The Cosmos SDK is a framework that facilitates the development of secure state-machines on top of Tendermint. At its core, the SDK is a boilerplate implementation of the [ABCI](./sdk-app-architecture.md#abci) in Golang. It comes with a [`multistore`](../core/store.md#multistore) to persist data and a [`router`](../core/baseapp.md#routing) to handle transactions.
Here is a simplified view of how transactions are handled by an application built on top of the Cosmos SDK when transferred from Tendermint via `DeliverTx`:
`baseapp` is the boilerplate implementation of a Cosmos SDK application. It comes with an implementation of the ABCI to handle the connection with the underlying consensus engine. Typically, a Cosmos SDK application extends `baseapp` by embedding it in [`app.go`](../basics/app-anatomy.md#core-application-file). See an example of this from the SDK application tutorial:
The goal of `baseapp` is to provide a secure interface between the store and the extensible state machine while defining as little about the state machine as possible (staying true to the ABCI).
The Cosmos SDK provides a [`multistore`](../core/store.md#multistore) for persisting state. The multistore allows developers to declare any number of [`KVStores`](../core/store.md#base-layer-kvstores). These `KVStores` only accept the `[]byte` type as value and therefore any custom structure needs to be marshalled using [a codec](../core/encoding.md) before being stored.
The multistore abstraction is used to divide the state in distinct compartments, each managed by its own module. For more on the multistore, click [here](../core/store.md#multistore)
The power of the Cosmos SDK lies in its modularity. SDK applications are built by aggregating a collection of interoperable modules. Each module defines a subset of the state and contains its own message/transaction processor, while the SDK is responsible for routing each message to its respective module.
Each module can be seen as a little state-machine. Developers need to define the subset of the state handled by the module, as well as custom message types that modify the state (*Note:* `messages` are extracted from `transactions` by `baseapp`). In general, each module declares its own `KVStore` in the `multistore` to persist the subset of the state it defines. Most developers will need to access other 3rd party modules when building their own modules. Given that the Cosmos-SDK is an open framework, some of the modules may be malicious, which means there is a need for security principles to reason about inter-module interactions. These principles are based on [object-capabilities](../core/ocap.md). In practice, this means that instead of having each module keep an access control list for other modules, each module implements special objects called `keepers` that can be passed to other modules to grant a pre-defined set of capabilities.
In addition to the already existing modules in `x/`, that anyone can use in their app, the SDK lets you build your own custom modules. You can check an [example of that in the tutorial](https://cosmos.network/docs/tutorial/keeper.html).