
F1 Fee Distribution Draft-00

Dev Ojha

October 22, 2018

Abstract

In a proof of stake blockchain, validators need to split the rewards
gained from transaction fees each block. Furthermore, these fees must
be fairly distributed to each of a validator’s constituent delegators. They
accrue this reward throughout the entire time they are delegated, and
they have a special operation to withdraw accrued rewards.

The F1 fee distribution scheme works for any algorithm to split funds
between validators each block, with minimal iteration, and the only ap-
proximations being due to finite decimal precision. Per block there is a
single iteration over the validator set, which enables only rewarding val-
idators who signed a given block. No iteration is required to delegate,
and withdrawing only requires iterating over all of that validators slashes
since delegation it began. State usage is minimal as well, one state update
per validator per block, and one state record per delegator.

1 F1 Fee Distribution

In a proof of stake model, each validator has an associated stake, with delegators
each contributing some amount to a validator’s stake. The validator is rewarded
transaction fees every block for the service they are providing the network. In
the F1 distribution, each validator is permitted to take a commission from the
fees they receive, and the remaining fees should be evenly distributed across the
validator’s delegators, such that every delegator the percentage of the valida-
tor’s stake that came from the delegator is the proportion of that validator’s
remaining tx fees which they are getting. Iterating over all delegators for ev-
ery validator each block is too expensive for a blockchain environment. Instead
there is an explicit withdraw fees action which a delegator can take, which will
give the delegator the same total amount of fees as though they were receiving
it every block.

Suppose a delegator delegates x stake to a validator at block h. Let the
amount of stake the validator has at block i be si and the amount of fees they
receive at this height be fi. Then if a delegator contributing x stake decides to
withdraw at block n, the rewards they receive is

n∑
i=h

x

si
fi = x

n∑
i=h

fi
si

1



However si will not change every block. It only changes if the validator
gets slashed, or if someone new has bonded or unbonded. Handling slashes
is relegated to subsection 2.2. Define a period as the set of blocks between
two changes in a given validator’s total stake. A new period begins every time
that validator’s total stake changes. The above iteration will be converted to
iteration over periods. Let the total amount of stake for the validator in period
p be np. Let Tp be the total fees this validator accrued within this period. Let
h be the start of period pinit, and height n be the end of pfinal. It follows that

x

n∑
i=h

fi
si

= x

pfinal∑
p=pinit

Tp

np

Let p0 represent the period from when the validator first bonded until the
first change to the validators stake. The central idea to the F1 model is that at
the end of the kth period, the following is stored at a state location indexable
by k:

∑k
i=0

Ti

ni
. When a delegator wants to delegate or withdraw their reward,

they first create a new entry in state to end the current period. Let the index
of the current period be f . Then this entry is created using the previous entry
as follows:

f∑
i=0

Ti

ni
=

f−1∑
i=0

Ti

ni
+

Tf

nf
= entryf−1 +

Tf

nf

Where Tf is the fees the validator has accrued in period f , and nf is the val-
idators total amount of stake in period f .

The withdrawer’s delegation object has the index k for the period which they
started accruing fees for. Thus the reward they should receive when withdrawing
is:

x (entryf − entryk) = x

((
f∑

i=0

Ti

ni

)
−

(
k∑

i=0

Ti

ni

))
= x

f∑
i=k

Ti

ni

The first summation is the state entry for f , and the second sum is the state
entry at k. It is clear from the equations that this payout mechanism maintains
correctness, and required no iterations.

Tf is a separate variable in state for the amount of fees this validator has
accrued since the last update to its power. This variable is incremented at every
block by however much fees this validator received that block. On the update
to the validators power, this variable is used to create the entry in state at f .

This fee distribution proposal is agnostic to how all of the blocks fees are
divied up between validators. This creates many nice properties, for example
only rewarding validators who signed that block.

2



2 Additional add-ons

2.1 Commission Rates

Commission rates are the idea that a validator can take a fixed x% cut of all
of their received fees, before redistributing evenly to the constituent delegators.
This can easily be done as follows:

In block h a validator receives fh fees. Instead of incrementing that validators
“total accrued fees this period variable” by fh, it is instead incremented by
(1− commission rate)∗ fp. Then commission rate∗ fp is deposited directly to
the validator. This scheme allow for updates to a validator’s commission rate
every block if desired.

2.2 Slashing

Slashing is distinct from withdrawals, since not only does it lower the validators
total amount of stake, but it also lowers each of its delegator’s stake by a fixed
percentage. Since noone is charged gas for slashes, a slash cannot iterate over
all delegators. Thus we can no longer just multiply by x over the difference in
stake. The solution here is to instead store each period created by a slash in
the validators state. Then when withdrawing, you must iterate over all slashes
between when you started and ended. Suppose you delegated at period 0, a y%
slash occured at period 2, and your withdrawal is period 4. Then you receive
funds from 0 to 2 as normal. The equations for funds you receive for 2 to 4 now
uses (1 − y)x for your stake instead of just x stake. When there are multiple
slashes, you just account for the accumulated slash factor.

In practice this will not really be an efficiency hit, as we can expect most
validators to have no slashes. Validators that get slashed a lot will naturally
lose their delegators. A malicious validator that gets itself slashed many times
would increase the gas to withdraw linearly, but the economic loss of funds due
to the slashes should far out-weigh the extra overhead the withdrawer must pay
for due to the gas.

2.3 Inflation

Inflation is the idea that we want every staked coin to grow in value as time
progresses. Each block, every staked token should each be rewarded x staking
tokens as inflation, where x is calculated from function which takes state and
the block information as input. This also allows for many seemless upgrade’s to
x’s algorithm. This can be added efficiently into the fee distribution model as
follows:

Make each block have an inflation number, by which every staked token
should produce x additional staking tokens. In state there is a variable for the
sum of all such inflation numbers. Then each period will store this total inflation
sum in addition to

∑end
i=0

Ti

ni
. When withdrawing perform a subtraction on the

3



inflation sums at the end and at the start to see how many new staking tokens
to produce per staked token.

This works great in the model where the inflation rate should be dynamic
each block, but apply the same to each validator. Inflation creation can trivially
be epoched as long as inflation isn’t required within the epoch, through changes
to the x function.

Note that this process is extremely efficient.
The above can be trivially amended if we want inflation to proceed differently

for different validators each block. (e.g. depending on who was offline) It can
also be made to be easily adapted in a live chain. It is unclear if either of these
two are more desirable settings.

2.4 Delegation updates

Updating your delegation amount is equivalent to withdrawing earned rewards
and a fully independent new delegation occuring in the same block.

2.5 Jailing / being kicked out of the validator set

This basically requires no change. In each block you only iterate over the cur-
rently bonded validators. So you simply don’t update the ”total accrued fees
this period” variable for jailed / non-bonded validators. Withdrawing requires
no special casing here!

3 State pruning

You will notice that in the main scheme there was no note for pruning entries
from state. We can in fact prune quite effectively. Suppose for the sake of
exposition that there is at most one delegation / withdrawal to a particular
validator in any given block. Then each delegation is responsible for one addition
to state. Only the next period, and this delegator’s withdrawal could depend on
this entry. Thus once this delegator withdraws, this state entry can be pruned.
For the entry created by the delegator’s withdrawal, that is only required by
the creation of the next period. Thus once the next period is created, that
withdrawal’s period can be deleted.

This can be easily adapted to the case where there are multiple delegations /
withdrawals per block. Keep a counter per state entry for how many delegations
need to be cleared. (So 1 for each delegation in that block which created that
period, 0 for each withdrawal) When creating a new period, check that the
previous period (which had to be read anyway) doesn’t have a count of 0. If
it does have a count of 0, delete it. When withdrawing, decrement the period
which created this delegation’s counter by 1. If that counter is now 0, delete
that period.

The slash entries for a validator can only be pruned when all of that valida-
tor’s delegators have their bonding period starting after the slash. This seems

4



ineffective to keep track of, thus it is not worth it. Each slash should instead
remain in state until the validator unbonds and all delegators have their fees
withdrawn.

4 Implementers Considerations

This is an extremely simple scheme with many nice benefits.

• The overhead per block is a simple iteration over the bonded validator
set, which occurs anyway. (Thus it can be implemented “for-free” with
an optimized code-base)

• Withdrawing earned fees only requires iterating over slashes since when
you bonded. (Which is a negligible iteration)

• There are no approximations in any of the calculations. (modulo minor
errata resulting from fixed precision decimals used in divisions)

• Supports arbitrary inflation models. (Thus could even vary upon block
signers)

• Supports arbitrary fee distribution amongst the validator set. (Thus can
account for things like only online validators get fees, which has important
incentivization impacts)

• The above two can change on a live chain with no issues.

• Validator commission rates can be changed every block

• The simplicity of this scheme lends itself well to implementation

Thus this scheme has efficiency improvements, simplicity improvements, and
expressiveness improvements over the currently proposed schemes. With a cor-
rect fee distribution amongst the validator set, this solves the existing problem
where one could withhold their signature for risk-free gain.

5


	F1 Fee Distribution
	Additional add-ons
	Commission Rates
	Slashing
	Inflation
	Delegation updates
	Jailing / being kicked out of the validator set

	State pruning
	Implementers Considerations

