Merge PR #5447: Added nth root function to sdk.Decimal type

This commit is contained in:
Sunny Aggarwal 2020-01-04 15:16:12 -05:00 committed by Alexander Bezobchuk
parent 17d639aa60
commit 3fc6240c94
5 changed files with 135 additions and 18 deletions

View File

@ -174,6 +174,8 @@ that allows for arbitrary vesting periods.
* Introduces cli commands and rest routes to query historical information at a given height
* (modules) [\#5249](https://github.com/cosmos/cosmos-sdk/pull/5249) Funds are now allowed to be directly sent to the community pool (via the distribution module account).
* (keys) [\#4941](https://github.com/cosmos/cosmos-sdk/issues/4941) Introduce keybase option to allow overriding the default private key implementation of a key generated through the `keys add` cli command.
* (types) [\#5447](https://github.com/cosmos/cosmos-sdk/pull/5447) Added `ApproxRoot` function to sdk.Decimal type in order to get the nth root for a decimal number, where n is a positive integer.
* An `ApproxSqrt` function was also added for convenience around the common case of n=2.
### Improvements

View File

@ -269,7 +269,6 @@ func (d Dec) MulInt64(i int64) Dec {
// quotient
func (d Dec) Quo(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.Int, precisionReuse)
mul.Mul(mul, precisionReuse)
@ -326,30 +325,74 @@ func (d Dec) QuoInt64(i int64) Dec {
return Dec{mul}
}
// ApproxSqrt returns an approximate sqrt estimation using Newton's method to
// compute square roots x=√d for d > 0. The algorithm starts with some guess and
// ApproxRoot returns an approximate estimation of a Dec's positive real nth root
// using Newton's method (where n is positive). The algorithm starts with some guess and
// computes the sequence of improved guesses until an answer converges to an
// approximate answer. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() Dec {
// approximate answer. It returns `|d|.ApproxRoot() * -1` if input is negative.
func (d Dec) ApproxRoot(root uint64) (guess Dec, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = errors.New("out of bounds")
}
}
}()
if d.IsNegative() {
return d.MulInt64(-1).ApproxSqrt().MulInt64(-1)
absRoot, err := d.MulInt64(-1).ApproxRoot(root)
return absRoot.MulInt64(-1), err
}
if d.IsZero() {
return ZeroDec()
if root == 1 || d.IsZero() || d.Equal(OneDec()) {
return d, nil
}
z := OneDec()
// first guess
z = z.Sub((z.Mul(z).Sub(d)).Quo(z.MulInt64(2)))
// iterate until change is very small
for zNew, delta := z, z; delta.GT(SmallestDec()); z = zNew {
zNew = zNew.Sub((zNew.Mul(zNew).Sub(d)).Quo(zNew.MulInt64(2)))
delta = z.Sub(zNew)
if root == 0 {
return OneDec(), nil
}
return z
rootInt := NewIntFromUint64(root)
guess, delta := OneDec(), OneDec()
for delta.Abs().GT(SmallestDec()) {
prev := guess.Power(root - 1)
if prev.IsZero() {
prev = SmallestDec()
}
delta = d.Quo(prev)
delta = delta.Sub(guess)
delta = delta.QuoInt(rootInt)
guess = guess.Add(delta)
}
return guess, nil
}
// Power returns a the result of raising to a positive integer power
func (d Dec) Power(power uint64) Dec {
if power == 0 {
return OneDec()
}
tmp := OneDec()
for i := power; i > 1; {
if i%2 == 0 {
i /= 2
} else {
tmp = tmp.Mul(d)
i = (i - 1) / 2
}
d = d.Mul(d)
}
return d.Mul(tmp)
}
// ApproxSqrt is a wrapper around ApproxRoot for the common special case
// of finding the square root of a number. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() (Dec, error) {
return d.ApproxRoot(2)
}
// is integer, e.g. decimals are zero

View File

@ -425,6 +425,48 @@ func TestDecCeil(t *testing.T) {
}
}
func TestPower(t *testing.T) {
testCases := []struct {
input Dec
power uint64
expected Dec
}{
{OneDec(), 10, OneDec()}, // 1.0 ^ (10) => 1.0
{NewDecWithPrec(5, 1), 2, NewDecWithPrec(25, 2)}, // 0.5 ^ 2 => 0.25
{NewDecWithPrec(2, 1), 2, NewDecWithPrec(4, 2)}, // 0.2 ^ 2 => 0.04
{NewDecFromInt(NewInt(3)), 3, NewDecFromInt(NewInt(27))}, // 3 ^ 3 => 27
{NewDecFromInt(NewInt(-3)), 4, NewDecFromInt(NewInt(81))}, // -3 ^ 4 = 81
{NewDecWithPrec(1414213562373095049, 18), 2, NewDecFromInt(NewInt(2))}, // 1.414213562373095049 ^ 2 = 2
}
for i, tc := range testCases {
res := tc.input.Power(tc.power)
require.True(t, tc.expected.Sub(res).Abs().LTE(SmallestDec()), "unexpected result for test case %d, input: %v", i, tc.input)
}
}
func TestApproxRoot(t *testing.T) {
testCases := []struct {
input Dec
root uint64
expected Dec
}{
{OneDec(), 10, OneDec()}, // 1.0 ^ (0.1) => 1.0
{NewDecWithPrec(25, 2), 2, NewDecWithPrec(5, 1)}, // 0.25 ^ (0.5) => 0.5
{NewDecWithPrec(4, 2), 2, NewDecWithPrec(2, 1)}, // 0.04 => 0.2
{NewDecFromInt(NewInt(27)), 3, NewDecFromInt(NewInt(3))}, // 27 ^ (1/3) => 3
{NewDecFromInt(NewInt(-81)), 4, NewDecFromInt(NewInt(-3))}, // -81 ^ (0.25) => -3
{NewDecFromInt(NewInt(2)), 2, NewDecWithPrec(1414213562373095049, 18)}, // 2 ^ (0.5) => 1.414213562373095049
{NewDecWithPrec(1005, 3), 31536000, MustNewDecFromStr("1.000000000158153904")},
}
for i, tc := range testCases {
res, err := tc.input.ApproxRoot(tc.root)
require.NoError(t, err)
require.True(t, tc.expected.Sub(res).Abs().LTE(SmallestDec()), "unexpected result for test case %d, input: %v", i, tc.input)
}
}
func TestApproxSqrt(t *testing.T) {
testCases := []struct {
input Dec
@ -439,7 +481,8 @@ func TestApproxSqrt(t *testing.T) {
}
for i, tc := range testCases {
res := tc.input.ApproxSqrt()
res, err := tc.input.ApproxSqrt()
require.NoError(t, err)
require.Equal(t, tc.expected, res, "unexpected result for test case %d, input: %v", i, tc.input)
}
}

View File

@ -114,6 +114,13 @@ func NewInt(n int64) Int {
return Int{big.NewInt(n)}
}
// NewIntFromUint64 constructs an Int from a uint64.
func NewIntFromUint64(n uint64) Int {
b := big.NewInt(0)
b.SetUint64(n)
return Int{b}
}
// NewIntFromBigInt constructs Int from big.Int
func NewIntFromBigInt(i *big.Int) Int {
if i.BitLen() > maxBitLen {
@ -178,6 +185,20 @@ func (i Int) IsInt64() bool {
return i.i.IsInt64()
}
// Uint64 converts Int to uint64
// Panics if the value is out of range
func (i Int) Uint64() uint64 {
if !i.i.IsUint64() {
panic("Uint64() out of bounds")
}
return i.i.Uint64()
}
// IsUint64 returns true if Uint64() not panics
func (i Int) IsUint64() bool {
return i.i.IsUint64()
}
// IsZero returns true if Int is zero
func (i Int) IsZero() bool {
return i.i.Sign() == 0

View File

@ -16,6 +16,14 @@ func TestFromInt64(t *testing.T) {
}
}
func TestFromUint64(t *testing.T) {
for n := 0; n < 20; n++ {
r := rand.Uint64()
require.True(t, NewIntFromUint64(r).IsUint64())
require.Equal(t, r, NewIntFromUint64(r).Uint64())
}
}
func TestIntPanic(t *testing.T) {
// Max Int = 2^255-1 = 5.789e+76
// Min Int = -(2^255-1) = -5.789e+76