2020-03-05 08:02:17 -08:00
|
|
|
# ADR 013: Observability
|
|
|
|
|
|
|
|
## Changelog
|
|
|
|
|
|
|
|
- 20-01-2020: Initial Draft
|
|
|
|
|
|
|
|
## Status
|
|
|
|
|
|
|
|
Proposed
|
|
|
|
|
|
|
|
## Context
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
Telemetry is paramount into debugging and understanding what the application is doing and how it is
|
|
|
|
performing. We aim to expose metrics from modules and other core parts of the Cosmos SDK.
|
2020-03-05 08:02:17 -08:00
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
In addition, we should aim to support multiple configurable sinks that an operator may choose from.
|
|
|
|
By default, when telemetry is enabled, the application should track and expose metrics that are
|
|
|
|
stored in-memory. The operator may choose to enable additional sinks, where we support only
|
|
|
|
[Prometheus](https://prometheus.io/) for now, as it's battle-tested, simple to setup, open source,
|
|
|
|
and is rich with ecosystem tooling.
|
|
|
|
|
|
|
|
We must also aim to integrate metrics into the Cosmos SDK in the most seamless way possible such that
|
|
|
|
metrics may be added or removed at will and without much friction. To do this, we will use the
|
|
|
|
[go-metrics](https://github.com/armon/go-metrics) library.
|
|
|
|
|
|
|
|
Finally, operators may enable telemetry along with specific configuration options. If enabled, metrics
|
|
|
|
will be exposed via `/metrics?format={text|prometheus}` via the API server.
|
|
|
|
|
|
|
|
## Decision
|
|
|
|
|
|
|
|
We will add an additional configuration block to `app.toml` that defines telemetry settings:
|
|
|
|
|
|
|
|
```toml
|
|
|
|
###############################################################################
|
|
|
|
### Telemetry Configuration ###
|
|
|
|
###############################################################################
|
|
|
|
|
|
|
|
[telemetry]
|
|
|
|
|
|
|
|
# Prefixed with keys to separate services
|
|
|
|
service-name = {{ .Telemetry.ServiceName }}
|
|
|
|
|
|
|
|
# Enabled enables the application telemetry functionality. When enabled,
|
|
|
|
# an in-memory sink is also enabled by default. Operators may also enabled
|
|
|
|
# other sinks such as Prometheus.
|
|
|
|
enabled = {{ .Telemetry.Enabled }}
|
|
|
|
|
|
|
|
# Enable prefixing gauge values with hostname
|
|
|
|
enable-hostname = {{ .Telemetry.EnableHostname }}
|
|
|
|
|
|
|
|
# Enable adding hostname to labels
|
|
|
|
enable-hostname-label = {{ .Telemetry.EnableHostnameLabel }}
|
|
|
|
|
|
|
|
# Enable adding service to labels
|
|
|
|
enable-service-label = {{ .Telemetry.EnableServiceLabel }}
|
|
|
|
|
|
|
|
# PrometheusRetentionTime, when positive, enables a Prometheus metrics sink.
|
|
|
|
prometheus-retention-time = {{ .Telemetry.PrometheusRetentionTime }}
|
|
|
|
```
|
|
|
|
|
|
|
|
The given configuration allows for two sinks -- in-memory and Prometheus. We create a `Metrics`
|
|
|
|
type that performs all the bootstrapping for the operator, so capturing metrics becomes seamless.
|
2020-03-05 08:02:17 -08:00
|
|
|
|
|
|
|
```go
|
2020-06-16 08:11:02 -07:00
|
|
|
// Metrics defines a wrapper around application telemetry functionality. It allows
|
|
|
|
// metrics to be gathered at any point in time. When creating a Metrics object,
|
|
|
|
// internally, a global metrics is registered with a set of sinks as configured
|
|
|
|
// by the operator. In addition to the sinks, when a process gets a SIGUSR1, a
|
|
|
|
// dump of formatted recent metrics will be sent to STDERR.
|
|
|
|
type Metrics struct {
|
|
|
|
memSink *metrics.InmemSink
|
|
|
|
prometheusEnabled bool
|
2020-03-05 08:02:17 -08:00
|
|
|
}
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
// Gather collects all registered metrics and returns a GatherResponse where the
|
|
|
|
// metrics are encoded depending on the type. Metrics are either encoded via
|
|
|
|
// Prometheus or JSON if in-memory.
|
|
|
|
func (m *Metrics) Gather(format string) (GatherResponse, error) {
|
|
|
|
switch format {
|
|
|
|
case FormatPrometheus:
|
|
|
|
return m.gatherPrometheus()
|
|
|
|
|
|
|
|
case FormatText:
|
|
|
|
return m.gatherGeneric()
|
|
|
|
|
|
|
|
case FormatDefault:
|
|
|
|
return m.gatherGeneric()
|
|
|
|
|
|
|
|
default:
|
|
|
|
return GatherResponse{}, fmt.Errorf("unsupported metrics format: %s", format)
|
|
|
|
}
|
2020-03-05 08:02:17 -08:00
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
In addition, `Metrics` allows us to gather the current set of metrics at any given point in time. An
|
|
|
|
operator may also choose to send a signal, SIGUSR1, to dump and print formatted metrics to STDERR.
|
|
|
|
|
|
|
|
During an application's bootstrapping and construction phase, if `Telemetry.Enabled` is `true`, the
|
|
|
|
API server will create an instance of a reference to `Metrics` object and will register a metrics
|
|
|
|
handler accordingly.
|
2020-03-05 08:02:17 -08:00
|
|
|
|
|
|
|
```go
|
2020-06-16 08:11:02 -07:00
|
|
|
func (s *Server) Start(cfg config.Config) error {
|
|
|
|
// ...
|
2020-03-05 08:02:17 -08:00
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
if cfg.Telemetry.Enabled {
|
|
|
|
m, err := telemetry.New(cfg.Telemetry)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
2020-03-05 08:02:17 -08:00
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
s.metrics = m
|
|
|
|
s.registerMetrics()
|
2020-03-05 08:02:17 -08:00
|
|
|
}
|
2020-06-16 08:11:02 -07:00
|
|
|
|
|
|
|
// ...
|
|
|
|
}
|
|
|
|
|
|
|
|
func (s *Server) registerMetrics() {
|
|
|
|
metricsHandler := func(w http.ResponseWriter, r *http.Request) {
|
|
|
|
format := strings.TrimSpace(r.FormValue("format"))
|
|
|
|
|
|
|
|
gr, err := s.metrics.Gather(format)
|
|
|
|
if err != nil {
|
|
|
|
rest.WriteErrorResponse(w, http.StatusBadRequest, fmt.Sprintf("failed to gather metrics: %s", err))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
w.Header().Set("Content-Type", gr.ContentType)
|
|
|
|
_, _ = w.Write(gr.Metrics)
|
2020-03-05 08:02:17 -08:00
|
|
|
}
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
s.Router.HandleFunc("/metrics", metricsHandler).Methods("GET")
|
|
|
|
}
|
2020-03-05 08:02:17 -08:00
|
|
|
```
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
Application developers may track counters, gauges, summaries, and key/value metrics. There is no
|
|
|
|
additional lifting required by modules to leverage profiling metrics. To do so, it's as simple as:
|
2020-03-05 08:02:17 -08:00
|
|
|
|
|
|
|
```go
|
2020-06-16 08:11:02 -07:00
|
|
|
func (k BaseKeeper) MintCoins(ctx sdk.Context, moduleName string, amt sdk.Coins) error {
|
2020-07-17 12:33:50 -07:00
|
|
|
defer metrics.MeasureSince(time.Now(), "MintCoins")
|
2020-06-16 08:11:02 -07:00
|
|
|
// ...
|
2020-03-05 08:02:17 -08:00
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
## Consequences
|
|
|
|
|
|
|
|
### Positive
|
|
|
|
|
2020-06-16 08:11:02 -07:00
|
|
|
- Exposure into the performance and behavior of an application
|
2020-03-05 08:02:17 -08:00
|
|
|
|
|
|
|
### Negative
|
|
|
|
|
|
|
|
### Neutral
|
|
|
|
|
|
|
|
## References
|