tendermint/mempool/reactor.go

228 lines
5.8 KiB
Go

package mempool
import (
"bytes"
"fmt"
"reflect"
"time"
. "github.com/tendermint/tendermint/common"
"github.com/tendermint/tendermint/events"
"github.com/tendermint/tendermint/p2p"
"github.com/tendermint/tendermint/types"
"github.com/tendermint/tendermint/wire"
)
var (
MempoolChannel = byte(0x30)
checkExecutedTxsMilliseconds = 1 // check for new mempool txs to send to peer
txsToSendPerCheck = 64 // send up to this many txs from the mempool per check
)
// MempoolReactor handles mempool tx broadcasting amongst peers.
type MempoolReactor struct {
p2p.BaseReactor
Mempool *Mempool
evsw events.Fireable
}
func NewMempoolReactor(mempool *Mempool) *MempoolReactor {
memR := &MempoolReactor{
Mempool: mempool,
}
memR.BaseReactor = *p2p.NewBaseReactor(log, "MempoolReactor", memR)
return memR
}
// Implements Reactor
func (memR *MempoolReactor) GetChannels() []*p2p.ChannelDescriptor {
return []*p2p.ChannelDescriptor{
&p2p.ChannelDescriptor{
ID: MempoolChannel,
Priority: 5,
},
}
}
// Implements Reactor
func (memR *MempoolReactor) AddPeer(peer *p2p.Peer) {
// Each peer gets a go routine on which we broadcast transactions in the same order we applied them to our state.
go memR.broadcastTxRoutine(peer)
}
// Implements Reactor
func (memR *MempoolReactor) RemovePeer(peer *p2p.Peer, reason interface{}) {
// broadcast routine checks if peer is gone and returns
}
// Implements Reactor
func (memR *MempoolReactor) Receive(chID byte, src *p2p.Peer, msgBytes []byte) {
_, msg, err := DecodeMessage(msgBytes)
if err != nil {
log.Warn("Error decoding message", "error", err)
return
}
log.Notice("MempoolReactor received message", "msg", msg)
switch msg := msg.(type) {
case *TxMessage:
err := memR.Mempool.AddTx(msg.Tx)
if err != nil {
// Bad, seen, or conflicting tx.
log.Info("Could not add tx", "tx", msg.Tx)
return
} else {
log.Info("Added valid tx", "tx", msg.Tx)
}
// broadcasting happens from go routines per peer
default:
log.Warn(Fmt("Unknown message type %v", reflect.TypeOf(msg)))
}
}
// Just an alias for AddTx since broadcasting happens in peer routines
func (memR *MempoolReactor) BroadcastTx(tx types.Tx) error {
return memR.Mempool.AddTx(tx)
}
type PeerState interface {
GetHeight() int
}
// send new mempool txs to peer, strictly in order we applied them to our state.
// new blocks take chunks out of the mempool, but we've already sent some txs to the peer.
// so we wait to hear that the peer has progressed to the new height, and then continue sending txs from where we left off
func (memR *MempoolReactor) broadcastTxRoutine(peer *p2p.Peer) {
newBlockChan := make(chan ResetInfo)
memR.evsw.(*events.EventSwitch).AddListenerForEvent("broadcastRoutine:"+peer.Key, types.EventStringNewBlock(), func(data types.EventData) {
// no lock needed because consensus is blocking on this
// and the mempool is reset before this event fires
newBlockChan <- memR.Mempool.resetInfo
})
timer := time.NewTicker(time.Millisecond * time.Duration(checkExecutedTxsMilliseconds))
currentHeight := memR.Mempool.state.LastBlockHeight
var nTxs, txsSent int
var txs []types.Tx
for {
select {
case <-timer.C:
if !peer.IsRunning() {
return
}
// make sure the peer is up to date
peerState := peer.Data.Get(types.PeerStateKey).(PeerState)
if peerState.GetHeight() < currentHeight {
continue
}
// check the mempool for new transactions
nTxs, txs = memR.getNewTxs(txsSent, currentHeight)
theseTxsSent := 0
start := time.Now()
TX_LOOP:
for _, tx := range txs {
// send tx to peer.
msg := &TxMessage{Tx: tx}
success := peer.Send(MempoolChannel, msg)
if !success {
break TX_LOOP
} else {
theseTxsSent += 1
}
}
if theseTxsSent > 0 {
txsSent += theseTxsSent
log.Warn("Sent txs to peer", "ntxs", theseTxsSent, "took", time.Since(start), "total_sent", txsSent, "total_exec", nTxs)
}
case ri := <-newBlockChan:
currentHeight = ri.Height
// find out how many txs below what we've sent were included in a block and how many became invalid
included := tallyRangesUpTo(ri.Included, txsSent)
invalidated := tallyRangesUpTo(ri.Invalid, txsSent)
txsSent -= included + invalidated
}
}
}
// fetch new txs from the mempool
func (memR *MempoolReactor) getNewTxs(txsSent, height int) (nTxs int, txs []types.Tx) {
memR.Mempool.mtx.Lock()
defer memR.Mempool.mtx.Unlock()
// if the mempool got ahead of us just return empty txs
if memR.Mempool.state.LastBlockHeight != height {
return
}
nTxs = len(memR.Mempool.txs)
if txsSent < nTxs {
if nTxs > txsSent+txsToSendPerCheck {
txs = memR.Mempool.txs[txsSent : txsSent+txsToSendPerCheck]
} else {
txs = memR.Mempool.txs[txsSent:]
}
}
return
}
// return the size of ranges less than upTo
func tallyRangesUpTo(ranger []Range, upTo int) int {
totalUpTo := 0
for _, r := range ranger {
if r.Start >= upTo {
break
}
if r.Start+r.Length-1 > upTo {
totalUpTo += upTo - r.Start - 1
break
}
totalUpTo += r.Length
}
return totalUpTo
}
// implements events.Eventable
func (memR *MempoolReactor) SetFireable(evsw events.Fireable) {
memR.evsw = evsw
}
//-----------------------------------------------------------------------------
// Messages
const (
msgTypeTx = byte(0x01)
)
type MempoolMessage interface{}
var _ = wire.RegisterInterface(
struct{ MempoolMessage }{},
wire.ConcreteType{&TxMessage{}, msgTypeTx},
)
func DecodeMessage(bz []byte) (msgType byte, msg MempoolMessage, err error) {
msgType = bz[0]
n := new(int64)
r := bytes.NewReader(bz)
msg = wire.ReadBinary(struct{ MempoolMessage }{}, r, n, &err).(struct{ MempoolMessage }).MempoolMessage
return
}
//-------------------------------------
type TxMessage struct {
Tx types.Tx
}
func (m *TxMessage) String() string {
return fmt.Sprintf("[TxMessage %v]", m.Tx)
}