feat: Low-s normalization for ecdsa secp256r1 signing (#9738)

* added low-s normalization to ecdsa secp256r1 signing

* go fmt fixes

* removed else block as golint required

* implement raw signature encoding for secp256r1

* move the creation of signature to after the check for sig string length

* fake commit to re-run checks? (move the creation of signature to after the check for sig string length)

* added a signature test for high s signature that requires sig validation to fail after the valid signature was mutated by extracting and scalar negating its s value

* reordered code to prevent mutated message from being used in sig verify

* added test for successful high_s signature with the ecdsa portion of the publicKey

* Remove comment for self-explanatory code.

Co-authored-by: Robert Zaremba <robert@zaremba.ch>

* Missing quote

Co-authored-by: Robert Zaremba <robert@zaremba.ch>

* Apply minor suggestions from code review

Co-authored-by: Robert Zaremba <robert@zaremba.ch>

* normalize comments for godoc

* refactored p256Order functions as private vars

* Div -> Rsh optimizing time for division

* resolve two code coverage issues; fix some small review issues

* test using private signatureRaw function instead of copying code. Added tests to improve code coverage

Co-authored-by: Aaron Craelius <aaron@regen.network>
Co-authored-by: Robert Zaremba <robert@zaremba.ch>
Co-authored-by: Aleksandr Bezobchuk <alexanderbez@users.noreply.github.com>
This commit is contained in:
John Kemp 2021-07-27 14:14:05 -04:00 committed by GitHub
parent 7c19434000
commit aa37ae9e74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 129 additions and 8 deletions

View File

@ -9,7 +9,56 @@ import (
"math/big"
)
// GenPrivKey generates a new secp256r1 private key. It uses operating system randomness.
// p256Order returns the curve order for the secp256r1 curve
// NOTE: this is specific to the secp256r1/P256 curve,
// and not taken from the domain params for the key itself
// (which would be a more generic approach for all EC)
// In *here* we don't need to do it as a method on the key
// since this code is only called for secp256r1
// if called on a key:
// func (sk PrivKey) pCurveOrder() *.big.Int {
// return sk.Curve.Params().N
// }
var p256Order = elliptic.P256().Params().N
// p256HalfOrder returns half the curve order
// a bit shift of 1 to the right (Rsh) is equivalent
// to division by 2, only faster.
var p256HalfOrder = new(big.Int).Rsh(p256Order, 1)
// IsSNormalized returns true for the integer sigS if sigS falls in
// lower half of the curve order
func IsSNormalized(sigS *big.Int) bool {
return sigS.Cmp(p256HalfOrder) != 1
}
// NormalizeS will invert the s value if not already in the lower half
// of curve order value
func NormalizeS(sigS *big.Int) *big.Int {
if IsSNormalized(sigS) {
return sigS
}
return new(big.Int).Sub(p256Order, sigS)
}
// signatureRaw will serialize signature to R || S.
// R, S are padded to 32 bytes respectively.
// code roughly copied from secp256k1_nocgo.go
func signatureRaw(r *big.Int, s *big.Int) []byte {
rBytes := r.Bytes()
sBytes := s.Bytes()
sigBytes := make([]byte, 64)
// 0 pad the byte arrays from the left if they aren't big enough.
copy(sigBytes[32-len(rBytes):32], rBytes)
copy(sigBytes[64-len(sBytes):64], sBytes)
return sigBytes
}
// GenPrivKey generates a new secp256r1 private key. It uses operating
// system randomness.
func GenPrivKey(curve elliptic.Curve) (PrivKey, error) {
key, err := ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
@ -38,10 +87,25 @@ func (sk *PrivKey) Bytes() []byte {
return bz
}
// Sign hashes and signs the message usign ECDSA. Implements SDK PrivKey interface.
// Sign hashes and signs the message using ECDSA. Implements SDK
// PrivKey interface.
// NOTE: this now calls the ecdsa Sign function
// (not method!) directly as the s value of the signature is needed to
// low-s normalize the signature value
// See issue: https://github.com/cosmos/cosmos-sdk/issues/9723
// It then raw encodes the signature as two fixed width 32-byte values
// concatenated, reusing the code copied from secp256k1_nocgo.go
func (sk *PrivKey) Sign(msg []byte) ([]byte, error) {
digest := sha256.Sum256(msg)
return sk.PrivateKey.Sign(rand.Reader, digest[:], nil)
r, s, err := ecdsa.Sign(rand.Reader, &sk.PrivateKey, digest[:])
if err != nil {
return nil, err
}
normS := NormalizeS(s)
return signatureRaw(r, normS), nil
}
// String returns a string representation of the public key based on the curveName.

View File

@ -1,9 +1,12 @@
package ecdsa
import (
"testing"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/sha256"
"github.com/tendermint/tendermint/crypto"
"math/big"
"testing"
"github.com/stretchr/testify/suite"
)
@ -60,6 +63,37 @@ func (suite *SKSuite) TestSign() {
require.False(suite.pk.VerifySignature(msg, sigCpy))
}
// mutate the signature by scalar neg'ing the s value
// to give a high-s signature, valid ECDSA but should
// be invalid with Cosmos signatures.
// code mostly copied from privkey/pubkey.go
// extract the r, s values from sig
r := new(big.Int).SetBytes(sig[:32])
low_s := new(big.Int).SetBytes(sig[32:64])
// test that NormalizeS simply returns an already
// normalized s
require.Equal(NormalizeS(low_s), low_s)
// flip the s value into high order of curve P256
// leave r untouched!
high_s := new(big.Int).Mod(new(big.Int).Neg(low_s), elliptic.P256().Params().N)
require.False(suite.pk.VerifySignature(msg, signatureRaw(r,high_s)))
// Valid signature using low_s, but too long
sigCpy = make([]byte, len(sig)+2)
copy(sigCpy, sig)
sigCpy[65] = byte('A')
require.False(suite.pk.VerifySignature(msg, sigCpy))
// check whether msg can be verified with same key, and high_s
// value using "regular" ecdsa signature
hash := sha256.Sum256([]byte(msg))
require.True(ecdsa.Verify(&suite.pk.PublicKey, hash[:], r, high_s))
// Mutate the message
msg[1] ^= byte(2)
require.False(suite.pk.VerifySignature(msg, sig))

View File

@ -4,7 +4,6 @@ import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/sha256"
"encoding/asn1"
"fmt"
"math/big"
@ -14,6 +13,16 @@ import (
"github.com/cosmos/cosmos-sdk/types/errors"
)
// signatureFromBytes function roughly copied from secp256k1_nocgo.go
// Read Signature struct from R || S. Caller needs to ensure that
// len(sigStr) == 64.
func signatureFromBytes(sigStr []byte) *signature {
return &signature{
R: new(big.Int).SetBytes(sigStr[:32]),
S: new(big.Int).SetBytes(sigStr[32:64]),
}
}
// signature holds the r and s values of an ECDSA signature.
type signature struct {
R, S *big.Int
@ -46,9 +55,23 @@ func (pk *PubKey) Bytes() []byte {
}
// VerifySignature checks if sig is a valid ECDSA signature for msg.
// This includes checking for low-s normalized signatures
// where the s integer component of the signature is in the
// lower half of the curve order
// 7/21/21 - expects raw encoded signature (fixed-width 64-bytes, R || S)
func (pk *PubKey) VerifySignature(msg []byte, sig []byte) bool {
s := new(signature)
if _, err := asn1.Unmarshal(sig, s); err != nil || s == nil {
// check length for raw signature
// which is two 32-byte padded big.Ints
// concatenated
// NOT DER!
if len(sig) != 64 {
return false
}
s := signatureFromBytes(sig)
if !IsSNormalized(s.S) {
return false
}