfield.get_all();
old_all
.into_iter()
.for_each(|slot| assert!(get_all.contains(&slot)));
assert!(get_all.contains(&slot));
assert!(get_all.len() == len + 1);
}
#[test]
fn test_bitfield_clear() {
let mut bitfield = RollingBitField::new(4);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
bitfield_insert_and_test(&mut bitfield, 0);
bitfield.clear();
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 1);
bitfield.clear();
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 4);
}
#[test]
fn test_bitfield_wrapping() {
let mut bitfield = RollingBitField::new(4);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
bitfield_insert_and_test(&mut bitfield, 0);
assert_eq!(bitfield.get_all(), vec![0]);
bitfield_insert_and_test(&mut bitfield, 2);
assert_eq!(bitfield.get_all(), vec![0, 2]);
bitfield_insert_and_test(&mut bitfield, 3);
bitfield.insert(3); // redundant insert
assert_eq!(bitfield.get_all(), vec![0, 2, 3]);
assert!(bitfield.remove(&0));
assert!(!bitfield.remove(&0));
assert_eq!(bitfield.min, 2);
assert_eq!(bitfield.max_exclusive, 4);
assert_eq!(bitfield.len(), 2);
assert!(!bitfield.remove(&0)); // redundant remove
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.get_all(), vec![2, 3]);
bitfield.insert(4); // wrapped around value - same bit as '0'
assert_eq!(bitfield.min, 2);
assert_eq!(bitfield.max_exclusive, 5);
assert_eq!(bitfield.len(), 3);
assert_eq!(bitfield.get_all(), vec![2, 3, 4]);
assert!(bitfield.remove(&2));
assert_eq!(bitfield.min, 3);
assert_eq!(bitfield.max_exclusive, 5);
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.get_all(), vec![3, 4]);
assert!(bitfield.remove(&3));
assert_eq!(bitfield.min, 4);
assert_eq!(bitfield.max_exclusive, 5);
assert_eq!(bitfield.len(), 1);
assert_eq!(bitfield.get_all(), vec![4]);
assert!(bitfield.remove(&4));
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 8);
assert!(bitfield.remove(&8));
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 9);
assert!(bitfield.remove(&9));
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
}
#[test]
fn test_bitfield_smaller() {
// smaller bitfield, fewer entries, including 0
solana_logger::setup();
for width in 0..34 {
let mut bitfield = RollingBitField::new(4096);
let mut hash_set = HashSet::new();
let min = 1_010_000;
let dead = 19;
let mut slot = min;
while hash_set.len() < width {
slot += 1;
if slot % dead == 0 {
continue;
}
hash_set.insert(slot);
bitfield.insert(slot);
}
let max = slot + 1;
let mut time = Measure::start("");
let mut count = 0;
for slot in (min - 10)..max + 100 {
if hash_set.contains(&slot) {
count += 1;
}
}
time.stop();
let mut time2 = Measure::start("");
let mut count2 = 0;
for slot in (min - 10)..max + 100 {
if bitfield.contains(&slot) {
count2 += 1;
}
}
time2.stop();
info!(
"{}, {}, {}",
time.as_ms(),
time2.as_ms(),
time.as_ns() / time2.as_ns()
);
assert_eq!(count, count2);
}
}
}