cosmos-sdk/x/simulation/operation.go

163 lines
4.4 KiB
Go

package simulation
import (
"encoding/json"
"math/rand"
"sort"
"github.com/cosmos/cosmos-sdk/types/simulation"
)
// entry kinds for use within OperationEntry
const (
BeginBlockEntryKind = "begin_block"
EndBlockEntryKind = "end_block"
MsgEntryKind = "msg"
QueuedMsgEntryKind = "queued_msg"
)
// OperationEntry - an operation entry for logging (ex. BeginBlock, EndBlock, XxxMsg, etc)
type OperationEntry struct {
EntryKind string `json:"entry_kind" yaml:"entry_kind"`
Height int64 `json:"height" yaml:"height"`
Order int64 `json:"order" yaml:"order"`
Operation json.RawMessage `json:"operation" yaml:"operation"`
}
// NewOperationEntry creates a new OperationEntry instance
func NewOperationEntry(entry string, height, order int64, op json.RawMessage) OperationEntry {
return OperationEntry{
EntryKind: entry,
Height: height,
Order: order,
Operation: op,
}
}
// BeginBlockEntry - operation entry for begin block
func BeginBlockEntry(height int64) OperationEntry {
return NewOperationEntry(BeginBlockEntryKind, height, -1, nil)
}
// EndBlockEntry - operation entry for end block
func EndBlockEntry(height int64) OperationEntry {
return NewOperationEntry(EndBlockEntryKind, height, -1, nil)
}
// MsgEntry - operation entry for standard msg
func MsgEntry(height, order int64, opMsg simulation.OperationMsg) OperationEntry {
return NewOperationEntry(MsgEntryKind, height, order, opMsg.MustMarshal())
}
// QueuedMsgEntry creates an operation entry for a given queued message.
func QueuedMsgEntry(height int64, opMsg simulation.OperationMsg) OperationEntry {
return NewOperationEntry(QueuedMsgEntryKind, height, -1, opMsg.MustMarshal())
}
// MustMarshal marshals the operation entry, panic on error.
func (oe OperationEntry) MustMarshal() json.RawMessage {
out, err := json.Marshal(oe)
if err != nil {
panic(err)
}
return out
}
//_____________________________________________________________________
// OperationQueue defines an object for a queue of operations
type OperationQueue map[int][]simulation.Operation
// NewOperationQueue creates a new OperationQueue instance.
func NewOperationQueue() OperationQueue {
return make(OperationQueue)
}
// queueOperations adds all future operations into the operation queue.
func queueOperations(queuedOps OperationQueue, queuedTimeOps []simulation.FutureOperation, futureOps []simulation.FutureOperation) {
if futureOps == nil {
return
}
for _, futureOp := range futureOps {
futureOp := futureOp
if futureOp.BlockHeight != 0 {
if val, ok := queuedOps[futureOp.BlockHeight]; ok {
queuedOps[futureOp.BlockHeight] = append(val, futureOp.Op)
} else {
queuedOps[futureOp.BlockHeight] = []simulation.Operation{futureOp.Op}
}
continue
}
// TODO: Replace with proper sorted data structure, so don't have the
// copy entire slice
index := sort.Search(
len(queuedTimeOps),
func(i int) bool {
return queuedTimeOps[i].BlockTime.After(futureOp.BlockTime)
},
)
queuedTimeOps = append(queuedTimeOps, simulation.FutureOperation{})
copy(queuedTimeOps[index+1:], queuedTimeOps[index:])
queuedTimeOps[index] = futureOp
}
}
//________________________________________________________________________
// WeightedOperation is an operation with associated weight.
// This is used to bias the selection operation within the simulator.
type WeightedOperation struct {
weight int
op simulation.Operation
}
func (w WeightedOperation) Weight() int {
return w.weight
}
func (w WeightedOperation) Op() simulation.Operation {
return w.op
}
// NewWeightedOperation creates a new WeightedOperation instance
func NewWeightedOperation(weight int, op simulation.Operation) WeightedOperation {
return WeightedOperation{
weight: weight,
op: op,
}
}
// WeightedOperations is the group of all weighted operations to simulate.
type WeightedOperations []simulation.WeightedOperation
func (ops WeightedOperations) totalWeight() int {
totalOpWeight := 0
for _, op := range ops {
totalOpWeight += op.Weight()
}
return totalOpWeight
}
func (ops WeightedOperations) getSelectOpFn() simulation.SelectOpFn {
totalOpWeight := ops.totalWeight()
return func(r *rand.Rand) simulation.Operation {
x := r.Intn(totalOpWeight)
for i := 0; i < len(ops); i++ {
if x <= ops[i].Weight() {
return ops[i].Op()
}
x -= ops[i].Weight()
}
// shouldn't happen
return ops[0].Op()
}
}