cosmos-sdk/types/rational.go

238 lines
8.0 KiB
Go

package types
import (
"fmt"
"math/big"
"strconv"
"strings"
)
// "that's one big rat!"
// ______
// / / /\ \____oo
// __ /___...._____ _\o
// __| |_ |_
// Rat - extend big.Rat
// NOTE: never use new(Rat) or else
// we will panic unmarshalling into the
// nil embedded big.Rat
type Rat struct {
Num int64 `json:"num"`
Denom int64 `json:"denom"`
//*big.Rat `json:"rat"`
}
// RatInterface - big Rat with additional functionality
// NOTE: we only have one implementation of this interface
// and don't use it anywhere, but it might come in handy
// if we want to provide Rat types that include
// the units of the value in the type system.
//type RatInterface interface {
//GetRat() *big.Rat
//Num() int64
//Denom() int64
//GT(Rat) bool
//LT(Rat) bool
//Equal(Rat) bool
//IsZero() bool
//Inv() Rat
//Mul(Rat) Rat
//Quo(Rat) Rat
//Add(Rat) Rat
//Sub(Rat) Rat
//Round(int64) Rat
//Evaluate() int64
//}
//var _ Rat = Rat{} // enforce at compile time
// nolint - common values
var (
ZeroRat = NewRat(0) // Rat{big.NewRat(0, 1)}
OneRat = NewRat(1) // Rat{big.NewRat(1, 1)}
)
// New - create a new Rat from integers
//func NewRat(Numerator int64, Denominator ...int64) Rat {
//switch len(Denominator) {
//case 0:
//return Rat{big.NewRat(Numerator, 1)}
//case 1:
//return Rat{big.NewRat(Numerator, Denominator[0])}
//default:
//panic("improper use of New, can only have one denominator")
//}
//}
func NewRat(num int64, denom ...int64) Rat {
switch len(denom) {
case 0:
return Rat{
Num: num,
Denom: 1,
}
case 1:
return Rat{
Num: num,
Denom: denom[0],
}
default:
panic("improper use of New, can only have one denominator")
}
}
// create a rational from decimal string or integer string
func NewRatFromDecimal(decimalStr string) (f Rat, err Error) {
// first extract any negative symbol
neg := false
if string(decimalStr[0]) == "-" {
neg = true
decimalStr = decimalStr[1:]
}
str := strings.Split(decimalStr, ".")
var numStr string
var denom int64 = 1
switch len(str) {
case 1:
if len(str[0]) == 0 {
return f, ErrUnknownRequest("not a decimal string")
}
numStr = str[0]
case 2:
if len(str[0]) == 0 || len(str[1]) == 0 {
return f, ErrUnknownRequest("not a decimal string")
}
numStr = str[0] + str[1]
len := int64(len(str[1]))
denom = new(big.Int).Exp(big.NewInt(10), big.NewInt(len), nil).Int64()
default:
return f, ErrUnknownRequest("not a decimal string")
}
num, errConv := strconv.Atoi(numStr)
if errConv != nil {
return f, ErrUnknownRequest(errConv.Error())
}
if neg {
num *= -1
}
return NewRat(int64(num), denom), nil
}
//nolint
func ToRat(r *big.Rat) Rat { return NewRat(r.Num().Int64(), r.Denom().Int64()) } // GetRat - get big.Rat
func (r Rat) GetRat() *big.Rat { return big.NewRat(r.Num, r.Denom) } // GetRat - get big.Rat
func (r Rat) IsZero() bool { return r.Num == 0 } // IsZero - Is the Rat equal to zero
func (r Rat) Equal(r2 Rat) bool { return r.GetRat().Cmp(r2.GetRat()) == 0 } // Equal - rationals are equal
func (r Rat) GT(r2 Rat) bool { return r.GetRat().Cmp(r2.GetRat()) == 1 } // GT - greater than
func (r Rat) LT(r2 Rat) bool { return r.GetRat().Cmp(r2.GetRat()) == -1 } // LT - less than
func (r Rat) Inv() Rat { return ToRat(new(big.Rat).Inv(r.GetRat())) } // Inv - inverse
func (r Rat) Mul(r2 Rat) Rat { return ToRat(new(big.Rat).Mul(r.GetRat(), r2.GetRat())) } // Mul - multiplication
func (r Rat) Quo(r2 Rat) Rat { return ToRat(new(big.Rat).Quo(r.GetRat(), r2.GetRat())) } // Quo - quotient
func (r Rat) Add(r2 Rat) Rat { return ToRat(new(big.Rat).Add(r.GetRat(), r2.GetRat())) } // Add - addition
func (r Rat) Sub(r2 Rat) Rat { return ToRat(new(big.Rat).Sub(r.GetRat(), r2.GetRat())) } // Sub - subtraction
//func (r Rat) GetRat() *big.Rat { return r.Rat } // GetRat - get big.Rat
//func (r Rat) Num() int64 { return r.Rat.Num().Int64() } // Num - return the numerator
//func (r Rat) Denom() int64 { return r.Rat.Denom().Int64() } // Denom - return the denominator
//func (r Rat) IsZero() bool { return r.Num() == 0 } // IsZero - Is the Rat equal to zero
//func (r Rat) Equal(r2 Rat) bool { return r.Rat.Cmp(r2.GetRat()) == 0 } // Equal - rationals are equal
//func (r Rat) GT(r2 Rat) bool { return r.Rat.Cmp(r2.GetRat()) == 1 } // GT - greater than
//func (r Rat) LT(r2 Rat) bool { return r.Rat.Cmp(r2.GetRat()) == -1 } // LT - less than
//func (r Rat) Inv() Rat { return Rat{new(big.Rat).Inv(r.Rat)} } // Inv - inverse
//func (r Rat) Mul(r2 Rat) Rat { return Rat{new(big.Rat).Mul(r.Rat, r2.GetRat())} } // Mul - multiplication
//func (r Rat) Quo(r2 Rat) Rat { return Rat{new(big.Rat).Quo(r.Rat, r2.GetRat())} } // Quo - quotient
//func (r Rat) Add(r2 Rat) Rat { return Rat{new(big.Rat).Add(r.Rat, r2.GetRat())} } // Add - addition
//func (r Rat) Sub(r2 Rat) Rat { return Rat{new(big.Rat).Sub(r.Rat, r2.GetRat())} } // Sub - subtraction
//func (r Rat) String() string { return fmt.Sprintf("%v/%v", r.Num(), r.Denom()) } // Sub - subtraction
var (
zero = big.NewInt(0)
one = big.NewInt(1)
two = big.NewInt(2)
five = big.NewInt(5)
nFive = big.NewInt(-5)
ten = big.NewInt(10)
)
// evaluate the rational using bankers rounding
func (r Rat) EvaluateBig() *big.Int {
num := r.GetRat().Num()
denom := r.GetRat().Denom()
d, rem := new(big.Int), new(big.Int)
d.QuoRem(num, denom, rem)
if rem.Cmp(zero) == 0 { // is the remainder zero
return d
}
// evaluate the remainder using bankers rounding
tenNum := new(big.Int).Mul(num, ten)
tenD := new(big.Int).Mul(d, ten)
remainderDigit := new(big.Int).Sub(new(big.Int).Quo(tenNum, denom), tenD) // get the first remainder digit
isFinalDigit := (new(big.Int).Rem(tenNum, denom).Cmp(zero) == 0) // is this the final digit in the remainder?
switch {
case isFinalDigit && (remainderDigit.Cmp(five) == 0 || remainderDigit.Cmp(nFive) == 0):
dRem2 := new(big.Int).Rem(d, two)
return new(big.Int).Add(d, dRem2) // always rounds to the even number
case remainderDigit.Cmp(five) != -1: //remainderDigit >= 5:
d.Add(d, one)
case remainderDigit.Cmp(nFive) != 1: //remainderDigit <= -5:
d.Sub(d, one)
}
return d
}
// evaluate the rational using bankers rounding
func (r Rat) Evaluate() int64 {
return r.EvaluateBig().Int64()
}
// round Rat with the provided precisionFactor
func (r Rat) Round(precisionFactor int64) Rat {
rTen := ToRat(new(big.Rat).Mul(r.GetRat(), big.NewRat(precisionFactor, 1)))
return ToRat(big.NewRat(rTen.Evaluate(), precisionFactor))
}
// TODO panic if negative or if totalDigits < len(initStr)???
// evaluate as an integer and return left padded string
func (r Rat) ToLeftPadded(totalDigits int8) string {
intStr := r.EvaluateBig().String()
fcode := `%0` + strconv.Itoa(int(totalDigits)) + `s`
return fmt.Sprintf(fcode, intStr)
}
//___________________________________________________________________________________
// Hack to just use json.Marshal for everything until
// we update for amino
//type JSONCodec struct{}
//func (jc JSONCodec) MarshalJSON(o interface{}) ([]byte, error) { return json.Marshal(o) }
//func (jc JSONCodec) UnmarshalJSON(bz []byte, o interface{}) error { return json.Unmarshal(bz, o) }
// Wraps r.MarshalText() in quotes to make it a valid JSON string.
//func (r Rat) MarshalAmino() (string, error) {
//bz, err := r.MarshalText()
//if err != nil {
//return "", err
//}
//return fmt.Sprintf(`%s`, bz), nil
//}
//// Requires a valid JSON string - strings quotes and calls UnmarshalText
//func (r *Rat) UnmarshalAmino(data string) (err error) {
////quote := []byte(`"`)
////if len(data) < 2 ||
////!bytes.HasPrefix(data, quote) ||
////!bytes.HasSuffix(data, quote) {
////return fmt.Errorf("JSON encoded Rat must be a quote-delimitted string")
////}
////data = bytes.Trim(data, `"`)
//return r.UnmarshalText([]byte(data))
//}