tendermint/p2p/peer.go

270 lines
5.5 KiB
Go

package p2p
import (
"bytes"
"fmt"
"io"
"sync/atomic"
"time"
. "github.com/tendermint/tendermint/binary"
)
/* Peer */
type Peer struct {
outbound bool
conn *Connection
channels map[string]*Channel
quit chan struct{}
started uint32
stopped uint32
}
func newPeer(conn *Connection, channels map[string]*Channel) *Peer {
return &Peer{
conn: conn,
channels: channels,
quit: make(chan struct{}),
stopped: 0,
}
}
func (p *Peer) start(pktRecvQueues map[string]chan *InboundPacket, onPeerError func(*Peer, interface{})) {
log.Debug("Starting %v", p)
if atomic.CompareAndSwapUint32(&p.started, 0, 1) {
// on connection error
onError := func(r interface{}) {
p.stop()
onPeerError(p, r)
}
p.conn.Start(p.channels, onError)
for chName, _ := range p.channels {
chInQueue := pktRecvQueues[chName]
go p.recvHandler(chName, chInQueue)
go p.sendHandler(chName)
}
}
}
func (p *Peer) stop() {
if atomic.CompareAndSwapUint32(&p.stopped, 0, 1) {
log.Debug("Stopping %v", p)
close(p.quit)
p.conn.Stop()
}
}
func (p *Peer) IsOutbound() bool {
return p.outbound
}
func (p *Peer) LocalAddress() *NetAddress {
return p.conn.LocalAddress()
}
func (p *Peer) RemoteAddress() *NetAddress {
return p.conn.RemoteAddress()
}
func (p *Peer) Channel(chName string) *Channel {
return p.channels[chName]
}
// TrySend returns true if the packet was successfully queued.
// Returning true does not imply that the packet will be sent.
func (p *Peer) TrySend(pkt Packet) bool {
channel := p.Channel(string(pkt.Channel))
sendQueue := channel.sendQueue
if atomic.LoadUint32(&p.stopped) == 1 {
return false
}
select {
case sendQueue <- pkt:
log.Debug("SEND %v: %v", p, pkt)
return true
default: // buffer full
log.Debug("FAIL SEND %v: %v", p, pkt)
return false
}
}
func (p *Peer) Send(pkt Packet) bool {
channel := p.Channel(string(pkt.Channel))
sendQueue := channel.sendQueue
if atomic.LoadUint32(&p.stopped) == 1 {
return false
}
sendQueue <- pkt
log.Debug("SEND %v: %v", p, pkt)
return true
}
func (p *Peer) WriteTo(w io.Writer) (n int64, err error) {
return p.RemoteAddress().WriteTo(w)
}
func (p *Peer) String() string {
if p.outbound {
return fmt.Sprintf("P(->%v)", p.conn)
} else {
return fmt.Sprintf("P(%v->)", p.conn)
}
}
// sendHandler pulls from a channel and pushes to the connection.
// Each channel gets its own sendHandler goroutine;
// Golang's channel implementation handles the scheduling.
func (p *Peer) sendHandler(chName string) {
// log.Debug("%v sendHandler [%v]", p, chName)
channel := p.channels[chName]
sendQueue := channel.sendQueue
FOR_LOOP:
for {
select {
case <-p.quit:
break FOR_LOOP
case pkt := <-sendQueue:
// blocks until the connection is Stop'd,
// which happens when this peer is Stop'd.
p.conn.Send(pkt)
}
}
// log.Debug("%v sendHandler [%v] closed", p, chName)
// Cleanup
}
// recvHandler pulls from a channel and pushes to the given pktRecvQueue.
// Each channel gets its own recvHandler goroutine.
// Many peers have goroutines that push to the same pktRecvQueue.
// Golang's channel implementation handles the scheduling.
func (p *Peer) recvHandler(chName string, pktRecvQueue chan<- *InboundPacket) {
// log.Debug("%v recvHandler [%v]", p, chName)
channel := p.channels[chName]
recvQueue := channel.recvQueue
FOR_LOOP:
for {
select {
case <-p.quit:
break FOR_LOOP
case pkt := <-recvQueue:
// send to pktRecvQueue
inboundPacket := &InboundPacket{
Peer: p,
Time: Time{time.Now()},
Packet: pkt,
}
select {
case <-p.quit:
break FOR_LOOP
case pktRecvQueue <- inboundPacket:
continue
}
}
}
// log.Debug("%v recvHandler [%v] closed", p, chName)
// Cleanup
}
//-----------------------------------------------------------------------------
/* ChannelDescriptor */
type ChannelDescriptor struct {
Name string
SendBufferSize int
RecvBufferSize int
}
/* Channel */
type Channel struct {
name string
recvQueue chan Packet
sendQueue chan Packet
//stats Stats
}
func newChannel(desc ChannelDescriptor) *Channel {
return &Channel{
name: desc.Name,
recvQueue: make(chan Packet, desc.RecvBufferSize),
sendQueue: make(chan Packet, desc.SendBufferSize),
}
}
func (c *Channel) Name() string {
return c.name
}
func (c *Channel) RecvQueue() <-chan Packet {
return c.recvQueue
}
func (c *Channel) SendQueue() chan<- Packet {
return c.sendQueue
}
//-----------------------------------------------------------------------------
/*
Packet encapsulates a ByteSlice on a Channel.
*/
type Packet struct {
Channel String
Bytes ByteSlice
// Hash
}
func NewPacket(chName String, msg Binary) Packet {
msgBytes := BinaryBytes(msg)
return Packet{
Channel: chName,
Bytes: msgBytes,
}
}
func (p Packet) WriteTo(w io.Writer) (n int64, err error) {
n, err = WriteOnto(p.Channel, w, n, err)
n, err = WriteOnto(p.Bytes, w, n, err)
return
}
func (p Packet) Reader() io.Reader {
return bytes.NewReader(p.Bytes)
}
func (p Packet) String() string {
return fmt.Sprintf("%v:%X", p.Channel, p.Bytes)
}
func ReadPacketSafe(r io.Reader) (pkt Packet, err error) {
chName, err := ReadStringSafe(r)
if err != nil {
return
}
// TODO: packet length sanity check.
bytes, err := ReadByteSliceSafe(r)
if err != nil {
return
}
return Packet{Channel: chName, Bytes: bytes}, nil
}
/*
InboundPacket extends Packet with fields relevant to inbound packets.
*/
type InboundPacket struct {
Peer *Peer
Time Time
Packet
}