tendermint/docs/spec/blockchain/encoding.md

312 lines
11 KiB
Markdown
Raw Normal View History

# Encoding
## Amino
Tendermint uses the proto3 derivative [Amino](https://github.com/tendermint/go-amino) for all data structures.
Think of Amino as an object-oriented proto3 with native JSON support.
The goal of the Amino encoding protocol is to bring parity between application
logic objects and persistence objects.
Please see the [Amino
specification](https://github.com/tendermint/go-amino#amino-encoding-for-go) for
more details.
Notably, every object that satisfies an interface (eg. a particular kind of p2p message,
or a particular kind of pubkey) is registered with a global name, the hash of
which is included in the object's encoding as the so-called "prefix bytes".
We define the `func AminoEncode(obj interface{}) []byte` function to take an
arbitrary object and return the Amino encoded bytes.
## Byte Arrays
The encoding of a byte array is simply the raw-bytes prefixed with the length of
the array as a `UVarint` (what proto calls a `Varint`).
For details on varints, see the [protobuf
spec](https://developers.google.com/protocol-buffers/docs/encoding#varints).
For example, the byte-array `[0xA, 0xB]` would be encoded as `0x020A0B`,
while a byte-array containing 300 entires beginning with `[0xA, 0xB, ...]` would
be encoded as `0xAC020A0B...` where `0xAC02` is the UVarint encoding of 300.
## Public Key Cryptography
Tendermint uses Amino to distinguish between different types of private keys,
public keys, and signatures. Additionally, for each public key, Tendermint
defines an Address function that can be used as a more compact identifier in
place of the public key. Here we list the concrete types, their names,
and prefix bytes for public keys and signatures, as well as the address schemes
for each PubKey. Note for brevity we don't
include details of the private keys beyond their type and name, as they can be
derived the same way as the others using Amino.
All registered objects are encoded by Amino using a 4-byte PrefixBytes that
uniquely identifies the object and includes information about its underlying
type. For details on how PrefixBytes are computed, see the [Amino
spec](https://github.com/tendermint/go-amino#computing-the-prefix-and-disambiguation-bytes).
In what follows, we provide the type names and prefix bytes directly.
Notice that when encoding byte-arrays, the length of the byte-array is appended
to the PrefixBytes. Thus the encoding of a byte array becomes `<PrefixBytes> <Length> <ByteArray>`. In other words, to encode any type listed below you do not need to be
familiar with amino encoding.
You can simply use below table and concatenate Prefix || Length (of raw bytes) || raw bytes
( while || stands for byte concatenation here).
| Type | Name | Prefix | Length | Notes |
| ------------------ | ----------------------------- | ---------- | -------- | ----- |
| PubKeyEd25519 | tendermint/PubKeyEd25519 | 0x1624DE64 | 0x20 | |
| PubKeySecp256k1 | tendermint/PubKeySecp256k1 | 0xEB5AE987 | 0x21 | |
| PrivKeyEd25519 | tendermint/PrivKeyEd25519 | 0xA3288910 | 0x40 | |
| PrivKeySecp256k1 | tendermint/PrivKeySecp256k1 | 0xE1B0F79B | 0x20 | |
| SignatureEd25519 | tendermint/SignatureEd25519 | 0x2031EA53 | 0x40 | |
2018-07-02 11:20:27 -07:00
| SignatureSecp256k1 | tendermint/SignatureSecp256k1 | 0x7FC4A495 | variable |
2018-07-02 11:20:27 -07:00
|
### Examples
1. For example, the 33-byte (or 0x21-byte in hex) Secp256k1 pubkey
`020BD40F225A57ED383B440CF073BC5539D0341F5767D2BF2D78406D00475A2EE9`
would be encoded as
`EB5AE98221020BD40F225A57ED383B440CF073BC5539D0341F5767D2BF2D78406D00475A2EE9`
2. For example, the variable size Secp256k1 signature (in this particular example 70 or 0x46 bytes)
`304402201CD4B8C764D2FD8AF23ECFE6666CA8A53886D47754D951295D2D311E1FEA33BF02201E0F906BB1CF2C30EAACFFB032A7129358AFF96B9F79B06ACFFB18AC90C2ADD7`
would be encoded as
`16E1FEEA46304402201CD4B8C764D2FD8AF23ECFE6666CA8A53886D47754D951295D2D311E1FEA33BF02201E0F906BB1CF2C30EAACFFB032A7129358AFF96B9F79B06ACFFB18AC90C2ADD7`
### Addresses
Addresses for each public key types are computed as follows:
#### Ed25519
First 20-bytes of the SHA256 hash of the raw 32-byte public key:
```
address = SHA256(pubkey)[:20]
```
NOTE: before v0.22.0, this was the RIPEMD160 of the Amino encoded public key.
#### Secp256k1
RIPEMD160 hash of the SHA256 hash of the OpenSSL compressed public key:
```
address = RIPEMD160(SHA256(pubkey))
```
This is the same as Bitcoin.
## Other Common Types
### BitArray
The BitArray is used in block headers and some consensus messages to signal
whether or not something was done by each validator. BitArray is represented
with a struct containing the number of bits (`Bits`) and the bit-array itself
encoded in base64 (`Elems`).
```go
type BitArray struct {
Bits int
Elems []uint64
}
```
This type is easily encoded directly by Amino.
Note BitArray receives a special JSON encoding in the form of `x` and `_`
representing `1` and `0`. Ie. the BitArray `10110` would be JSON encoded as
`"x_xx_"`
### Part
Part is used to break up blocks into pieces that can be gossiped in parallel
and securely verified using a Merkle tree of the parts.
Part contains the index of the part in the larger set (`Index`), the actual
underlying data of the part (`Bytes`), and a simple Merkle proof that the part is contained in
the larger set (`Proof`).
```go
type Part struct {
Index int
Bytes byte[]
Proof byte[]
}
```
### MakeParts
Encode an object using Amino and slice it into parts.
```go
func MakeParts(obj interface{}, partSize int) []Part
```
## Merkle Trees
For an overview of Merkle trees, see
[wikipedia](https://en.wikipedia.org/wiki/Merkle_tree)
A Simple Tree is a simple compact binary tree for a static list of items. Simple Merkle trees are used in numerous places in Tendermint to compute a cryptographic digest of a data structure. In a Simple Tree, the transactions and validation signatures of a block are hashed using this simple merkle tree logic.
If the number of items is not a power of two, the tree will not be full
and some leaf nodes will be at different levels. Simple Tree tries to
keep both sides of the tree the same size, but the left side may be one
greater, for example:
```
Simple Tree with 6 items Simple Tree with 7 items
* *
/ \ / \
/ \ / \
/ \ / \
/ \ / \
* * * *
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
* h2 * h5 * * * h6
/ \ / \ / \ / \ / \
h0 h1 h3 h4 h0 h1 h2 h3 h4 h5
```
2018-06-30 22:40:03 -07:00
Tendermint always uses the `TMHASH` hash function, which is the first 20-bytes
of the SHA256:
```
func TMHASH(bz []byte) []byte {
shasum := SHA256(bz)
return shasum[:20]
}
```
### Simple Merkle Root
The function `SimpleMerkleRoot` is a simple recursive function defined as follows:
```go
func SimpleMerkleRoot(hashes [][]byte) []byte{
switch len(hashes) {
case 0:
return nil
case 1:
return hashes[0]
default:
left := SimpleMerkleRoot(hashes[:(len(hashes)+1)/2])
right := SimpleMerkleRoot(hashes[(len(hashes)+1)/2:])
return SimpleConcatHash(left, right)
}
}
func SimpleConcatHash(left, right []byte) []byte{
left = encodeByteSlice(left)
right = encodeByteSlice(right)
2018-06-30 22:40:03 -07:00
return TMHASH(append(left, right))
}
```
Note that the leaves are Amino encoded as byte-arrays (ie. simple Uvarint length
prefix) before being concatenated together and hashed.
Note: we will abuse notion and invoke `SimpleMerkleRoot` with arguments of type `struct` or type `[]struct`.
2018-06-30 22:40:03 -07:00
For `struct` arguments, we compute a `[][]byte` containing the hash of each
field in the struct sorted by the hash of the field name.
For `[]struct` arguments, we compute a `[][]byte` by hashing the individual `struct` elements.
### Simple Merkle Proof
Proof that a leaf is in a Merkle tree consists of a simple structure:
```
type SimpleProof struct {
Aunts [][]byte
}
```
Which is verified using the following:
```
func (proof SimpleProof) Verify(index, total int, leafHash, rootHash []byte) bool {
computedHash := computeHashFromAunts(index, total, leafHash, proof.Aunts)
return computedHash == rootHash
}
func computeHashFromAunts(index, total int, leafHash []byte, innerHashes [][]byte) []byte{
assert(index < total && index >= 0 && total > 0)
if total == 1{
assert(len(proof.Aunts) == 0)
return leafHash
}
assert(len(innerHashes) > 0)
numLeft := (total + 1) / 2
if index < numLeft {
leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
assert(leftHash != nil)
return SimpleHashFromTwoHashes(leftHash, innerHashes[len(innerHashes)-1])
}
rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
assert(rightHash != nil)
return SimpleHashFromTwoHashes(innerHashes[len(innerHashes)-1], rightHash)
}
```
### Simple Tree with Dictionaries
The Simple Tree is used to merkelize a list of items, so to merkelize a
(short) dictionary of key-value pairs, encode the dictionary as an
ordered list of `KVPair` structs. The block hash is such a hash
derived from all the fields of the block `Header`. The state hash is
similarly derived.
### IAVL+ Tree
2018-09-09 23:42:48 -07:00
Because Tendermint only uses a Simple Merkle Tree, application developers are expect to use their own Merkle tree in their applications. For example, the IAVL+ Tree - an immutable self-balancing binary tree for persisting application state is used by the [Cosmos SDK](https://github.com/cosmos/cosmos-sdk/blob/develop/docs/sdk/core/multistore.md)
## JSON
### Amino
Amino also supports JSON encoding - registered types are simply encoded as:
```
{
"type": "<amino type name>",
"value": <JSON>
}
```
For instance, an ED25519 PubKey would look like:
```
{
2018-06-20 20:25:08 -07:00
"type": "tendermint/PubKeyEd25519",
"value": "uZ4h63OFWuQ36ZZ4Bd6NF+/w9fWUwrOncrQsackrsTk="
}
```
Where the `"value"` is the base64 encoding of the raw pubkey bytes, and the
`"type"` is the amino name for Ed25519 pubkeys.
### Signed Messages
Signed messages (eg. votes, proposals) in the consensus are encoded using Amino-JSON, rather than in the standard binary format
(NOTE: this is subject to change: https://github.com/tendermint/tendermint/issues/1622)
When signing, the elements of a message are sorted by key and prepended with
a `@chain_id` and `@type` field.
We call this encoding the CanonicalSignBytes. For instance, CanonicalSignBytes for a vote would look
like:
```json
{"@chain_id":"test_chain_id","@type":"vote","block_id":{"hash":"8B01023386C371778ECB6368573E539AFC3CC860","parts":{"hash":"72DB3D959635DFF1BB567BEDAA70573392C51596","total":"1000000"}},"height":"12345","round":"2","timestamp":"2017-12-25T03:00:01.234Z","type":2}
```