package common import ( crand "crypto/rand" mrand "math/rand" "sync" "time" ) const ( strChars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" // 62 characters ) // pseudo random number generator. // seeded with OS randomness (crand) type Rand struct { sync.Mutex rand *mrand.Rand } var grand *Rand func init() { grand = NewRand() grand.init() } func NewRand() *Rand { rand := &Rand{} rand.init() return rand } func (r *Rand) init() { bz := cRandBytes(8) var seed uint64 for i := 0; i < 8; i++ { seed |= uint64(bz[i]) seed <<= 8 } r.reset(int64(seed)) } func (r *Rand) reset(seed int64) { r.rand = mrand.New(mrand.NewSource(seed)) } //---------------------------------------- // Global functions func Seed(seed int64) { grand.Seed(seed) } func RandStr(length int) string { return grand.Str(length) } func RandUint16() uint16 { return grand.Uint16() } func RandUint32() uint32 { return grand.Uint32() } func RandUint64() uint64 { return grand.Uint64() } func RandUint() uint { return grand.Uint() } func RandInt16() int16 { return grand.Int16() } func RandInt32() int32 { return grand.Int32() } func RandInt64() int64 { return grand.Int64() } func RandInt() int { return grand.Int() } func RandInt31() int32 { return grand.Int31() } func RandInt31n(n int32) int32 { return grand.Int31n(n) } func RandInt63() int64 { return grand.Int63() } func RandUint16Exp() uint16 { return grand.Uint16Exp() } func RandUint32Exp() uint32 { return grand.Uint32Exp() } func RandUint64Exp() uint64 { return grand.Uint64Exp() } func RandFloat32() float32 { return grand.Float32() } func RandFloat64() float64 { return grand.Float64() } func RandTime() time.Time { return grand.Time() } func RandBytes(n int) []byte { return grand.Bytes(n) } func RandIntn(n int) int { return grand.Intn(n) } func RandPerm(n int) []int { return grand.Perm(n) } //---------------------------------------- // Rand methods func (r *Rand) Seed(seed int64) { r.Lock() r.reset(seed) r.Unlock() } // Constructs an alphanumeric string of given length. // It is not safe for cryptographic usage. func (r *Rand) Str(length int) string { chars := []byte{} MAIN_LOOP: for { val := r.Int63() for i := 0; i < 10; i++ { v := int(val & 0x3f) // rightmost 6 bits if v >= 62 { // only 62 characters in strChars val >>= 6 continue } else { chars = append(chars, strChars[v]) if len(chars) == length { break MAIN_LOOP } val >>= 6 } } } return string(chars) } // It is not safe for cryptographic usage. func (r *Rand) Uint16() uint16 { return uint16(r.Uint32() & (1<<16 - 1)) } // It is not safe for cryptographic usage. func (r *Rand) Uint32() uint32 { r.Lock() u32 := r.rand.Uint32() r.Unlock() return u32 } // It is not safe for cryptographic usage. func (r *Rand) Uint64() uint64 { return uint64(r.Uint32())<<32 + uint64(r.Uint32()) } // It is not safe for cryptographic usage. func (r *Rand) Uint() uint { r.Lock() i := r.rand.Int() r.Unlock() return uint(i) } // It is not safe for cryptographic usage. func (r *Rand) Int16() int16 { return int16(r.Uint32() & (1<<16 - 1)) } // It is not safe for cryptographic usage. func (r *Rand) Int32() int32 { return int32(r.Uint32()) } // It is not safe for cryptographic usage. func (r *Rand) Int64() int64 { return int64(r.Uint64()) } // It is not safe for cryptographic usage. func (r *Rand) Int() int { r.Lock() i := r.rand.Int() r.Unlock() return i } // It is not safe for cryptographic usage. func (r *Rand) Int31() int32 { r.Lock() i31 := r.rand.Int31() r.Unlock() return i31 } // It is not safe for cryptographic usage. func (r *Rand) Int31n(n int32) int32 { r.Lock() i31n := r.rand.Int31n(n) r.Unlock() return i31n } // It is not safe for cryptographic usage. func (r *Rand) Int63() int64 { r.Lock() i63 := r.rand.Int63() r.Unlock() return i63 } // Distributed pseudo-exponentially to test for various cases // It is not safe for cryptographic usage. func (r *Rand) Uint16Exp() uint16 { bits := r.Uint32() % 16 if bits == 0 { return 0 } n := uint16(1 << (bits - 1)) n += uint16(r.Int31()) & ((1 << (bits - 1)) - 1) return n } // Distributed pseudo-exponentially to test for various cases // It is not safe for cryptographic usage. func (r *Rand) Uint32Exp() uint32 { bits := r.Uint32() % 32 if bits == 0 { return 0 } n := uint32(1 << (bits - 1)) n += uint32(r.Int31()) & ((1 << (bits - 1)) - 1) return n } // Distributed pseudo-exponentially to test for various cases // It is not safe for cryptographic usage. func (r *Rand) Uint64Exp() uint64 { bits := r.Uint32() % 64 if bits == 0 { return 0 } n := uint64(1 << (bits - 1)) n += uint64(r.Int63()) & ((1 << (bits - 1)) - 1) return n } // It is not safe for cryptographic usage. func (r *Rand) Float32() float32 { r.Lock() f32 := r.rand.Float32() r.Unlock() return f32 } // It is not safe for cryptographic usage. func (r *Rand) Float64() float64 { r.Lock() f64 := r.rand.Float64() r.Unlock() return f64 } // It is not safe for cryptographic usage. func (r *Rand) Time() time.Time { return time.Unix(int64(r.Uint64Exp()), 0) } // RandBytes returns n random bytes from the OS's source of entropy ie. via crypto/rand. // It is not safe for cryptographic usage. func (r *Rand) Bytes(n int) []byte { // cRandBytes isn't guaranteed to be fast so instead // use random bytes generated from the internal PRNG bs := make([]byte, n) for i := 0; i < len(bs); i++ { bs[i] = byte(r.Int() & 0xFF) } return bs } // RandIntn returns, as an int, a non-negative pseudo-random number in [0, n). // It panics if n <= 0. // It is not safe for cryptographic usage. func (r *Rand) Intn(n int) int { r.Lock() i := r.rand.Intn(n) r.Unlock() return i } // RandPerm returns a pseudo-random permutation of n integers in [0, n). // It is not safe for cryptographic usage. func (r *Rand) Perm(n int) []int { r.Lock() perm := r.rand.Perm(n) r.Unlock() return perm } // NOTE: This relies on the os's random number generator. // For real security, we should salt that with some seed. // See github.com/tendermint/go-crypto for a more secure reader. func cRandBytes(numBytes int) []byte { b := make([]byte, numBytes) _, err := crand.Read(b) if err != nil { PanicCrisis(err) } return b }