wormhole/ethereum/contracts/bridge/Bridge.sol

762 lines
26 KiB
Solidity

// contracts/Bridge.sol
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../libraries/external/BytesLib.sol";
import "./BridgeGetters.sol";
import "./BridgeSetters.sol";
import "./BridgeStructs.sol";
import "./BridgeGovernance.sol";
import "./token/Token.sol";
import "./token/TokenImplementation.sol";
contract Bridge is BridgeGovernance, ReentrancyGuard {
using BytesLib for bytes;
/*
* @dev Produce a AssetMeta message for a given token
*/
function attestToken(address tokenAddress, uint32 nonce) public payable returns (uint64 sequence) {
// decimals, symbol & token are not part of the core ERC20 token standard, so we need to support contracts that dont implement them
(,bytes memory queriedDecimals) = tokenAddress.staticcall(abi.encodeWithSignature("decimals()"));
(,bytes memory queriedSymbol) = tokenAddress.staticcall(abi.encodeWithSignature("symbol()"));
(,bytes memory queriedName) = tokenAddress.staticcall(abi.encodeWithSignature("name()"));
uint8 decimals = abi.decode(queriedDecimals, (uint8));
string memory symbolString = abi.decode(queriedSymbol, (string));
string memory nameString = abi.decode(queriedName, (string));
bytes32 symbol;
bytes32 name;
assembly {
// first 32 bytes hold string length
symbol := mload(add(symbolString, 32))
name := mload(add(nameString, 32))
}
BridgeStructs.AssetMeta memory meta = BridgeStructs.AssetMeta({
payloadID : 2,
tokenAddress : bytes32(uint256(uint160(tokenAddress))), // Address of the token. Left-zero-padded if shorter than 32 bytes
tokenChain : chainId(), // Chain ID of the token
decimals : decimals, // Number of decimals of the token (big-endian uint8)
symbol : symbol, // Symbol of the token (UTF-8)
name : name // Name of the token (UTF-8)
});
bytes memory encoded = encodeAssetMeta(meta);
sequence = wormhole().publishMessage{
value : msg.value
}(nonce, encoded, finality());
}
/*
* @notice Send eth through portal by first wrapping it to WETH.
*/
function wrapAndTransferETH(
uint16 recipientChain,
bytes32 recipient,
uint256 arbiterFee,
uint32 nonce
) public payable returns (uint64 sequence) {
BridgeStructs.TransferResult
memory transferResult = _wrapAndTransferETH(arbiterFee);
sequence = logTransfer(
transferResult.tokenChain,
transferResult.tokenAddress,
transferResult.normalizedAmount,
recipientChain,
recipient,
transferResult.normalizedArbiterFee,
transferResult.wormholeFee,
nonce
);
}
/*
* @notice Send eth through portal by first wrapping it.
*
* @dev This type of transfer is called a "contract-controlled transfer".
* There are three differences from a regular token transfer:
* 1) Additional arbitrary payload can be attached to the message
* 2) Only the recipient (typically a contract) can redeem the transaction
* 3) The sender's address (msg.sender) is also included in the transaction payload
*
* With these three additional components, xDapps can implement cross-chain
* composable interactions.
*/
function wrapAndTransferETHWithPayload(
uint16 recipientChain,
bytes32 recipient,
uint32 nonce,
bytes memory payload
) public payable returns (uint64 sequence) {
BridgeStructs.TransferResult
memory transferResult = _wrapAndTransferETH(0);
sequence = logTransferWithPayload(
transferResult.tokenChain,
transferResult.tokenAddress,
transferResult.normalizedAmount,
recipientChain,
recipient,
transferResult.wormholeFee,
nonce,
payload
);
}
function _wrapAndTransferETH(uint256 arbiterFee) internal returns (BridgeStructs.TransferResult memory transferResult) {
uint wormholeFee = wormhole().messageFee();
require(wormholeFee < msg.value, "value is smaller than wormhole fee");
uint amount = msg.value - wormholeFee;
require(arbiterFee <= amount, "fee is bigger than amount minus wormhole fee");
uint normalizedAmount = normalizeAmount(amount, 18);
uint normalizedArbiterFee = normalizeAmount(arbiterFee, 18);
// refund dust
uint dust = amount - deNormalizeAmount(normalizedAmount, 18);
if (dust > 0) {
payable(msg.sender).transfer(dust);
}
// deposit into WETH
WETH().deposit{
value : amount - dust
}();
// track and check outstanding token amounts
bridgeOut(address(WETH()), normalizedAmount);
transferResult = BridgeStructs.TransferResult({
tokenChain : chainId(),
tokenAddress : bytes32(uint256(uint160(address(WETH())))),
normalizedAmount : normalizedAmount,
normalizedArbiterFee : normalizedArbiterFee,
wormholeFee : wormholeFee
});
}
/*
* @notice Send ERC20 token through portal.
*/
function transferTokens(
address token,
uint256 amount,
uint16 recipientChain,
bytes32 recipient,
uint256 arbiterFee,
uint32 nonce
) public payable nonReentrant returns (uint64 sequence) {
BridgeStructs.TransferResult memory transferResult = _transferTokens(
token,
amount,
arbiterFee
);
sequence = logTransfer(
transferResult.tokenChain,
transferResult.tokenAddress,
transferResult.normalizedAmount,
recipientChain,
recipient,
transferResult.normalizedArbiterFee,
transferResult.wormholeFee,
nonce
);
}
/*
* @notice Send ERC20 token through portal.
*
* @dev This type of transfer is called a "contract-controlled transfer".
* There are three differences from a regular token transfer:
* 1) Additional arbitrary payload can be attached to the message
* 2) Only the recipient (typically a contract) can redeem the transaction
* 3) The sender's address (msg.sender) is also included in the transaction payload
*
* With these three additional components, xDapps can implement cross-chain
* composable interactions.
*/
function transferTokensWithPayload(
address token,
uint256 amount,
uint16 recipientChain,
bytes32 recipient,
uint32 nonce,
bytes memory payload
) public payable nonReentrant returns (uint64 sequence) {
BridgeStructs.TransferResult memory transferResult = _transferTokens(
token,
amount,
0
);
sequence = logTransferWithPayload(
transferResult.tokenChain,
transferResult.tokenAddress,
transferResult.normalizedAmount,
recipientChain,
recipient,
transferResult.wormholeFee,
nonce,
payload
);
}
/*
* @notice Initiate a transfer
*/
function _transferTokens(address token, uint256 amount, uint256 arbiterFee) internal returns (BridgeStructs.TransferResult memory transferResult) {
// determine token parameters
uint16 tokenChain;
bytes32 tokenAddress;
if (isWrappedAsset(token)) {
tokenChain = TokenImplementation(token).chainId();
tokenAddress = TokenImplementation(token).nativeContract();
} else {
tokenChain = chainId();
tokenAddress = bytes32(uint256(uint160(token)));
}
// query tokens decimals
(,bytes memory queriedDecimals) = token.staticcall(abi.encodeWithSignature("decimals()"));
uint8 decimals = abi.decode(queriedDecimals, (uint8));
// don't deposit dust that can not be bridged due to the decimal shift
amount = deNormalizeAmount(normalizeAmount(amount, decimals), decimals);
if (tokenChain == chainId()) {
// query own token balance before transfer
(,bytes memory queriedBalanceBefore) = token.staticcall(abi.encodeWithSelector(IERC20.balanceOf.selector, address(this)));
uint256 balanceBefore = abi.decode(queriedBalanceBefore, (uint256));
// transfer tokens
SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), amount);
// query own token balance after transfer
(,bytes memory queriedBalanceAfter) = token.staticcall(abi.encodeWithSelector(IERC20.balanceOf.selector, address(this)));
uint256 balanceAfter = abi.decode(queriedBalanceAfter, (uint256));
// correct amount for potential transfer fees
amount = balanceAfter - balanceBefore;
} else {
SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), amount);
TokenImplementation(token).burn(address(this), amount);
}
// normalize amounts decimals
uint256 normalizedAmount = normalizeAmount(amount, decimals);
uint256 normalizedArbiterFee = normalizeAmount(arbiterFee, decimals);
// track and check outstanding token amounts
if (tokenChain == chainId()) {
bridgeOut(token, normalizedAmount);
}
transferResult = BridgeStructs.TransferResult({
tokenChain : tokenChain,
tokenAddress : tokenAddress,
normalizedAmount : normalizedAmount,
normalizedArbiterFee : normalizedArbiterFee,
wormholeFee : msg.value
});
}
function normalizeAmount(uint256 amount, uint8 decimals) internal pure returns(uint256){
if (decimals > 8) {
amount /= 10 ** (decimals - 8);
}
return amount;
}
function deNormalizeAmount(uint256 amount, uint8 decimals) internal pure returns(uint256){
if (decimals > 8) {
amount *= 10 ** (decimals - 8);
}
return amount;
}
function logTransfer(
uint16 tokenChain,
bytes32 tokenAddress,
uint256 amount,
uint16 recipientChain,
bytes32 recipient,
uint256 fee,
uint256 callValue,
uint32 nonce
) internal returns (uint64 sequence) {
require(fee <= amount, "fee exceeds amount");
BridgeStructs.Transfer memory transfer = BridgeStructs.Transfer({
payloadID: 1,
amount: amount,
tokenAddress: tokenAddress,
tokenChain: tokenChain,
to: recipient,
toChain: recipientChain,
fee: fee
});
sequence = wormhole().publishMessage{value: callValue}(
nonce,
encodeTransfer(transfer),
finality()
);
}
/*
* @dev Publish a token transfer message with payload.
*
* @return The sequence number of the published message.
*/
function logTransferWithPayload(
uint16 tokenChain,
bytes32 tokenAddress,
uint256 amount,
uint16 recipientChain,
bytes32 recipient,
uint256 callValue,
uint32 nonce,
bytes memory payload
) internal returns (uint64 sequence) {
BridgeStructs.TransferWithPayload memory transfer = BridgeStructs
.TransferWithPayload({
payloadID: 3,
amount: amount,
tokenAddress: tokenAddress,
tokenChain: tokenChain,
to: recipient,
toChain: recipientChain,
fromAddress : bytes32(uint256(uint160(msg.sender))),
payload: payload
});
sequence = wormhole().publishMessage{value: callValue}(
nonce,
encodeTransferWithPayload(transfer),
finality()
);
}
function updateWrapped(bytes memory encodedVm) external returns (address token) {
(IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm);
require(valid, reason);
require(verifyBridgeVM(vm), "invalid emitter");
BridgeStructs.AssetMeta memory meta = parseAssetMeta(vm.payload);
return _updateWrapped(meta, vm.sequence);
}
function _updateWrapped(BridgeStructs.AssetMeta memory meta, uint64 sequence) internal returns (address token) {
address wrapped = wrappedAsset(meta.tokenChain, meta.tokenAddress);
require(wrapped != address(0), "wrapped asset does not exists");
// Update metadata
TokenImplementation(wrapped).updateDetails(bytes32ToString(meta.name), bytes32ToString(meta.symbol), sequence);
return wrapped;
}
function createWrapped(bytes memory encodedVm) external returns (address token) {
(IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm);
require(valid, reason);
require(verifyBridgeVM(vm), "invalid emitter");
BridgeStructs.AssetMeta memory meta = parseAssetMeta(vm.payload);
return _createWrapped(meta, vm.sequence);
}
// Creates a wrapped asset using AssetMeta
function _createWrapped(BridgeStructs.AssetMeta memory meta, uint64 sequence) internal returns (address token) {
require(meta.tokenChain != chainId(), "can only wrap tokens from foreign chains");
require(wrappedAsset(meta.tokenChain, meta.tokenAddress) == address(0), "wrapped asset already exists");
// initialize the TokenImplementation
bytes memory initialisationArgs = abi.encodeWithSelector(
TokenImplementation.initialize.selector,
bytes32ToString(meta.name),
bytes32ToString(meta.symbol),
meta.decimals,
sequence,
address(this),
meta.tokenChain,
meta.tokenAddress
);
// initialize the BeaconProxy
bytes memory constructorArgs = abi.encode(address(this), initialisationArgs);
// deployment code
bytes memory bytecode = abi.encodePacked(type(BridgeToken).creationCode, constructorArgs);
bytes32 salt = keccak256(abi.encodePacked(meta.tokenChain, meta.tokenAddress));
assembly {
token := create2(0, add(bytecode, 0x20), mload(bytecode), salt)
if iszero(extcodesize(token)) {
revert(0, 0)
}
}
setWrappedAsset(meta.tokenChain, meta.tokenAddress, token);
}
/*
* @notice Complete a contract-controlled transfer of an ERC20 token.
*
* @dev The transaction can only be redeemed by the recipient, typically a
* contract.
*
* @param encodedVm A byte array containing a VAA signed by the guardians.
*
* @return The byte array representing a BridgeStructs.TransferWithPayload.
*/
function completeTransferWithPayload(bytes memory encodedVm) public returns (bytes memory) {
return _completeTransfer(encodedVm, false);
}
/*
* @notice Complete a contract-controlled transfer of WETH, and unwrap to ETH.
*
* @dev The transaction can only be redeemed by the recipient, typically a
* contract.
*
* @param encodedVm A byte array containing a VAA signed by the guardians.
*
* @return The byte array representing a BridgeStructs.TransferWithPayload.
*/
function completeTransferAndUnwrapETHWithPayload(bytes memory encodedVm) public returns (bytes memory) {
return _completeTransfer(encodedVm, true);
}
/*
* @notice Complete a transfer of an ERC20 token.
*
* @dev The msg.sender gets paid the associated fee.
*
* @param encodedVm A byte array containing a VAA signed by the guardians.
*/
function completeTransfer(bytes memory encodedVm) public {
_completeTransfer(encodedVm, false);
}
/*
* @notice Complete a transfer of WETH and unwrap to eth.
*
* @dev The msg.sender gets paid the associated fee.
*
* @param encodedVm A byte array containing a VAA signed by the guardians.
*/
function completeTransferAndUnwrapETH(bytes memory encodedVm) public {
_completeTransfer(encodedVm, true);
}
/*
* @dev Truncate a 32 byte array to a 20 byte address.
* Reverts if the array contains non-0 bytes in the first 12 bytes.
*
* @param bytes32 bytes The 32 byte array to be converted.
*/
function _truncateAddress(bytes32 b) internal pure returns (address) {
require(bytes12(b) == 0, "invalid EVM address");
return address(uint160(uint256(b)));
}
// Execute a Transfer message
function _completeTransfer(bytes memory encodedVm, bool unwrapWETH) internal returns (bytes memory) {
(IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm);
require(valid, reason);
require(verifyBridgeVM(vm), "invalid emitter");
BridgeStructs.Transfer memory transfer = _parseTransferCommon(vm.payload);
// payload 3 must be redeemed by the designated proxy contract
address transferRecipient = _truncateAddress(transfer.to);
if (transfer.payloadID == 3) {
require(msg.sender == transferRecipient, "invalid sender");
}
require(!isTransferCompleted(vm.hash), "transfer already completed");
setTransferCompleted(vm.hash);
require(transfer.toChain == chainId(), "invalid target chain");
IERC20 transferToken;
if (transfer.tokenChain == chainId()) {
transferToken = IERC20(_truncateAddress(transfer.tokenAddress));
// track outstanding token amounts
bridgedIn(address(transferToken), transfer.amount);
} else {
address wrapped = wrappedAsset(transfer.tokenChain, transfer.tokenAddress);
require(wrapped != address(0), "no wrapper for this token created yet");
transferToken = IERC20(wrapped);
}
require(unwrapWETH == false || address(transferToken) == address(WETH()), "invalid token, can only unwrap WETH");
// query decimals
(,bytes memory queriedDecimals) = address(transferToken).staticcall(abi.encodeWithSignature("decimals()"));
uint8 decimals = abi.decode(queriedDecimals, (uint8));
// adjust decimals
uint256 nativeAmount = deNormalizeAmount(transfer.amount, decimals);
uint256 nativeFee = deNormalizeAmount(transfer.fee, decimals);
// transfer fee to arbiter
if (nativeFee > 0 && transferRecipient != msg.sender) {
require(nativeFee <= nativeAmount, "fee higher than transferred amount");
if (unwrapWETH) {
WETH().withdraw(nativeFee);
payable(msg.sender).transfer(nativeFee);
} else {
if (transfer.tokenChain != chainId()) {
// mint wrapped asset
TokenImplementation(address(transferToken)).mint(msg.sender, nativeFee);
} else {
SafeERC20.safeTransfer(transferToken, msg.sender, nativeFee);
}
}
} else {
// set fee to zero in case transferRecipient == feeRecipient
nativeFee = 0;
}
// transfer bridged amount to recipient
uint transferAmount = nativeAmount - nativeFee;
if (unwrapWETH) {
WETH().withdraw(transferAmount);
payable(transferRecipient).transfer(transferAmount);
} else {
if (transfer.tokenChain != chainId()) {
// mint wrapped asset
TokenImplementation(address(transferToken)).mint(transferRecipient, transferAmount);
} else {
SafeERC20.safeTransfer(transferToken, transferRecipient, transferAmount);
}
}
return vm.payload;
}
function bridgeOut(address token, uint normalizedAmount) internal {
uint outstanding = outstandingBridged(token);
require(outstanding + normalizedAmount <= type(uint64).max, "transfer exceeds max outstanding bridged token amount");
setOutstandingBridged(token, outstanding + normalizedAmount);
}
function bridgedIn(address token, uint normalizedAmount) internal {
setOutstandingBridged(token, outstandingBridged(token) - normalizedAmount);
}
function verifyBridgeVM(IWormhole.VM memory vm) internal view returns (bool){
require(!isFork(), "invalid fork");
return bridgeContracts(vm.emitterChainId) == vm.emitterAddress;
}
function encodeAssetMeta(BridgeStructs.AssetMeta memory meta) public pure returns (bytes memory encoded) {
encoded = abi.encodePacked(
meta.payloadID,
meta.tokenAddress,
meta.tokenChain,
meta.decimals,
meta.symbol,
meta.name
);
}
function encodeTransfer(BridgeStructs.Transfer memory transfer) public pure returns (bytes memory encoded) {
encoded = abi.encodePacked(
transfer.payloadID,
transfer.amount,
transfer.tokenAddress,
transfer.tokenChain,
transfer.to,
transfer.toChain,
transfer.fee
);
}
function encodeTransferWithPayload(BridgeStructs.TransferWithPayload memory transfer) public pure returns (bytes memory encoded) {
encoded = abi.encodePacked(
transfer.payloadID,
transfer.amount,
transfer.tokenAddress,
transfer.tokenChain,
transfer.to,
transfer.toChain,
transfer.fromAddress,
transfer.payload
);
}
function parsePayloadID(bytes memory encoded) public pure returns (uint8 payloadID) {
payloadID = encoded.toUint8(0);
}
/*
* @dev Parse a token metadata attestation (payload id 2)
*/
function parseAssetMeta(bytes memory encoded) public pure returns (BridgeStructs.AssetMeta memory meta) {
uint index = 0;
meta.payloadID = encoded.toUint8(index);
index += 1;
require(meta.payloadID == 2, "invalid AssetMeta");
meta.tokenAddress = encoded.toBytes32(index);
index += 32;
meta.tokenChain = encoded.toUint16(index);
index += 2;
meta.decimals = encoded.toUint8(index);
index += 1;
meta.symbol = encoded.toBytes32(index);
index += 32;
meta.name = encoded.toBytes32(index);
index += 32;
require(encoded.length == index, "invalid AssetMeta");
}
/*
* @dev Parse a token transfer (payload id 1).
*
* @params encoded The byte array corresponding to the token transfer (not
* the whole VAA, only the payload)
*/
function parseTransfer(bytes memory encoded) public pure returns (BridgeStructs.Transfer memory transfer) {
uint index = 0;
transfer.payloadID = encoded.toUint8(index);
index += 1;
require(transfer.payloadID == 1, "invalid Transfer");
transfer.amount = encoded.toUint256(index);
index += 32;
transfer.tokenAddress = encoded.toBytes32(index);
index += 32;
transfer.tokenChain = encoded.toUint16(index);
index += 2;
transfer.to = encoded.toBytes32(index);
index += 32;
transfer.toChain = encoded.toUint16(index);
index += 2;
transfer.fee = encoded.toUint256(index);
index += 32;
require(encoded.length == index, "invalid Transfer");
}
/*
* @dev Parse a token transfer with payload (payload id 3).
*
* @params encoded The byte array corresponding to the token transfer (not
* the whole VAA, only the payload)
*/
function parseTransferWithPayload(bytes memory encoded) public pure returns (BridgeStructs.TransferWithPayload memory transfer) {
uint index = 0;
transfer.payloadID = encoded.toUint8(index);
index += 1;
require(transfer.payloadID == 3, "invalid Transfer");
transfer.amount = encoded.toUint256(index);
index += 32;
transfer.tokenAddress = encoded.toBytes32(index);
index += 32;
transfer.tokenChain = encoded.toUint16(index);
index += 2;
transfer.to = encoded.toBytes32(index);
index += 32;
transfer.toChain = encoded.toUint16(index);
index += 2;
transfer.fromAddress = encoded.toBytes32(index);
index += 32;
transfer.payload = encoded.slice(index, encoded.length - index);
}
/*
* @dev Parses either a type 1 transfer or a type 3 transfer ("transfer with
* payload") as a Transfer struct. The fee is set to 0 for type 3
* transfers, since they have no fees associated with them.
*
* The sole purpose of this function is to get around the local
* variable count limitation in _completeTransfer.
*/
function _parseTransferCommon(bytes memory encoded) public pure returns (BridgeStructs.Transfer memory transfer) {
uint8 payloadID = parsePayloadID(encoded);
if (payloadID == 1) {
transfer = parseTransfer(encoded);
} else if (payloadID == 3) {
BridgeStructs.TransferWithPayload memory t = parseTransferWithPayload(encoded);
transfer.payloadID = 3;
transfer.amount = t.amount;
transfer.tokenAddress = t.tokenAddress;
transfer.tokenChain = t.tokenChain;
transfer.to = t.to;
transfer.toChain = t.toChain;
// Type 3 payloads don't have fees.
transfer.fee = 0;
} else {
revert("Invalid payload id");
}
}
function bytes32ToString(bytes32 input) internal pure returns (string memory) {
uint256 i;
while (i < 32 && input[i] != 0) {
i++;
}
bytes memory array = new bytes(i);
for (uint c = 0; c < i; c++) {
array[c] = input[c];
}
return string(array);
}
// we need to accept ETH sends to unwrap WETH
receive() external payable {}
}