wormhole/solana/bridge/program/tests/integration.rs

1581 lines
49 KiB
Rust

use libsecp256k1::SecretKey;
use rand::Rng;
use solana_program::{
pubkey::Pubkey,
system_instruction,
};
use solana_program_test::{
tokio,
BanksClient,
};
use solana_sdk::{
commitment_config::CommitmentLevel,
signature::{
Keypair,
Signer,
},
};
use solitaire::{
processors::seeded::Seeded,
AccountState,
};
use bridge::{
accounts::{
Bridge,
BridgeData,
FeeCollector,
GuardianSet,
GuardianSetData,
GuardianSetDerivationData,
PostedVAA,
PostedVAAData,
PostedVAADerivationData,
SignatureSetData,
},
instructions,
types::{
ConsistencyLevel,
GovernancePayloadGuardianSetChange,
GovernancePayloadSetMessageFee,
GovernancePayloadTransferFees,
GovernancePayloadUpgrade,
},
SerializeGovernancePayload,
};
use primitive_types::U256;
use solana_program::rent::Rent;
mod common;
// The pubkey corresponding to this key is "CiByUvEcx7w2HA4VHcPCBUAFQ73Won9kB36zW9VjirSr" and needs
// to be exported as the `EMITTER_ADDRESS` environment variable when building the program bpf in
// order for the governance related tests to pass.
const GOVERNANCE_KEY: [u8; 64] = [
240, 133, 120, 113, 30, 67, 38, 184, 197, 72, 234, 99, 241, 21, 58, 225, 41, 157, 171, 44, 196,
163, 134, 236, 92, 148, 110, 68, 127, 114, 177, 0, 173, 253, 199, 9, 242, 142, 201, 174, 108,
197, 18, 102, 115, 0, 31, 205, 127, 188, 191, 56, 171, 228, 20, 247, 149, 170, 141, 231, 147,
88, 97, 199,
];
struct Context {
public: Vec<[u8; 20]>,
secret: Vec<SecretKey>,
seq: Sequencer,
}
/// Small helper to track and provide sequences during tests. This is in particular needed for
/// guardian operations that require them for derivations.
struct Sequencer {
sequences: std::collections::HashMap<[u8; 32], u64>,
}
impl Sequencer {
fn next(&mut self, emitter: [u8; 32]) -> u64 {
let entry = self.sequences.entry(emitter).or_insert(0);
*entry += 1;
*entry - 1
}
}
async fn initialize() -> (Context, BanksClient, Keypair, Pubkey) {
let (public_keys, secret_keys) = common::generate_keys(6);
let context = Context {
public: public_keys,
secret: secret_keys,
seq: Sequencer {
sequences: std::collections::HashMap::new(),
},
};
let (mut client, payer, program) = common::setup().await;
// Use a timestamp from a few seconds earlier for testing to simulate thread::sleep();
let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs()
- 10;
common::initialize(&mut client, program, &payer, &context.public, 500)
.await
.unwrap();
// Verify the initial bridge state is as expected.
let bridge_key = Bridge::<'_, { AccountState::Uninitialized }>::key(None, &program);
let guardian_set_key = GuardianSet::<'_, { AccountState::Uninitialized }>::key(
&GuardianSetDerivationData { index: 0 },
&program,
);
// Fetch account states.
let bridge: BridgeData = common::get_account_data(&mut client, bridge_key).await;
let guardian_set: GuardianSetData =
common::get_account_data(&mut client, guardian_set_key).await;
// Bridge Config should be as expected.
assert_eq!(bridge.guardian_set_index, 0);
assert_eq!(bridge.config.guardian_set_expiration_time, 2_000_000_000);
assert_eq!(bridge.config.fee, 500);
// Guardian set account must also be as expected.
assert_eq!(guardian_set.index, 0);
assert_eq!(guardian_set.keys, context.public);
assert!(guardian_set.creation_time as u64 > now);
(context, client, payer, program)
}
#[tokio::test]
async fn bridge_messages() {
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Data/Nonce used for emitting a message we want to prove exists. Run this twice to make sure
// that duplicate data does not clash.
let message = [0u8; 32].to_vec();
let emitter = Keypair::new();
for _ in 0..2 {
let nonce = rand::thread_rng().gen();
// Post the message, publishing the data for guardian consumption.
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.consistency_level, 1);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Emulate Guardian behaviour, verifying the data and publishing signatures/VAA.
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let vaa_time = vaa.timestamp;
let signature_set =
common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
// Derive where we expect the posted VAA to be stored.
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Fetch chain accounts to verify state.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
// Prepare another message with no data in its message to confirm it succeeds.
let nonce = rand::thread_rng().gen();
let message = b"".to_vec();
// Post the message, publishing the data for guardian consumption.
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.consistency_level, 1);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Emulate Guardian behaviour, verifying the data and publishing signatures/VAA.
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let vaa_time = vaa.timestamp;
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
// Derive where we expect the posted VAA to be stored.
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Fetch chain accounts to verify state.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
// Make sure that posting messages with account reuse works and only accepts messages with the same
// length.
#[tokio::test]
async fn test_bridge_messages_unreliable() {
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Data/Nonce used for emitting a message we want to prove exists. Run this twice to make sure
// that duplicate data does not clash.
let emitter = Keypair::new();
let message_key = Keypair::new();
for _ in 0..2 {
let nonce = rand::thread_rng().gen();
let message: [u8; 32] = rand::thread_rng().gen();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Post the message, publishing the data for guardian consumption.
common::post_message_unreliable(
client,
program,
payer,
&emitter,
&message_key,
nonce,
message.to_vec(),
10_000,
)
.await
.unwrap();
// Verify on chain Message
let posted_message: PostedVAAData =
common::get_account_data(client, message_key.pubkey()).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Emulate Guardian behaviour, verifying the data and publishing signatures/VAA.
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.to_vec(), nonce, sequence, 0, 1);
let signature_set =
common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
// Fetch chain accounts to verify state.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain vaa
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
// Make sure that posting a message with a different length fails (<len)
let nonce = rand::thread_rng().gen();
let message: [u8; 16] = rand::thread_rng().gen();
assert!(common::post_message_unreliable(
client,
program,
payer,
&emitter,
&message_key,
nonce,
message.to_vec(),
10_000,
)
.await
.is_err());
// Make sure that posting a message with a different length fails (>len)
let nonce = rand::thread_rng().gen();
let message: [u8; 128] = [0u8; 128];
assert!(common::post_message_unreliable(
client,
program,
payer,
&emitter,
&message_key,
nonce,
message.to_vec(),
10_000,
)
.await
.is_err());
}
#[tokio::test]
async fn test_bridge_messages_unreliable_do_not_override_reliable() {
let (ref mut _context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::new();
let message_key = Keypair::new();
let nonce = rand::thread_rng().gen();
let message: [u8; 32] = rand::thread_rng().gen();
// Post the message using the reliable method
common::post_message(
client,
program,
payer,
&emitter,
Some(&message_key),
nonce,
message.to_vec(),
10_000,
)
.await
.unwrap();
// Make sure that posting an unreliable message to the same message account fails
assert!(common::post_message_unreliable(
client,
program,
payer,
&emitter,
&message_key,
nonce,
message.to_vec(),
10_000,
)
.await
.is_err());
}
#[tokio::test]
async fn bridge_works_after_transfer_fees() {
// This test aims to ensure that the bridge remains operational after the
// fees have been transferred out.
// NOTE: the bridge is initialised to take a minimum of 500 in fees.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let fee_collector = FeeCollector::key(None, program);
let initial_balance = common::get_account_balance(client, fee_collector).await;
// First, post a message that transfer out 500 lamports.
// Since posting the message itself costs 500 lamports, this should result
// in the fee collector's account being reset to the initial amount (which
// is the rent exemption amount)
{
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadTransferFees {
amount: 500u128.into(),
to: payer.pubkey().to_bytes(),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
500,
)
.await
.unwrap();
common::transfer_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
payer.pubkey(),
sequence,
)
.await
.unwrap();
}
// Ensure that the account has the same amount of money as we started with
let account_balance = common::get_account_balance(client, fee_collector).await;
assert_eq!(account_balance, initial_balance);
// Next, make sure that we can still post a message.
{
let emitter = Keypair::new();
let nonce = rand::thread_rng().gen();
let message: [u8; 32] = rand::thread_rng().gen();
common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.to_vec(),
500,
)
.await
.unwrap();
}
}
// Make sure that solitaire can claim accounts that already hold lamports so the protocol can't be
// DoSd by someone funding derived accounts making CreateAccount fail.
#[tokio::test]
async fn test_bridge_message_prefunded_account() {
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Data/Nonce used for emitting a message we want to prove exists. Run this twice to make sure
// that duplicate data does not clash.
let payload = [0u8; 32].to_vec();
let emitter = Keypair::new();
let nonce = rand::thread_rng().gen();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Post the message, publishing the data for guardian consumption.
// Transfer money into the fee collector as it needs a balance/must exist.
let fee_collector = FeeCollector::<'_>::key(None, program);
let message = Keypair::new();
// Fund the message account
common::execute(
client,
payer,
&[payer],
&[system_instruction::transfer(
&payer.pubkey(),
&message.pubkey(),
// This is enough to cover the base rent but not enough for account storage
Rent::default().minimum_balance(0),
)],
CommitmentLevel::Processed,
)
.await
.unwrap();
// Capture the resulting message, later functions will need this.
let instruction = instructions::post_message(
*program,
payer.pubkey(),
emitter.pubkey(),
message.pubkey(),
nonce,
payload.clone(),
ConsistencyLevel::Confirmed,
)
.unwrap();
common::execute(
client,
payer,
&[payer, &emitter, &message],
&[
system_instruction::transfer(&payer.pubkey(), &fee_collector, 10_000),
instruction,
],
CommitmentLevel::Processed,
)
.await
.unwrap();
// Verify on chain Message
let posted_message: PostedVAAData = common::get_account_data(client, message.pubkey()).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(posted_message.message.payload, payload);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
}
#[tokio::test]
async fn invalid_emitter() {
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Generate a message we want to persist.
let message = [0u8; 32].to_vec();
let emitter = Keypair::new();
let nonce = rand::thread_rng().gen();
let _sequence = context.seq.next(emitter.pubkey().to_bytes());
let fee_collector = FeeCollector::key(None, program);
let msg_account = Keypair::new();
// Manually send a message that isn't signed by the emitter, which should be rejected to
// prevent fraudulant transactions sent on behalf of an emitter.
let mut instruction = bridge::instructions::post_message(
*program,
payer.pubkey(),
emitter.pubkey(),
msg_account.pubkey(),
nonce,
message,
ConsistencyLevel::Confirmed,
)
.unwrap();
// Modify account list to not require the emitter signs.
instruction.accounts[2].is_signer = false;
// Executing this should fail.
assert!(common::execute(
client,
payer,
&[payer, &msg_account],
&[
system_instruction::transfer(&payer.pubkey(), &fee_collector, 10_000),
instruction,
],
solana_sdk::commitment_config::CommitmentLevel::Processed,
)
.await
.is_err());
}
#[tokio::test]
async fn guardian_set_change() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Use a timestamp from a few seconds earlier for testing to simulate thread::sleep();
let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs()
- 10;
// Upgrade the guardian set with a new set of guardians.
let (new_public_keys, new_secret_keys) = common::generate_keys(1);
let nonce = rand::thread_rng().gen();
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let message = GovernancePayloadGuardianSetChange {
new_guardian_set_index: 1,
new_guardian_set: new_public_keys.clone(),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.consistency_level, 1);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let vaa_time = vaa.timestamp;
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
common::upgrade_guardian_set(
client,
program,
payer,
message_key,
emitter.pubkey(),
0,
1,
sequence,
)
.await
.unwrap();
// Derive keys for accounts we want to check.
let bridge_key = Bridge::<'_, { AccountState::Uninitialized }>::key(None, program);
let guardian_set_key = GuardianSet::<'_, { AccountState::Uninitialized }>::key(
&GuardianSetDerivationData { index: 1 },
program,
);
// Fetch account states.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let bridge: BridgeData = common::get_account_data(client, bridge_key).await;
let guardian_set: GuardianSetData = common::get_account_data(client, guardian_set_key).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Confirm the bridge now has a new guardian set, and no other fields have shifted.
assert_eq!(bridge.guardian_set_index, 1);
assert_eq!(bridge.config.guardian_set_expiration_time, 2_000_000_000);
assert_eq!(bridge.config.fee, 500);
// Verify Created Guardian Set
assert_eq!(guardian_set.index, 1);
assert_eq!(guardian_set.keys, new_public_keys);
assert!(guardian_set.creation_time as u64 > now);
// Submit the message a second time with a new nonce.
let nonce = rand::thread_rng().gen();
let _message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
context.public = new_public_keys;
context.secret = new_secret_keys;
// Emulate Guardian behaviour, verifying the data and publishing signatures/VAA.
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 1, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 1)
.await
.unwrap();
let vaa_time = vaa.timestamp;
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Fetch chain accounts to verify state.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 1);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
#[tokio::test]
async fn guardian_set_change_fails() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Use a random emitter key to confirm the bridge rejects transactions from non-governance key.
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Upgrade the guardian set with a new set of guardians.
let (new_public_keys, _new_secret_keys) = common::generate_keys(6);
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadGuardianSetChange {
new_guardian_set_index: 2,
new_guardian_set: new_public_keys.clone(),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
assert!(common::upgrade_guardian_set(
client,
program,
payer,
message_key,
emitter.pubkey(),
1,
2,
sequence,
)
.await
.is_err());
}
#[tokio::test]
async fn set_fees() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadSetMessageFee {
fee: U256::from(100u128),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
common::set_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
sequence,
)
.await
.unwrap();
// Fetch Bridge to check on-state value.
let bridge_key = Bridge::<'_, { AccountState::Uninitialized }>::key(None, program);
let fee_collector = FeeCollector::key(None, program);
let bridge: BridgeData = common::get_account_data(client, bridge_key).await;
assert_eq!(bridge.config.fee, 100);
// Check that posting a new message fails with too small a fee.
let account_balance = common::get_account_balance(client, fee_collector).await;
let emitter = Keypair::new();
let nonce = rand::thread_rng().gen();
let message = [0u8; 32].to_vec();
assert!(common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
50
)
.await
.is_err());
assert_eq!(
common::get_account_balance(client, fee_collector).await,
account_balance,
);
// And succeeds with the new.
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = [0u8; 32].to_vec();
let _message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
100,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
let vaa_time = vaa.timestamp;
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Verify that the fee collector was paid.
assert_eq!(
common::get_account_balance(client, fee_collector).await,
account_balance + 100,
);
// And that the new message is on chain.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
#[tokio::test]
async fn set_fees_fails() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Use a random key to confirm only the governance key is respected.
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadSetMessageFee {
fee: U256::from(100u128),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
assert!(common::set_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
sequence,
)
.await
.is_err());
}
#[tokio::test]
async fn free_fees() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Set Fees to 0.
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadSetMessageFee {
fee: U256::from(0u128),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
common::set_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
sequence,
)
.await
.unwrap();
// Fetch Bridge to check on-state value.
let bridge_key = Bridge::<'_, { AccountState::Uninitialized }>::key(None, program);
let fee_collector = FeeCollector::key(None, program);
let bridge: BridgeData = common::get_account_data(client, bridge_key).await;
assert_eq!(bridge.config.fee, 0);
// Check that posting a new message is free.
let account_balance = common::get_account_balance(client, fee_collector).await;
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = [0u8; 32].to_vec();
let _message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
0,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
let vaa_time = vaa.timestamp;
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Verify that the fee collector was paid.
assert_eq!(
common::get_account_balance(client, fee_collector).await,
account_balance,
);
// And that the new message is on chain.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
// Verify on chain Message
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(
posted_message.message.consistency_level,
ConsistencyLevel::Confirmed as u8
);
assert_eq!(posted_message.message.vaa_time, vaa_time);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 1);
assert_eq!(
&posted_message.message.emitter_address,
emitter.pubkey().as_ref()
);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
#[tokio::test]
async fn transfer_fees() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadTransferFees {
amount: 100u128.into(),
to: payer.pubkey().to_bytes(),
}
.try_to_vec()
.unwrap();
// Fetch accounts for chain state checking.
let fee_collector = FeeCollector::key(None, program);
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
let previous_balance = common::get_account_balance(client, fee_collector).await;
common::transfer_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
payer.pubkey(),
sequence,
)
.await
.unwrap();
assert_eq!(
common::get_account_balance(client, fee_collector).await,
previous_balance - 100
);
}
#[tokio::test]
async fn transfer_fees_fails() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// Use an invalid emitter.
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadTransferFees {
amount: 100u128.into(),
to: payer.pubkey().to_bytes(),
}
.try_to_vec()
.unwrap();
// Fetch accounts for chain state checking.
let fee_collector = FeeCollector::key(None, program);
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
let previous_balance = common::get_account_balance(client, fee_collector).await;
assert!(common::transfer_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
payer.pubkey(),
sequence,
)
.await
.is_err());
assert_eq!(
common::get_account_balance(client, fee_collector).await,
previous_balance
);
}
#[tokio::test]
async fn transfer_too_much() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadTransferFees {
amount: 100_000_000_000u64.into(),
to: payer.pubkey().to_bytes(),
}
.try_to_vec()
.unwrap();
// Fetch accounts for chain state checking.
let fee_collector = FeeCollector::key(None, program);
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
let previous_balance = common::get_account_balance(client, fee_collector).await;
// Should fail to transfer.
assert!(common::transfer_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
payer.pubkey(),
sequence,
)
.await
.is_err());
assert_eq!(
common::get_account_balance(client, fee_collector).await,
previous_balance
);
}
#[tokio::test]
async fn foreign_bridge_messages() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let nonce = rand::thread_rng().gen();
let message = [0u8; 32].to_vec();
let emitter = Keypair::new();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Verify the VAA generated on a foreign chain.
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 2);
// Derive where we expect created accounts to be.
let message_key = PostedVAA::<'_, { AccountState::MaybeInitialized }>::key(
&PostedVAADerivationData {
payload_hash: body.to_vec(),
},
program,
);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Fetch chain accounts to verify state.
let posted_message: PostedVAAData = common::get_account_data(client, message_key).await;
let signatures: SignatureSetData = common::get_account_data(client, signature_set).await;
assert_eq!(posted_message.message.vaa_version, 0);
assert_eq!(posted_message.message.vaa_signature_account, signature_set);
assert_eq!(posted_message.message.nonce, nonce);
assert_eq!(posted_message.message.sequence, sequence);
assert_eq!(posted_message.message.emitter_chain, 2);
assert_eq!(posted_message.message.payload, message);
assert_eq!(
posted_message.message.emitter_address,
emitter.pubkey().to_bytes()
);
// Verify on chain Signatures
assert_eq!(signatures.hash, body);
assert_eq!(signatures.guardian_set_index, 0);
for (signature, _secret_key) in signatures.signatures.iter().zip(context.secret.iter()) {
assert!(*signature);
}
}
#[tokio::test]
async fn transfer_total_fails() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
// Be sure any previous tests have fully committed.
let fee_collector = FeeCollector::key(None, program);
let account_balance = common::get_account_balance(client, fee_collector).await;
// Prepare to remove total balance, adding 10_000 to include the fee we're about to pay.
let nonce = rand::thread_rng().gen();
let message = GovernancePayloadTransferFees {
amount: (account_balance + 10_000).into(),
to: payer.pubkey().to_bytes(),
}
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
// Transferring total fees should fail, to prevent the account being de-allocated.
assert!(common::transfer_fees(
client,
program,
payer,
message_key,
emitter.pubkey(),
payer.pubkey(),
sequence,
)
.await
.is_err());
// The fee should have been paid, but other than that the balance should be exactly the same,
// I.E non-zero.
assert_eq!(
common::get_account_balance(client, fee_collector).await,
account_balance + 10_000
);
}
// `solana-program-test` doesn't use an upgradeable loader so it's not currently possible to test
// the contract upgrade logic this way. See https://github.com/solana-labs/solana/issues/22950 for
// more details. This test is here mainly as a reference in case the issue above gets fixed, at
// which point this test can be re-enabled.
#[tokio::test]
#[ignore]
async fn upgrade_contract() {
// Initialize a wormhole bridge on Solana to test with.
let (ref mut context, ref mut client, ref payer, ref program) = initialize().await;
// New Contract Address
// let new_contract = Pubkey::new_unique();
let new_contract = *program;
let nonce = rand::thread_rng().gen();
let emitter = Keypair::from_bytes(&GOVERNANCE_KEY).unwrap();
let sequence = context.seq.next(emitter.pubkey().to_bytes());
let message = GovernancePayloadUpgrade { new_contract }
.try_to_vec()
.unwrap();
let message_key = common::post_message(
client,
program,
payer,
&emitter,
None,
nonce,
message.clone(),
10_000,
)
.await
.unwrap();
let (vaa, body, _body_hash) =
common::generate_vaa(&emitter, message.clone(), nonce, sequence, 0, 1);
let signature_set = common::verify_signatures(client, program, payer, body, &context.secret, 0)
.await
.unwrap();
common::post_vaa(client, program, payer, signature_set, vaa)
.await
.unwrap();
common::upgrade_contract(
client,
program,
payer,
message_key,
emitter.pubkey(),
new_contract,
Pubkey::new_unique(),
sequence,
)
.await
.unwrap();
}