package ormv1alpha1 import ( fmt "fmt" io "io" reflect "reflect" sync "sync" runtime "github.com/cosmos/cosmos-proto/runtime" protoreflect "google.golang.org/protobuf/reflect/protoreflect" protoiface "google.golang.org/protobuf/runtime/protoiface" protoimpl "google.golang.org/protobuf/runtime/protoimpl" descriptorpb "google.golang.org/protobuf/types/descriptorpb" ) var _ protoreflect.List = (*_TableDescriptor_2_list)(nil) type _TableDescriptor_2_list struct { list *[]*SecondaryIndexDescriptor } func (x *_TableDescriptor_2_list) Len() int { if x.list == nil { return 0 } return len(*x.list) } func (x *_TableDescriptor_2_list) Get(i int) protoreflect.Value { return protoreflect.ValueOfMessage((*x.list)[i].ProtoReflect()) } func (x *_TableDescriptor_2_list) Set(i int, value protoreflect.Value) { valueUnwrapped := value.Message() concreteValue := valueUnwrapped.Interface().(*SecondaryIndexDescriptor) (*x.list)[i] = concreteValue } func (x *_TableDescriptor_2_list) Append(value protoreflect.Value) { valueUnwrapped := value.Message() concreteValue := valueUnwrapped.Interface().(*SecondaryIndexDescriptor) *x.list = append(*x.list, concreteValue) } func (x *_TableDescriptor_2_list) AppendMutable() protoreflect.Value { v := new(SecondaryIndexDescriptor) *x.list = append(*x.list, v) return protoreflect.ValueOfMessage(v.ProtoReflect()) } func (x *_TableDescriptor_2_list) Truncate(n int) { for i := n; i < len(*x.list); i++ { (*x.list)[i] = nil } *x.list = (*x.list)[:n] } func (x *_TableDescriptor_2_list) NewElement() protoreflect.Value { v := new(SecondaryIndexDescriptor) return protoreflect.ValueOfMessage(v.ProtoReflect()) } func (x *_TableDescriptor_2_list) IsValid() bool { return x.list != nil } var ( md_TableDescriptor protoreflect.MessageDescriptor fd_TableDescriptor_primary_key protoreflect.FieldDescriptor fd_TableDescriptor_index protoreflect.FieldDescriptor fd_TableDescriptor_id protoreflect.FieldDescriptor ) func init() { file_cosmos_orm_v1alpha1_orm_proto_init() md_TableDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("TableDescriptor") fd_TableDescriptor_primary_key = md_TableDescriptor.Fields().ByName("primary_key") fd_TableDescriptor_index = md_TableDescriptor.Fields().ByName("index") fd_TableDescriptor_id = md_TableDescriptor.Fields().ByName("id") } var _ protoreflect.Message = (*fastReflection_TableDescriptor)(nil) type fastReflection_TableDescriptor TableDescriptor func (x *TableDescriptor) ProtoReflect() protoreflect.Message { return (*fastReflection_TableDescriptor)(x) } func (x *TableDescriptor) slowProtoReflect() protoreflect.Message { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } var _fastReflection_TableDescriptor_messageType fastReflection_TableDescriptor_messageType var _ protoreflect.MessageType = fastReflection_TableDescriptor_messageType{} type fastReflection_TableDescriptor_messageType struct{} func (x fastReflection_TableDescriptor_messageType) Zero() protoreflect.Message { return (*fastReflection_TableDescriptor)(nil) } func (x fastReflection_TableDescriptor_messageType) New() protoreflect.Message { return new(fastReflection_TableDescriptor) } func (x fastReflection_TableDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor { return md_TableDescriptor } // Descriptor returns message descriptor, which contains only the protobuf // type information for the message. func (x *fastReflection_TableDescriptor) Descriptor() protoreflect.MessageDescriptor { return md_TableDescriptor } // Type returns the message type, which encapsulates both Go and protobuf // type information. If the Go type information is not needed, // it is recommended that the message descriptor be used instead. func (x *fastReflection_TableDescriptor) Type() protoreflect.MessageType { return _fastReflection_TableDescriptor_messageType } // New returns a newly allocated and mutable empty message. func (x *fastReflection_TableDescriptor) New() protoreflect.Message { return new(fastReflection_TableDescriptor) } // Interface unwraps the message reflection interface and // returns the underlying ProtoMessage interface. func (x *fastReflection_TableDescriptor) Interface() protoreflect.ProtoMessage { return (*TableDescriptor)(x) } // Range iterates over every populated field in an undefined order, // calling f for each field descriptor and value encountered. // Range returns immediately if f returns false. // While iterating, mutating operations may only be performed // on the current field descriptor. func (x *fastReflection_TableDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) { if x.PrimaryKey != nil { value := protoreflect.ValueOfMessage(x.PrimaryKey.ProtoReflect()) if !f(fd_TableDescriptor_primary_key, value) { return } } if len(x.Index) != 0 { value := protoreflect.ValueOfList(&_TableDescriptor_2_list{list: &x.Index}) if !f(fd_TableDescriptor_index, value) { return } } if x.Id != uint32(0) { value := protoreflect.ValueOfUint32(x.Id) if !f(fd_TableDescriptor_id, value) { return } } } // Has reports whether a field is populated. // // Some fields have the property of nullability where it is possible to // distinguish between the default value of a field and whether the field // was explicitly populated with the default value. Singular message fields, // member fields of a oneof, and proto2 scalar fields are nullable. Such // fields are populated only if explicitly set. // // In other cases (aside from the nullable cases above), // a proto3 scalar field is populated if it contains a non-zero value, and // a repeated field is populated if it is non-empty. func (x *fastReflection_TableDescriptor) Has(fd protoreflect.FieldDescriptor) bool { switch fd.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": return x.PrimaryKey != nil case "cosmos.orm.v1alpha1.TableDescriptor.index": return len(x.Index) != 0 case "cosmos.orm.v1alpha1.TableDescriptor.id": return x.Id != uint32(0) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName())) } } // Clear clears the field such that a subsequent Has call reports false. // // Clearing an extension field clears both the extension type and value // associated with the given field number. // // Clear is a mutating operation and unsafe for concurrent use. func (x *fastReflection_TableDescriptor) Clear(fd protoreflect.FieldDescriptor) { switch fd.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": x.PrimaryKey = nil case "cosmos.orm.v1alpha1.TableDescriptor.index": x.Index = nil case "cosmos.orm.v1alpha1.TableDescriptor.id": x.Id = uint32(0) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName())) } } // Get retrieves the value for a field. // // For unpopulated scalars, it returns the default value, where // the default value of a bytes scalar is guaranteed to be a copy. // For unpopulated composite types, it returns an empty, read-only view // of the value; to obtain a mutable reference, use Mutable. func (x *fastReflection_TableDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value { switch descriptor.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": value := x.PrimaryKey return protoreflect.ValueOfMessage(value.ProtoReflect()) case "cosmos.orm.v1alpha1.TableDescriptor.index": if len(x.Index) == 0 { return protoreflect.ValueOfList(&_TableDescriptor_2_list{}) } listValue := &_TableDescriptor_2_list{list: &x.Index} return protoreflect.ValueOfList(listValue) case "cosmos.orm.v1alpha1.TableDescriptor.id": value := x.Id return protoreflect.ValueOfUint32(value) default: if descriptor.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", descriptor.FullName())) } } // Set stores the value for a field. // // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType. // When setting a composite type, it is unspecified whether the stored value // aliases the source's memory in any way. If the composite value is an // empty, read-only value, then it panics. // // Set is a mutating operation and unsafe for concurrent use. func (x *fastReflection_TableDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) { switch fd.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": x.PrimaryKey = value.Message().Interface().(*PrimaryKeyDescriptor) case "cosmos.orm.v1alpha1.TableDescriptor.index": lv := value.List() clv := lv.(*_TableDescriptor_2_list) x.Index = *clv.list case "cosmos.orm.v1alpha1.TableDescriptor.id": x.Id = uint32(value.Uint()) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName())) } } // Mutable returns a mutable reference to a composite type. // // If the field is unpopulated, it may allocate a composite value. // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType // if not already stored. // It panics if the field does not contain a composite type. // // Mutable is a mutating operation and unsafe for concurrent use. func (x *fastReflection_TableDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": if x.PrimaryKey == nil { x.PrimaryKey = new(PrimaryKeyDescriptor) } return protoreflect.ValueOfMessage(x.PrimaryKey.ProtoReflect()) case "cosmos.orm.v1alpha1.TableDescriptor.index": if x.Index == nil { x.Index = []*SecondaryIndexDescriptor{} } value := &_TableDescriptor_2_list{list: &x.Index} return protoreflect.ValueOfList(value) case "cosmos.orm.v1alpha1.TableDescriptor.id": panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.TableDescriptor is not mutable")) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName())) } } // NewField returns a new value that is assignable to the field // for the given descriptor. For scalars, this returns the default value. // For lists, maps, and messages, this returns a new, empty, mutable value. func (x *fastReflection_TableDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.TableDescriptor.primary_key": m := new(PrimaryKeyDescriptor) return protoreflect.ValueOfMessage(m.ProtoReflect()) case "cosmos.orm.v1alpha1.TableDescriptor.index": list := []*SecondaryIndexDescriptor{} return protoreflect.ValueOfList(&_TableDescriptor_2_list{list: &list}) case "cosmos.orm.v1alpha1.TableDescriptor.id": return protoreflect.ValueOfUint32(uint32(0)) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName())) } } // WhichOneof reports which field within the oneof is populated, // returning nil if none are populated. // It panics if the oneof descriptor does not belong to this message. func (x *fastReflection_TableDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor { switch d.FullName() { default: panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.TableDescriptor", d.FullName())) } panic("unreachable") } // GetUnknown retrieves the entire list of unknown fields. // The caller may only mutate the contents of the RawFields // if the mutated bytes are stored back into the message with SetUnknown. func (x *fastReflection_TableDescriptor) GetUnknown() protoreflect.RawFields { return x.unknownFields } // SetUnknown stores an entire list of unknown fields. // The raw fields must be syntactically valid according to the wire format. // An implementation may panic if this is not the case. // Once stored, the caller must not mutate the content of the RawFields. // An empty RawFields may be passed to clear the fields. // // SetUnknown is a mutating operation and unsafe for concurrent use. func (x *fastReflection_TableDescriptor) SetUnknown(fields protoreflect.RawFields) { x.unknownFields = fields } // IsValid reports whether the message is valid. // // An invalid message is an empty, read-only value. // // An invalid message often corresponds to a nil pointer of the concrete // message type, but the details are implementation dependent. // Validity is not part of the protobuf data model, and may not // be preserved in marshaling or other operations. func (x *fastReflection_TableDescriptor) IsValid() bool { return x != nil } // ProtoMethods returns optional fastReflectionFeature-path implementations of various operations. // This method may return nil. // // The returned methods type is identical to // "google.golang.org/protobuf/runtime/protoiface".Methods. // Consult the protoiface package documentation for details. func (x *fastReflection_TableDescriptor) ProtoMethods() *protoiface.Methods { size := func(input protoiface.SizeInput) protoiface.SizeOutput { x := input.Message.Interface().(*TableDescriptor) if x == nil { return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: 0, } } options := runtime.SizeInputToOptions(input) _ = options var n int var l int _ = l if x.PrimaryKey != nil { l = options.Size(x.PrimaryKey) n += 1 + l + runtime.Sov(uint64(l)) } if len(x.Index) > 0 { for _, e := range x.Index { l = options.Size(e) n += 1 + l + runtime.Sov(uint64(l)) } } if x.Id != 0 { n += 1 + runtime.Sov(uint64(x.Id)) } if x.unknownFields != nil { n += len(x.unknownFields) } return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: n, } } marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) { x := input.Message.Interface().(*TableDescriptor) if x == nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } options := runtime.MarshalInputToOptions(input) _ = options size := options.Size(x) dAtA := make([]byte, size) i := len(dAtA) _ = i var l int _ = l if x.unknownFields != nil { i -= len(x.unknownFields) copy(dAtA[i:], x.unknownFields) } if x.Id != 0 { i = runtime.EncodeVarint(dAtA, i, uint64(x.Id)) i-- dAtA[i] = 0x18 } if len(x.Index) > 0 { for iNdEx := len(x.Index) - 1; iNdEx >= 0; iNdEx-- { encoded, err := options.Marshal(x.Index[iNdEx]) if err != nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, err } i -= len(encoded) copy(dAtA[i:], encoded) i = runtime.EncodeVarint(dAtA, i, uint64(len(encoded))) i-- dAtA[i] = 0x12 } } if x.PrimaryKey != nil { encoded, err := options.Marshal(x.PrimaryKey) if err != nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, err } i -= len(encoded) copy(dAtA[i:], encoded) i = runtime.EncodeVarint(dAtA, i, uint64(len(encoded))) i-- dAtA[i] = 0xa } if input.Buf != nil { input.Buf = append(input.Buf, dAtA...) } else { input.Buf = dAtA } return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) { x := input.Message.Interface().(*TableDescriptor) if x == nil { return protoiface.UnmarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags, }, nil } options := runtime.UnmarshalInputToOptions(input) _ = options dAtA := input.Buf l := len(dAtA) iNdEx := 0 for iNdEx < l { preIndex := iNdEx var wire uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ wire |= uint64(b&0x7F) << shift if b < 0x80 { break } } fieldNum := int32(wire >> 3) wireType := int(wire & 0x7) if wireType == 4 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: TableDescriptor: wiretype end group for non-group") } if fieldNum <= 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: TableDescriptor: illegal tag %d (wire type %d)", fieldNum, wire) } switch fieldNum { case 1: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field PrimaryKey", wireType) } var msglen int for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ msglen |= int(b&0x7F) << shift if b < 0x80 { break } } if msglen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + msglen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } if x.PrimaryKey == nil { x.PrimaryKey = &PrimaryKeyDescriptor{} } if err := options.Unmarshal(dAtA[iNdEx:postIndex], x.PrimaryKey); err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } iNdEx = postIndex case 2: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Index", wireType) } var msglen int for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ msglen |= int(b&0x7F) << shift if b < 0x80 { break } } if msglen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + msglen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } x.Index = append(x.Index, &SecondaryIndexDescriptor{}) if err := options.Unmarshal(dAtA[iNdEx:postIndex], x.Index[len(x.Index)-1]); err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } iNdEx = postIndex case 3: if wireType != 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType) } x.Id = 0 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ x.Id |= uint32(b&0x7F) << shift if b < 0x80 { break } } default: iNdEx = preIndex skippy, err := runtime.Skip(dAtA[iNdEx:]) if err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } if (skippy < 0) || (iNdEx+skippy) < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if (iNdEx + skippy) > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } if !options.DiscardUnknown { x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...) } iNdEx += skippy } } if iNdEx > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil } return &protoiface.Methods{ NoUnkeyedLiterals: struct{}{}, Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown, Size: size, Marshal: marshal, Unmarshal: unmarshal, Merge: nil, CheckInitialized: nil, } } var ( md_PrimaryKeyDescriptor protoreflect.MessageDescriptor fd_PrimaryKeyDescriptor_fields protoreflect.FieldDescriptor fd_PrimaryKeyDescriptor_auto_increment protoreflect.FieldDescriptor fd_PrimaryKeyDescriptor_references protoreflect.FieldDescriptor ) func init() { file_cosmos_orm_v1alpha1_orm_proto_init() md_PrimaryKeyDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("PrimaryKeyDescriptor") fd_PrimaryKeyDescriptor_fields = md_PrimaryKeyDescriptor.Fields().ByName("fields") fd_PrimaryKeyDescriptor_auto_increment = md_PrimaryKeyDescriptor.Fields().ByName("auto_increment") fd_PrimaryKeyDescriptor_references = md_PrimaryKeyDescriptor.Fields().ByName("references") } var _ protoreflect.Message = (*fastReflection_PrimaryKeyDescriptor)(nil) type fastReflection_PrimaryKeyDescriptor PrimaryKeyDescriptor func (x *PrimaryKeyDescriptor) ProtoReflect() protoreflect.Message { return (*fastReflection_PrimaryKeyDescriptor)(x) } func (x *PrimaryKeyDescriptor) slowProtoReflect() protoreflect.Message { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } var _fastReflection_PrimaryKeyDescriptor_messageType fastReflection_PrimaryKeyDescriptor_messageType var _ protoreflect.MessageType = fastReflection_PrimaryKeyDescriptor_messageType{} type fastReflection_PrimaryKeyDescriptor_messageType struct{} func (x fastReflection_PrimaryKeyDescriptor_messageType) Zero() protoreflect.Message { return (*fastReflection_PrimaryKeyDescriptor)(nil) } func (x fastReflection_PrimaryKeyDescriptor_messageType) New() protoreflect.Message { return new(fastReflection_PrimaryKeyDescriptor) } func (x fastReflection_PrimaryKeyDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor { return md_PrimaryKeyDescriptor } // Descriptor returns message descriptor, which contains only the protobuf // type information for the message. func (x *fastReflection_PrimaryKeyDescriptor) Descriptor() protoreflect.MessageDescriptor { return md_PrimaryKeyDescriptor } // Type returns the message type, which encapsulates both Go and protobuf // type information. If the Go type information is not needed, // it is recommended that the message descriptor be used instead. func (x *fastReflection_PrimaryKeyDescriptor) Type() protoreflect.MessageType { return _fastReflection_PrimaryKeyDescriptor_messageType } // New returns a newly allocated and mutable empty message. func (x *fastReflection_PrimaryKeyDescriptor) New() protoreflect.Message { return new(fastReflection_PrimaryKeyDescriptor) } // Interface unwraps the message reflection interface and // returns the underlying ProtoMessage interface. func (x *fastReflection_PrimaryKeyDescriptor) Interface() protoreflect.ProtoMessage { return (*PrimaryKeyDescriptor)(x) } // Range iterates over every populated field in an undefined order, // calling f for each field descriptor and value encountered. // Range returns immediately if f returns false. // While iterating, mutating operations may only be performed // on the current field descriptor. func (x *fastReflection_PrimaryKeyDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) { if x.Fields != "" { value := protoreflect.ValueOfString(x.Fields) if !f(fd_PrimaryKeyDescriptor_fields, value) { return } } if x.AutoIncrement != false { value := protoreflect.ValueOfBool(x.AutoIncrement) if !f(fd_PrimaryKeyDescriptor_auto_increment, value) { return } } if x.References != "" { value := protoreflect.ValueOfString(x.References) if !f(fd_PrimaryKeyDescriptor_references, value) { return } } } // Has reports whether a field is populated. // // Some fields have the property of nullability where it is possible to // distinguish between the default value of a field and whether the field // was explicitly populated with the default value. Singular message fields, // member fields of a oneof, and proto2 scalar fields are nullable. Such // fields are populated only if explicitly set. // // In other cases (aside from the nullable cases above), // a proto3 scalar field is populated if it contains a non-zero value, and // a repeated field is populated if it is non-empty. func (x *fastReflection_PrimaryKeyDescriptor) Has(fd protoreflect.FieldDescriptor) bool { switch fd.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": return x.Fields != "" case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": return x.AutoIncrement != false case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": return x.References != "" default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName())) } } // Clear clears the field such that a subsequent Has call reports false. // // Clearing an extension field clears both the extension type and value // associated with the given field number. // // Clear is a mutating operation and unsafe for concurrent use. func (x *fastReflection_PrimaryKeyDescriptor) Clear(fd protoreflect.FieldDescriptor) { switch fd.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": x.Fields = "" case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": x.AutoIncrement = false case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": x.References = "" default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName())) } } // Get retrieves the value for a field. // // For unpopulated scalars, it returns the default value, where // the default value of a bytes scalar is guaranteed to be a copy. // For unpopulated composite types, it returns an empty, read-only view // of the value; to obtain a mutable reference, use Mutable. func (x *fastReflection_PrimaryKeyDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value { switch descriptor.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": value := x.Fields return protoreflect.ValueOfString(value) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": value := x.AutoIncrement return protoreflect.ValueOfBool(value) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": value := x.References return protoreflect.ValueOfString(value) default: if descriptor.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", descriptor.FullName())) } } // Set stores the value for a field. // // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType. // When setting a composite type, it is unspecified whether the stored value // aliases the source's memory in any way. If the composite value is an // empty, read-only value, then it panics. // // Set is a mutating operation and unsafe for concurrent use. func (x *fastReflection_PrimaryKeyDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) { switch fd.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": x.Fields = value.Interface().(string) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": x.AutoIncrement = value.Bool() case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": x.References = value.Interface().(string) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName())) } } // Mutable returns a mutable reference to a composite type. // // If the field is unpopulated, it may allocate a composite value. // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType // if not already stored. // It panics if the field does not contain a composite type. // // Mutable is a mutating operation and unsafe for concurrent use. func (x *fastReflection_PrimaryKeyDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": panic(fmt.Errorf("field fields of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable")) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": panic(fmt.Errorf("field auto_increment of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable")) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": panic(fmt.Errorf("field references of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable")) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName())) } } // NewField returns a new value that is assignable to the field // for the given descriptor. For scalars, this returns the default value. // For lists, maps, and messages, this returns a new, empty, mutable value. func (x *fastReflection_PrimaryKeyDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields": return protoreflect.ValueOfString("") case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment": return protoreflect.ValueOfBool(false) case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references": return protoreflect.ValueOfString("") default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName())) } } // WhichOneof reports which field within the oneof is populated, // returning nil if none are populated. // It panics if the oneof descriptor does not belong to this message. func (x *fastReflection_PrimaryKeyDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor { switch d.FullName() { default: panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.PrimaryKeyDescriptor", d.FullName())) } panic("unreachable") } // GetUnknown retrieves the entire list of unknown fields. // The caller may only mutate the contents of the RawFields // if the mutated bytes are stored back into the message with SetUnknown. func (x *fastReflection_PrimaryKeyDescriptor) GetUnknown() protoreflect.RawFields { return x.unknownFields } // SetUnknown stores an entire list of unknown fields. // The raw fields must be syntactically valid according to the wire format. // An implementation may panic if this is not the case. // Once stored, the caller must not mutate the content of the RawFields. // An empty RawFields may be passed to clear the fields. // // SetUnknown is a mutating operation and unsafe for concurrent use. func (x *fastReflection_PrimaryKeyDescriptor) SetUnknown(fields protoreflect.RawFields) { x.unknownFields = fields } // IsValid reports whether the message is valid. // // An invalid message is an empty, read-only value. // // An invalid message often corresponds to a nil pointer of the concrete // message type, but the details are implementation dependent. // Validity is not part of the protobuf data model, and may not // be preserved in marshaling or other operations. func (x *fastReflection_PrimaryKeyDescriptor) IsValid() bool { return x != nil } // ProtoMethods returns optional fastReflectionFeature-path implementations of various operations. // This method may return nil. // // The returned methods type is identical to // "google.golang.org/protobuf/runtime/protoiface".Methods. // Consult the protoiface package documentation for details. func (x *fastReflection_PrimaryKeyDescriptor) ProtoMethods() *protoiface.Methods { size := func(input protoiface.SizeInput) protoiface.SizeOutput { x := input.Message.Interface().(*PrimaryKeyDescriptor) if x == nil { return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: 0, } } options := runtime.SizeInputToOptions(input) _ = options var n int var l int _ = l l = len(x.Fields) if l > 0 { n += 1 + l + runtime.Sov(uint64(l)) } if x.AutoIncrement { n += 2 } l = len(x.References) if l > 0 { n += 1 + l + runtime.Sov(uint64(l)) } if x.unknownFields != nil { n += len(x.unknownFields) } return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: n, } } marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) { x := input.Message.Interface().(*PrimaryKeyDescriptor) if x == nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } options := runtime.MarshalInputToOptions(input) _ = options size := options.Size(x) dAtA := make([]byte, size) i := len(dAtA) _ = i var l int _ = l if x.unknownFields != nil { i -= len(x.unknownFields) copy(dAtA[i:], x.unknownFields) } if len(x.References) > 0 { i -= len(x.References) copy(dAtA[i:], x.References) i = runtime.EncodeVarint(dAtA, i, uint64(len(x.References))) i-- dAtA[i] = 0x1a } if x.AutoIncrement { i-- if x.AutoIncrement { dAtA[i] = 1 } else { dAtA[i] = 0 } i-- dAtA[i] = 0x10 } if len(x.Fields) > 0 { i -= len(x.Fields) copy(dAtA[i:], x.Fields) i = runtime.EncodeVarint(dAtA, i, uint64(len(x.Fields))) i-- dAtA[i] = 0xa } if input.Buf != nil { input.Buf = append(input.Buf, dAtA...) } else { input.Buf = dAtA } return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) { x := input.Message.Interface().(*PrimaryKeyDescriptor) if x == nil { return protoiface.UnmarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags, }, nil } options := runtime.UnmarshalInputToOptions(input) _ = options dAtA := input.Buf l := len(dAtA) iNdEx := 0 for iNdEx < l { preIndex := iNdEx var wire uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ wire |= uint64(b&0x7F) << shift if b < 0x80 { break } } fieldNum := int32(wire >> 3) wireType := int(wire & 0x7) if wireType == 4 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: PrimaryKeyDescriptor: wiretype end group for non-group") } if fieldNum <= 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: PrimaryKeyDescriptor: illegal tag %d (wire type %d)", fieldNum, wire) } switch fieldNum { case 1: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Fields", wireType) } var stringLen uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ stringLen |= uint64(b&0x7F) << shift if b < 0x80 { break } } intStringLen := int(stringLen) if intStringLen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + intStringLen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } x.Fields = string(dAtA[iNdEx:postIndex]) iNdEx = postIndex case 2: if wireType != 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field AutoIncrement", wireType) } var v int for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ v |= int(b&0x7F) << shift if b < 0x80 { break } } x.AutoIncrement = bool(v != 0) case 3: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field References", wireType) } var stringLen uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ stringLen |= uint64(b&0x7F) << shift if b < 0x80 { break } } intStringLen := int(stringLen) if intStringLen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + intStringLen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } x.References = string(dAtA[iNdEx:postIndex]) iNdEx = postIndex default: iNdEx = preIndex skippy, err := runtime.Skip(dAtA[iNdEx:]) if err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } if (skippy < 0) || (iNdEx+skippy) < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if (iNdEx + skippy) > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } if !options.DiscardUnknown { x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...) } iNdEx += skippy } } if iNdEx > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil } return &protoiface.Methods{ NoUnkeyedLiterals: struct{}{}, Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown, Size: size, Marshal: marshal, Unmarshal: unmarshal, Merge: nil, CheckInitialized: nil, } } var ( md_SecondaryIndexDescriptor protoreflect.MessageDescriptor fd_SecondaryIndexDescriptor_fields protoreflect.FieldDescriptor fd_SecondaryIndexDescriptor_id protoreflect.FieldDescriptor fd_SecondaryIndexDescriptor_unique protoreflect.FieldDescriptor fd_SecondaryIndexDescriptor_references protoreflect.FieldDescriptor ) func init() { file_cosmos_orm_v1alpha1_orm_proto_init() md_SecondaryIndexDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("SecondaryIndexDescriptor") fd_SecondaryIndexDescriptor_fields = md_SecondaryIndexDescriptor.Fields().ByName("fields") fd_SecondaryIndexDescriptor_id = md_SecondaryIndexDescriptor.Fields().ByName("id") fd_SecondaryIndexDescriptor_unique = md_SecondaryIndexDescriptor.Fields().ByName("unique") fd_SecondaryIndexDescriptor_references = md_SecondaryIndexDescriptor.Fields().ByName("references") } var _ protoreflect.Message = (*fastReflection_SecondaryIndexDescriptor)(nil) type fastReflection_SecondaryIndexDescriptor SecondaryIndexDescriptor func (x *SecondaryIndexDescriptor) ProtoReflect() protoreflect.Message { return (*fastReflection_SecondaryIndexDescriptor)(x) } func (x *SecondaryIndexDescriptor) slowProtoReflect() protoreflect.Message { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } var _fastReflection_SecondaryIndexDescriptor_messageType fastReflection_SecondaryIndexDescriptor_messageType var _ protoreflect.MessageType = fastReflection_SecondaryIndexDescriptor_messageType{} type fastReflection_SecondaryIndexDescriptor_messageType struct{} func (x fastReflection_SecondaryIndexDescriptor_messageType) Zero() protoreflect.Message { return (*fastReflection_SecondaryIndexDescriptor)(nil) } func (x fastReflection_SecondaryIndexDescriptor_messageType) New() protoreflect.Message { return new(fastReflection_SecondaryIndexDescriptor) } func (x fastReflection_SecondaryIndexDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor { return md_SecondaryIndexDescriptor } // Descriptor returns message descriptor, which contains only the protobuf // type information for the message. func (x *fastReflection_SecondaryIndexDescriptor) Descriptor() protoreflect.MessageDescriptor { return md_SecondaryIndexDescriptor } // Type returns the message type, which encapsulates both Go and protobuf // type information. If the Go type information is not needed, // it is recommended that the message descriptor be used instead. func (x *fastReflection_SecondaryIndexDescriptor) Type() protoreflect.MessageType { return _fastReflection_SecondaryIndexDescriptor_messageType } // New returns a newly allocated and mutable empty message. func (x *fastReflection_SecondaryIndexDescriptor) New() protoreflect.Message { return new(fastReflection_SecondaryIndexDescriptor) } // Interface unwraps the message reflection interface and // returns the underlying ProtoMessage interface. func (x *fastReflection_SecondaryIndexDescriptor) Interface() protoreflect.ProtoMessage { return (*SecondaryIndexDescriptor)(x) } // Range iterates over every populated field in an undefined order, // calling f for each field descriptor and value encountered. // Range returns immediately if f returns false. // While iterating, mutating operations may only be performed // on the current field descriptor. func (x *fastReflection_SecondaryIndexDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) { if x.Fields != "" { value := protoreflect.ValueOfString(x.Fields) if !f(fd_SecondaryIndexDescriptor_fields, value) { return } } if x.Id != uint32(0) { value := protoreflect.ValueOfUint32(x.Id) if !f(fd_SecondaryIndexDescriptor_id, value) { return } } if x.Unique != false { value := protoreflect.ValueOfBool(x.Unique) if !f(fd_SecondaryIndexDescriptor_unique, value) { return } } if x.References != "" { value := protoreflect.ValueOfString(x.References) if !f(fd_SecondaryIndexDescriptor_references, value) { return } } } // Has reports whether a field is populated. // // Some fields have the property of nullability where it is possible to // distinguish between the default value of a field and whether the field // was explicitly populated with the default value. Singular message fields, // member fields of a oneof, and proto2 scalar fields are nullable. Such // fields are populated only if explicitly set. // // In other cases (aside from the nullable cases above), // a proto3 scalar field is populated if it contains a non-zero value, and // a repeated field is populated if it is non-empty. func (x *fastReflection_SecondaryIndexDescriptor) Has(fd protoreflect.FieldDescriptor) bool { switch fd.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": return x.Fields != "" case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": return x.Id != uint32(0) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": return x.Unique != false case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": return x.References != "" default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName())) } } // Clear clears the field such that a subsequent Has call reports false. // // Clearing an extension field clears both the extension type and value // associated with the given field number. // // Clear is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SecondaryIndexDescriptor) Clear(fd protoreflect.FieldDescriptor) { switch fd.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": x.Fields = "" case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": x.Id = uint32(0) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": x.Unique = false case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": x.References = "" default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName())) } } // Get retrieves the value for a field. // // For unpopulated scalars, it returns the default value, where // the default value of a bytes scalar is guaranteed to be a copy. // For unpopulated composite types, it returns an empty, read-only view // of the value; to obtain a mutable reference, use Mutable. func (x *fastReflection_SecondaryIndexDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value { switch descriptor.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": value := x.Fields return protoreflect.ValueOfString(value) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": value := x.Id return protoreflect.ValueOfUint32(value) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": value := x.Unique return protoreflect.ValueOfBool(value) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": value := x.References return protoreflect.ValueOfString(value) default: if descriptor.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", descriptor.FullName())) } } // Set stores the value for a field. // // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType. // When setting a composite type, it is unspecified whether the stored value // aliases the source's memory in any way. If the composite value is an // empty, read-only value, then it panics. // // Set is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SecondaryIndexDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) { switch fd.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": x.Fields = value.Interface().(string) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": x.Id = uint32(value.Uint()) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": x.Unique = value.Bool() case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": x.References = value.Interface().(string) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName())) } } // Mutable returns a mutable reference to a composite type. // // If the field is unpopulated, it may allocate a composite value. // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType // if not already stored. // It panics if the field does not contain a composite type. // // Mutable is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SecondaryIndexDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": panic(fmt.Errorf("field fields of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable")) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable")) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": panic(fmt.Errorf("field unique of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable")) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": panic(fmt.Errorf("field references of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable")) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName())) } } // NewField returns a new value that is assignable to the field // for the given descriptor. For scalars, this returns the default value. // For lists, maps, and messages, this returns a new, empty, mutable value. func (x *fastReflection_SecondaryIndexDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields": return protoreflect.ValueOfString("") case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id": return protoreflect.ValueOfUint32(uint32(0)) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique": return protoreflect.ValueOfBool(false) case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references": return protoreflect.ValueOfString("") default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName())) } } // WhichOneof reports which field within the oneof is populated, // returning nil if none are populated. // It panics if the oneof descriptor does not belong to this message. func (x *fastReflection_SecondaryIndexDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor { switch d.FullName() { default: panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.SecondaryIndexDescriptor", d.FullName())) } panic("unreachable") } // GetUnknown retrieves the entire list of unknown fields. // The caller may only mutate the contents of the RawFields // if the mutated bytes are stored back into the message with SetUnknown. func (x *fastReflection_SecondaryIndexDescriptor) GetUnknown() protoreflect.RawFields { return x.unknownFields } // SetUnknown stores an entire list of unknown fields. // The raw fields must be syntactically valid according to the wire format. // An implementation may panic if this is not the case. // Once stored, the caller must not mutate the content of the RawFields. // An empty RawFields may be passed to clear the fields. // // SetUnknown is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SecondaryIndexDescriptor) SetUnknown(fields protoreflect.RawFields) { x.unknownFields = fields } // IsValid reports whether the message is valid. // // An invalid message is an empty, read-only value. // // An invalid message often corresponds to a nil pointer of the concrete // message type, but the details are implementation dependent. // Validity is not part of the protobuf data model, and may not // be preserved in marshaling or other operations. func (x *fastReflection_SecondaryIndexDescriptor) IsValid() bool { return x != nil } // ProtoMethods returns optional fastReflectionFeature-path implementations of various operations. // This method may return nil. // // The returned methods type is identical to // "google.golang.org/protobuf/runtime/protoiface".Methods. // Consult the protoiface package documentation for details. func (x *fastReflection_SecondaryIndexDescriptor) ProtoMethods() *protoiface.Methods { size := func(input protoiface.SizeInput) protoiface.SizeOutput { x := input.Message.Interface().(*SecondaryIndexDescriptor) if x == nil { return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: 0, } } options := runtime.SizeInputToOptions(input) _ = options var n int var l int _ = l l = len(x.Fields) if l > 0 { n += 1 + l + runtime.Sov(uint64(l)) } if x.Id != 0 { n += 1 + runtime.Sov(uint64(x.Id)) } if x.Unique { n += 2 } l = len(x.References) if l > 0 { n += 1 + l + runtime.Sov(uint64(l)) } if x.unknownFields != nil { n += len(x.unknownFields) } return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: n, } } marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) { x := input.Message.Interface().(*SecondaryIndexDescriptor) if x == nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } options := runtime.MarshalInputToOptions(input) _ = options size := options.Size(x) dAtA := make([]byte, size) i := len(dAtA) _ = i var l int _ = l if x.unknownFields != nil { i -= len(x.unknownFields) copy(dAtA[i:], x.unknownFields) } if len(x.References) > 0 { i -= len(x.References) copy(dAtA[i:], x.References) i = runtime.EncodeVarint(dAtA, i, uint64(len(x.References))) i-- dAtA[i] = 0x22 } if x.Unique { i-- if x.Unique { dAtA[i] = 1 } else { dAtA[i] = 0 } i-- dAtA[i] = 0x18 } if x.Id != 0 { i = runtime.EncodeVarint(dAtA, i, uint64(x.Id)) i-- dAtA[i] = 0x10 } if len(x.Fields) > 0 { i -= len(x.Fields) copy(dAtA[i:], x.Fields) i = runtime.EncodeVarint(dAtA, i, uint64(len(x.Fields))) i-- dAtA[i] = 0xa } if input.Buf != nil { input.Buf = append(input.Buf, dAtA...) } else { input.Buf = dAtA } return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) { x := input.Message.Interface().(*SecondaryIndexDescriptor) if x == nil { return protoiface.UnmarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags, }, nil } options := runtime.UnmarshalInputToOptions(input) _ = options dAtA := input.Buf l := len(dAtA) iNdEx := 0 for iNdEx < l { preIndex := iNdEx var wire uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ wire |= uint64(b&0x7F) << shift if b < 0x80 { break } } fieldNum := int32(wire >> 3) wireType := int(wire & 0x7) if wireType == 4 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SecondaryIndexDescriptor: wiretype end group for non-group") } if fieldNum <= 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SecondaryIndexDescriptor: illegal tag %d (wire type %d)", fieldNum, wire) } switch fieldNum { case 1: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Fields", wireType) } var stringLen uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ stringLen |= uint64(b&0x7F) << shift if b < 0x80 { break } } intStringLen := int(stringLen) if intStringLen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + intStringLen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } x.Fields = string(dAtA[iNdEx:postIndex]) iNdEx = postIndex case 2: if wireType != 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType) } x.Id = 0 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ x.Id |= uint32(b&0x7F) << shift if b < 0x80 { break } } case 3: if wireType != 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Unique", wireType) } var v int for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ v |= int(b&0x7F) << shift if b < 0x80 { break } } x.Unique = bool(v != 0) case 4: if wireType != 2 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field References", wireType) } var stringLen uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ stringLen |= uint64(b&0x7F) << shift if b < 0x80 { break } } intStringLen := int(stringLen) if intStringLen < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } postIndex := iNdEx + intStringLen if postIndex < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if postIndex > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } x.References = string(dAtA[iNdEx:postIndex]) iNdEx = postIndex default: iNdEx = preIndex skippy, err := runtime.Skip(dAtA[iNdEx:]) if err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } if (skippy < 0) || (iNdEx+skippy) < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if (iNdEx + skippy) > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } if !options.DiscardUnknown { x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...) } iNdEx += skippy } } if iNdEx > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil } return &protoiface.Methods{ NoUnkeyedLiterals: struct{}{}, Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown, Size: size, Marshal: marshal, Unmarshal: unmarshal, Merge: nil, CheckInitialized: nil, } } var ( md_SingletonDescriptor protoreflect.MessageDescriptor fd_SingletonDescriptor_id protoreflect.FieldDescriptor ) func init() { file_cosmos_orm_v1alpha1_orm_proto_init() md_SingletonDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("SingletonDescriptor") fd_SingletonDescriptor_id = md_SingletonDescriptor.Fields().ByName("id") } var _ protoreflect.Message = (*fastReflection_SingletonDescriptor)(nil) type fastReflection_SingletonDescriptor SingletonDescriptor func (x *SingletonDescriptor) ProtoReflect() protoreflect.Message { return (*fastReflection_SingletonDescriptor)(x) } func (x *SingletonDescriptor) slowProtoReflect() protoreflect.Message { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } var _fastReflection_SingletonDescriptor_messageType fastReflection_SingletonDescriptor_messageType var _ protoreflect.MessageType = fastReflection_SingletonDescriptor_messageType{} type fastReflection_SingletonDescriptor_messageType struct{} func (x fastReflection_SingletonDescriptor_messageType) Zero() protoreflect.Message { return (*fastReflection_SingletonDescriptor)(nil) } func (x fastReflection_SingletonDescriptor_messageType) New() protoreflect.Message { return new(fastReflection_SingletonDescriptor) } func (x fastReflection_SingletonDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor { return md_SingletonDescriptor } // Descriptor returns message descriptor, which contains only the protobuf // type information for the message. func (x *fastReflection_SingletonDescriptor) Descriptor() protoreflect.MessageDescriptor { return md_SingletonDescriptor } // Type returns the message type, which encapsulates both Go and protobuf // type information. If the Go type information is not needed, // it is recommended that the message descriptor be used instead. func (x *fastReflection_SingletonDescriptor) Type() protoreflect.MessageType { return _fastReflection_SingletonDescriptor_messageType } // New returns a newly allocated and mutable empty message. func (x *fastReflection_SingletonDescriptor) New() protoreflect.Message { return new(fastReflection_SingletonDescriptor) } // Interface unwraps the message reflection interface and // returns the underlying ProtoMessage interface. func (x *fastReflection_SingletonDescriptor) Interface() protoreflect.ProtoMessage { return (*SingletonDescriptor)(x) } // Range iterates over every populated field in an undefined order, // calling f for each field descriptor and value encountered. // Range returns immediately if f returns false. // While iterating, mutating operations may only be performed // on the current field descriptor. func (x *fastReflection_SingletonDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) { if x.Id != uint32(0) { value := protoreflect.ValueOfUint32(x.Id) if !f(fd_SingletonDescriptor_id, value) { return } } } // Has reports whether a field is populated. // // Some fields have the property of nullability where it is possible to // distinguish between the default value of a field and whether the field // was explicitly populated with the default value. Singular message fields, // member fields of a oneof, and proto2 scalar fields are nullable. Such // fields are populated only if explicitly set. // // In other cases (aside from the nullable cases above), // a proto3 scalar field is populated if it contains a non-zero value, and // a repeated field is populated if it is non-empty. func (x *fastReflection_SingletonDescriptor) Has(fd protoreflect.FieldDescriptor) bool { switch fd.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": return x.Id != uint32(0) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName())) } } // Clear clears the field such that a subsequent Has call reports false. // // Clearing an extension field clears both the extension type and value // associated with the given field number. // // Clear is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SingletonDescriptor) Clear(fd protoreflect.FieldDescriptor) { switch fd.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": x.Id = uint32(0) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName())) } } // Get retrieves the value for a field. // // For unpopulated scalars, it returns the default value, where // the default value of a bytes scalar is guaranteed to be a copy. // For unpopulated composite types, it returns an empty, read-only view // of the value; to obtain a mutable reference, use Mutable. func (x *fastReflection_SingletonDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value { switch descriptor.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": value := x.Id return protoreflect.ValueOfUint32(value) default: if descriptor.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", descriptor.FullName())) } } // Set stores the value for a field. // // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType. // When setting a composite type, it is unspecified whether the stored value // aliases the source's memory in any way. If the composite value is an // empty, read-only value, then it panics. // // Set is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SingletonDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) { switch fd.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": x.Id = uint32(value.Uint()) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName())) } } // Mutable returns a mutable reference to a composite type. // // If the field is unpopulated, it may allocate a composite value. // For a field belonging to a oneof, it implicitly clears any other field // that may be currently set within the same oneof. // For extension fields, it implicitly stores the provided ExtensionType // if not already stored. // It panics if the field does not contain a composite type. // // Mutable is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SingletonDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.SingletonDescriptor is not mutable")) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName())) } } // NewField returns a new value that is assignable to the field // for the given descriptor. For scalars, this returns the default value. // For lists, maps, and messages, this returns a new, empty, mutable value. func (x *fastReflection_SingletonDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value { switch fd.FullName() { case "cosmos.orm.v1alpha1.SingletonDescriptor.id": return protoreflect.ValueOfUint32(uint32(0)) default: if fd.IsExtension() { panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor")) } panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName())) } } // WhichOneof reports which field within the oneof is populated, // returning nil if none are populated. // It panics if the oneof descriptor does not belong to this message. func (x *fastReflection_SingletonDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor { switch d.FullName() { default: panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.SingletonDescriptor", d.FullName())) } panic("unreachable") } // GetUnknown retrieves the entire list of unknown fields. // The caller may only mutate the contents of the RawFields // if the mutated bytes are stored back into the message with SetUnknown. func (x *fastReflection_SingletonDescriptor) GetUnknown() protoreflect.RawFields { return x.unknownFields } // SetUnknown stores an entire list of unknown fields. // The raw fields must be syntactically valid according to the wire format. // An implementation may panic if this is not the case. // Once stored, the caller must not mutate the content of the RawFields. // An empty RawFields may be passed to clear the fields. // // SetUnknown is a mutating operation and unsafe for concurrent use. func (x *fastReflection_SingletonDescriptor) SetUnknown(fields protoreflect.RawFields) { x.unknownFields = fields } // IsValid reports whether the message is valid. // // An invalid message is an empty, read-only value. // // An invalid message often corresponds to a nil pointer of the concrete // message type, but the details are implementation dependent. // Validity is not part of the protobuf data model, and may not // be preserved in marshaling or other operations. func (x *fastReflection_SingletonDescriptor) IsValid() bool { return x != nil } // ProtoMethods returns optional fastReflectionFeature-path implementations of various operations. // This method may return nil. // // The returned methods type is identical to // "google.golang.org/protobuf/runtime/protoiface".Methods. // Consult the protoiface package documentation for details. func (x *fastReflection_SingletonDescriptor) ProtoMethods() *protoiface.Methods { size := func(input protoiface.SizeInput) protoiface.SizeOutput { x := input.Message.Interface().(*SingletonDescriptor) if x == nil { return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: 0, } } options := runtime.SizeInputToOptions(input) _ = options var n int var l int _ = l if x.Id != 0 { n += 1 + runtime.Sov(uint64(x.Id)) } if x.unknownFields != nil { n += len(x.unknownFields) } return protoiface.SizeOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Size: n, } } marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) { x := input.Message.Interface().(*SingletonDescriptor) if x == nil { return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } options := runtime.MarshalInputToOptions(input) _ = options size := options.Size(x) dAtA := make([]byte, size) i := len(dAtA) _ = i var l int _ = l if x.unknownFields != nil { i -= len(x.unknownFields) copy(dAtA[i:], x.unknownFields) } if x.Id != 0 { i = runtime.EncodeVarint(dAtA, i, uint64(x.Id)) i-- dAtA[i] = 0x8 } if input.Buf != nil { input.Buf = append(input.Buf, dAtA...) } else { input.Buf = dAtA } return protoiface.MarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Buf: input.Buf, }, nil } unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) { x := input.Message.Interface().(*SingletonDescriptor) if x == nil { return protoiface.UnmarshalOutput{ NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags, }, nil } options := runtime.UnmarshalInputToOptions(input) _ = options dAtA := input.Buf l := len(dAtA) iNdEx := 0 for iNdEx < l { preIndex := iNdEx var wire uint64 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ wire |= uint64(b&0x7F) << shift if b < 0x80 { break } } fieldNum := int32(wire >> 3) wireType := int(wire & 0x7) if wireType == 4 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SingletonDescriptor: wiretype end group for non-group") } if fieldNum <= 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SingletonDescriptor: illegal tag %d (wire type %d)", fieldNum, wire) } switch fieldNum { case 1: if wireType != 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType) } x.Id = 0 for shift := uint(0); ; shift += 7 { if shift >= 64 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow } if iNdEx >= l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } b := dAtA[iNdEx] iNdEx++ x.Id |= uint32(b&0x7F) << shift if b < 0x80 { break } } default: iNdEx = preIndex skippy, err := runtime.Skip(dAtA[iNdEx:]) if err != nil { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err } if (skippy < 0) || (iNdEx+skippy) < 0 { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength } if (iNdEx + skippy) > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } if !options.DiscardUnknown { x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...) } iNdEx += skippy } } if iNdEx > l { return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF } return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil } return &protoiface.Methods{ NoUnkeyedLiterals: struct{}{}, Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown, Size: size, Marshal: marshal, Unmarshal: unmarshal, Merge: nil, CheckInitialized: nil, } } // Code generated by protoc-gen-go. DO NOT EDIT. // versions: // protoc-gen-go v1.27.0 // protoc v3.19.1 // source: cosmos/orm/v1alpha1/orm.proto const ( // Verify that this generated code is sufficiently up-to-date. _ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion) // Verify that runtime/protoimpl is sufficiently up-to-date. _ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20) ) // TableDescriptor describes an ORM table. type TableDescriptor struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // primary_key defines the primary key for the table. PrimaryKey *PrimaryKeyDescriptor `protobuf:"bytes,1,opt,name=primary_key,json=primaryKey,proto3" json:"primary_key,omitempty"` // index defines one or more secondary indexes. Index []*SecondaryIndexDescriptor `protobuf:"bytes,2,rep,name=index,proto3" json:"index,omitempty"` // id is a non-zero integer ID that must be unique within the // tables and singletons in this file. It may be deprecated in the future when this // can be auto-generated. Id uint32 `protobuf:"varint,3,opt,name=id,proto3" json:"id,omitempty"` } func (x *TableDescriptor) Reset() { *x = TableDescriptor{} if protoimpl.UnsafeEnabled { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *TableDescriptor) String() string { return protoimpl.X.MessageStringOf(x) } func (*TableDescriptor) ProtoMessage() {} // Deprecated: Use TableDescriptor.ProtoReflect.Descriptor instead. func (*TableDescriptor) Descriptor() ([]byte, []int) { return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{0} } func (x *TableDescriptor) GetPrimaryKey() *PrimaryKeyDescriptor { if x != nil { return x.PrimaryKey } return nil } func (x *TableDescriptor) GetIndex() []*SecondaryIndexDescriptor { if x != nil { return x.Index } return nil } func (x *TableDescriptor) GetId() uint32 { if x != nil { return x.Id } return 0 } // PrimaryKeyDescriptor describes a table primary key. type PrimaryKeyDescriptor struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // fields is a comma-separated list of fields in the primary key. Spaces are // not allowed. Supported field types, their encodings, and any applicable constraints // are described below. // - uint32, uint64 are encoded as big-endian fixed width bytes and support // sorted iteration. // - string's are encoded as raw bytes in terminal key segments and null-terminated // in non-terminal segments. Null characters are thus forbidden in strings. // string fields support sorted iteration. // - bytes are encoded as raw bytes in terminal segments and length-prefixed // with a single byte in non-terminal segments. Because of this byte arrays // longer than 255 bytes cannot be used in keys and bytes fields should not // be assumed to be lexically sorted. // - int32, sint32, int64, sint64 are encoding as fixed width bytes with // an encoding that enables sorted iteration. // - google.protobuf.Timestamp and google.protobuf.Duration are encoded // as 12 bytes using an encoding that enables sorted iteration. // - enum fields are encoded using varint encoding and do not support sorted // iteration. // - bool fields are encoded as a single byte 0 or 1. // // All other fields types are unsupported in keys including repeated and // oneof fields. // // Primary keys are prefixed by the varint encoded table id and the byte 0x0 // plus any additional prefix specified by the schema. Fields string `protobuf:"bytes,1,opt,name=fields,proto3" json:"fields,omitempty"` // auto_increment specifies that the primary key is generated by an // auto-incrementing integer. If this is set to true fields must only // contain one field of that is of type uint64. AutoIncrement bool `protobuf:"varint,2,opt,name=auto_increment,json=autoIncrement,proto3" json:"auto_increment,omitempty"` // references specifies that this primary key references the primary key // of another table. See the documentation for the SecondaryIndexDescriptor.references // field for more details. An additional constraint placed on primary keys // which reference another table is that those references cannot be circular. References string `protobuf:"bytes,3,opt,name=references,proto3" json:"references,omitempty"` } func (x *PrimaryKeyDescriptor) Reset() { *x = PrimaryKeyDescriptor{} if protoimpl.UnsafeEnabled { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *PrimaryKeyDescriptor) String() string { return protoimpl.X.MessageStringOf(x) } func (*PrimaryKeyDescriptor) ProtoMessage() {} // Deprecated: Use PrimaryKeyDescriptor.ProtoReflect.Descriptor instead. func (*PrimaryKeyDescriptor) Descriptor() ([]byte, []int) { return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{1} } func (x *PrimaryKeyDescriptor) GetFields() string { if x != nil { return x.Fields } return "" } func (x *PrimaryKeyDescriptor) GetAutoIncrement() bool { if x != nil { return x.AutoIncrement } return false } func (x *PrimaryKeyDescriptor) GetReferences() string { if x != nil { return x.References } return "" } // PrimaryKeyDescriptor describes a table secondary index. type SecondaryIndexDescriptor struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // fields is a comma-separated list of fields in the index. The supported // field types are the same as those for PrimaryKeyDescriptor.fields. // Index keys are prefixed by the varint encoded table id and the varint // encoded index id plus any additional prefix specified by the schema. // // In addition the the field segments, non-unique index keys are suffixed with // any additional primary key fields not present in the index fields so that the // primary key can be reconstructed. Unique indexes instead of being suffixed // store the remaining primary key fields in the value.. Fields string `protobuf:"bytes,1,opt,name=fields,proto3" json:"fields,omitempty"` // id is a non-zero integer ID that must be unique within the indexes for this // table. It may be deprecated in the future when this can be auto-generated. Id uint32 `protobuf:"varint,2,opt,name=id,proto3" json:"id,omitempty"` // unique specifies that this an unique index. Unique bool `protobuf:"varint,3,opt,name=unique,proto3" json:"unique,omitempty"` // references specifies that this index references another table defined in the same // proto file. Currently references are not support to tables with composite // primary keys, therefore fields must reference one field and its type must // be the same type as the primary key field of the referenced table. // References to tables in defined by different proto files are not supported // to avoid tight coupling of dependencies. Beyond validating that the reference // is valid key constraints are currently not enforced, but references should // be used by clients to perform automatic joins. References string `protobuf:"bytes,4,opt,name=references,proto3" json:"references,omitempty"` } func (x *SecondaryIndexDescriptor) Reset() { *x = SecondaryIndexDescriptor{} if protoimpl.UnsafeEnabled { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *SecondaryIndexDescriptor) String() string { return protoimpl.X.MessageStringOf(x) } func (*SecondaryIndexDescriptor) ProtoMessage() {} // Deprecated: Use SecondaryIndexDescriptor.ProtoReflect.Descriptor instead. func (*SecondaryIndexDescriptor) Descriptor() ([]byte, []int) { return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{2} } func (x *SecondaryIndexDescriptor) GetFields() string { if x != nil { return x.Fields } return "" } func (x *SecondaryIndexDescriptor) GetId() uint32 { if x != nil { return x.Id } return 0 } func (x *SecondaryIndexDescriptor) GetUnique() bool { if x != nil { return x.Unique } return false } func (x *SecondaryIndexDescriptor) GetReferences() string { if x != nil { return x.References } return "" } // TableDescriptor describes an ORM singleton table which has at most one instance. type SingletonDescriptor struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // id is a non-zero integer ID that must be unique within the // tables and singletons in this file. It may be deprecated in the future when this // can be auto-generated. Id uint32 `protobuf:"varint,1,opt,name=id,proto3" json:"id,omitempty"` } func (x *SingletonDescriptor) Reset() { *x = SingletonDescriptor{} if protoimpl.UnsafeEnabled { mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *SingletonDescriptor) String() string { return protoimpl.X.MessageStringOf(x) } func (*SingletonDescriptor) ProtoMessage() {} // Deprecated: Use SingletonDescriptor.ProtoReflect.Descriptor instead. func (*SingletonDescriptor) Descriptor() ([]byte, []int) { return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{3} } func (x *SingletonDescriptor) GetId() uint32 { if x != nil { return x.Id } return 0 } var file_cosmos_orm_v1alpha1_orm_proto_extTypes = []protoimpl.ExtensionInfo{ { ExtendedType: (*descriptorpb.MessageOptions)(nil), ExtensionType: (*TableDescriptor)(nil), Field: 104503790, Name: "cosmos.orm.v1alpha1.table", Tag: "bytes,104503790,opt,name=table", Filename: "cosmos/orm/v1alpha1/orm.proto", }, { ExtendedType: (*descriptorpb.MessageOptions)(nil), ExtensionType: (*SingletonDescriptor)(nil), Field: 104503791, Name: "cosmos.orm.v1alpha1.singleton", Tag: "bytes,104503791,opt,name=singleton", Filename: "cosmos/orm/v1alpha1/orm.proto", }, } // Extension fields to descriptorpb.MessageOptions. var ( // table specifies that this message will be used as an ORM table. It cannot // be used together with the singleton option. // // optional cosmos.orm.v1alpha1.TableDescriptor table = 104503790; E_Table = &file_cosmos_orm_v1alpha1_orm_proto_extTypes[0] // singleton specifies that this message will be used as an ORM singleton. It cannot // be used together with the table option. // // optional cosmos.orm.v1alpha1.SingletonDescriptor singleton = 104503791; E_Singleton = &file_cosmos_orm_v1alpha1_orm_proto_extTypes[1] ) var File_cosmos_orm_v1alpha1_orm_proto protoreflect.FileDescriptor var file_cosmos_orm_v1alpha1_orm_proto_rawDesc = []byte{ 0x0a, 0x1d, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2f, 0x6f, 0x72, 0x6d, 0x2f, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2f, 0x6f, 0x72, 0x6d, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12, 0x13, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x1a, 0x20, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x64, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x22, 0xb2, 0x01, 0x0a, 0x0f, 0x54, 0x61, 0x62, 0x6c, 0x65, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x4a, 0x0a, 0x0b, 0x70, 0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x5f, 0x6b, 0x65, 0x79, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x29, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x50, 0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x4b, 0x65, 0x79, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x0a, 0x70, 0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x4b, 0x65, 0x79, 0x12, 0x43, 0x0a, 0x05, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x18, 0x02, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x2d, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x53, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x61, 0x72, 0x79, 0x49, 0x6e, 0x64, 0x65, 0x78, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x05, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x03, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x02, 0x69, 0x64, 0x22, 0x75, 0x0a, 0x14, 0x50, 0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x4b, 0x65, 0x79, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x16, 0x0a, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x12, 0x25, 0x0a, 0x0e, 0x61, 0x75, 0x74, 0x6f, 0x5f, 0x69, 0x6e, 0x63, 0x72, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x18, 0x02, 0x20, 0x01, 0x28, 0x08, 0x52, 0x0d, 0x61, 0x75, 0x74, 0x6f, 0x49, 0x6e, 0x63, 0x72, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x12, 0x1e, 0x0a, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x22, 0x7a, 0x0a, 0x18, 0x53, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x61, 0x72, 0x79, 0x49, 0x6e, 0x64, 0x65, 0x78, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x16, 0x0a, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x02, 0x69, 0x64, 0x12, 0x16, 0x0a, 0x06, 0x75, 0x6e, 0x69, 0x71, 0x75, 0x65, 0x18, 0x03, 0x20, 0x01, 0x28, 0x08, 0x52, 0x06, 0x75, 0x6e, 0x69, 0x71, 0x75, 0x65, 0x12, 0x1e, 0x0a, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x18, 0x04, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x22, 0x25, 0x0a, 0x13, 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x02, 0x69, 0x64, 0x3a, 0x5e, 0x0a, 0x05, 0x74, 0x61, 0x62, 0x6c, 0x65, 0x12, 0x1f, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x18, 0xee, 0xb3, 0xea, 0x31, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x24, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x54, 0x61, 0x62, 0x6c, 0x65, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x05, 0x74, 0x61, 0x62, 0x6c, 0x65, 0x3a, 0x6a, 0x0a, 0x09, 0x73, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x12, 0x1f, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x18, 0xef, 0xb3, 0xea, 0x31, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x28, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x09, 0x73, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x42, 0xd3, 0x01, 0x0a, 0x17, 0x63, 0x6f, 0x6d, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x42, 0x08, 0x4f, 0x72, 0x6d, 0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x40, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2f, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2d, 0x73, 0x64, 0x6b, 0x2f, 0x61, 0x70, 0x69, 0x2f, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2f, 0x6f, 0x72, 0x6d, 0x2f, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x3b, 0x6f, 0x72, 0x6d, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xa2, 0x02, 0x03, 0x43, 0x4f, 0x58, 0xaa, 0x02, 0x13, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x4f, 0x72, 0x6d, 0x2e, 0x56, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xca, 0x02, 0x13, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x5c, 0x4f, 0x72, 0x6d, 0x5c, 0x56, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xe2, 0x02, 0x1f, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x5c, 0x4f, 0x72, 0x6d, 0x5c, 0x56, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x5c, 0x47, 0x50, 0x42, 0x4d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0xea, 0x02, 0x15, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x3a, 0x3a, 0x4f, 0x72, 0x6d, 0x3a, 0x3a, 0x56, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33, } var ( file_cosmos_orm_v1alpha1_orm_proto_rawDescOnce sync.Once file_cosmos_orm_v1alpha1_orm_proto_rawDescData = file_cosmos_orm_v1alpha1_orm_proto_rawDesc ) func file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP() []byte { file_cosmos_orm_v1alpha1_orm_proto_rawDescOnce.Do(func() { file_cosmos_orm_v1alpha1_orm_proto_rawDescData = protoimpl.X.CompressGZIP(file_cosmos_orm_v1alpha1_orm_proto_rawDescData) }) return file_cosmos_orm_v1alpha1_orm_proto_rawDescData } var file_cosmos_orm_v1alpha1_orm_proto_msgTypes = make([]protoimpl.MessageInfo, 4) var file_cosmos_orm_v1alpha1_orm_proto_goTypes = []interface{}{ (*TableDescriptor)(nil), // 0: cosmos.orm.v1alpha1.TableDescriptor (*PrimaryKeyDescriptor)(nil), // 1: cosmos.orm.v1alpha1.PrimaryKeyDescriptor (*SecondaryIndexDescriptor)(nil), // 2: cosmos.orm.v1alpha1.SecondaryIndexDescriptor (*SingletonDescriptor)(nil), // 3: cosmos.orm.v1alpha1.SingletonDescriptor (*descriptorpb.MessageOptions)(nil), // 4: google.protobuf.MessageOptions } var file_cosmos_orm_v1alpha1_orm_proto_depIdxs = []int32{ 1, // 0: cosmos.orm.v1alpha1.TableDescriptor.primary_key:type_name -> cosmos.orm.v1alpha1.PrimaryKeyDescriptor 2, // 1: cosmos.orm.v1alpha1.TableDescriptor.index:type_name -> cosmos.orm.v1alpha1.SecondaryIndexDescriptor 4, // 2: cosmos.orm.v1alpha1.table:extendee -> google.protobuf.MessageOptions 4, // 3: cosmos.orm.v1alpha1.singleton:extendee -> google.protobuf.MessageOptions 0, // 4: cosmos.orm.v1alpha1.table:type_name -> cosmos.orm.v1alpha1.TableDescriptor 3, // 5: cosmos.orm.v1alpha1.singleton:type_name -> cosmos.orm.v1alpha1.SingletonDescriptor 6, // [6:6] is the sub-list for method output_type 6, // [6:6] is the sub-list for method input_type 4, // [4:6] is the sub-list for extension type_name 2, // [2:4] is the sub-list for extension extendee 0, // [0:2] is the sub-list for field type_name } func init() { file_cosmos_orm_v1alpha1_orm_proto_init() } func file_cosmos_orm_v1alpha1_orm_proto_init() { if File_cosmos_orm_v1alpha1_orm_proto != nil { return } if !protoimpl.UnsafeEnabled { file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*TableDescriptor); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*PrimaryKeyDescriptor); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*SecondaryIndexDescriptor); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*SingletonDescriptor); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } } type x struct{} out := protoimpl.TypeBuilder{ File: protoimpl.DescBuilder{ GoPackagePath: reflect.TypeOf(x{}).PkgPath(), RawDescriptor: file_cosmos_orm_v1alpha1_orm_proto_rawDesc, NumEnums: 0, NumMessages: 4, NumExtensions: 2, NumServices: 0, }, GoTypes: file_cosmos_orm_v1alpha1_orm_proto_goTypes, DependencyIndexes: file_cosmos_orm_v1alpha1_orm_proto_depIdxs, MessageInfos: file_cosmos_orm_v1alpha1_orm_proto_msgTypes, ExtensionInfos: file_cosmos_orm_v1alpha1_orm_proto_extTypes, }.Build() File_cosmos_orm_v1alpha1_orm_proto = out.File file_cosmos_orm_v1alpha1_orm_proto_rawDesc = nil file_cosmos_orm_v1alpha1_orm_proto_goTypes = nil file_cosmos_orm_v1alpha1_orm_proto_depIdxs = nil }