Fix robot problems regarding new version of Arduino

This commit is contained in:
Xun Yang 2013-11-04 20:17:04 +01:00
parent 89d6841ac0
commit 4cb0b11405
9 changed files with 1 additions and 901 deletions

View File

@ -1,167 +0,0 @@
/*
* IRrecord: record and play back IR signals as a minimal
* An IR detector/demodulator must be connected to the input RECV_PIN.
* An IR LED must be connected to the output PWM pin 3.
* A button must be connected to the input BUTTON_PIN; this is the
* send button.
* A visible LED can be connected to STATUS_PIN to provide status.
*
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
*
* Version 0.11 September, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int BUTTON_PIN = 12;
int STATUS_PIN = 13;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(BUTTON_PIN, INPUT);
pinMode(STATUS_PIN, OUTPUT);
}
// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state
// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
codeType = results->decode_type;
int count = results->rawlen;
if (codeType == UNKNOWN) {
Serial.println("Received unknown code, saving as raw");
codeLen = results->rawlen - 1;
// To store raw codes:
// Drop first value (gap)
// Convert from ticks to microseconds
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
for (int i = 1; i <= codeLen; i++) {
if (i % 2) {
// Mark
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
Serial.print(" m");
}
else {
// Space
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
Serial.print(" s");
}
Serial.print(rawCodes[i - 1], DEC);
}
Serial.println("");
}
else {
if (codeType == NEC) {
Serial.print("Received NEC: ");
if (results->value == REPEAT) {
// Don't record a NEC repeat value as that's useless.
Serial.println("repeat; ignoring.");
return;
}
}
else if (codeType == SONY) {
Serial.print("Received SONY: ");
}
else if (codeType == RC5) {
Serial.print("Received RC5: ");
}
else if (codeType == RC6) {
Serial.print("Received RC6: ");
}
else {
Serial.print("Unexpected codeType ");
Serial.print(codeType, DEC);
Serial.println("");
}
Serial.println(results->value, HEX);
codeValue = results->value;
codeLen = results->bits;
}
}
void sendCode(int repeat) {
if (codeType == NEC) {
if (repeat) {
irsend.sendNEC(REPEAT, codeLen);
Serial.println("Sent NEC repeat");
}
else {
irsend.sendNEC(codeValue, codeLen);
Serial.print("Sent NEC ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == SONY) {
irsend.sendSony(codeValue, codeLen);
Serial.print("Sent Sony ");
Serial.println(codeValue, HEX);
}
else if (codeType == RC5 || codeType == RC6) {
if (!repeat) {
// Flip the toggle bit for a new button press
toggle = 1 - toggle;
}
// Put the toggle bit into the code to send
codeValue = codeValue & ~(1 << (codeLen - 1));
codeValue = codeValue | (toggle << (codeLen - 1));
if (codeType == RC5) {
Serial.print("Sent RC5 ");
Serial.println(codeValue, HEX);
irsend.sendRC5(codeValue, codeLen);
}
else {
irsend.sendRC6(codeValue, codeLen);
Serial.print("Sent RC6 ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
irsend.sendRaw(rawCodes, codeLen, 38);
Serial.println("Sent raw");
}
}
int lastButtonState;
void loop() {
// If button pressed, send the code.
int buttonState = digitalRead(BUTTON_PIN);
if (lastButtonState == HIGH && buttonState == LOW) {
Serial.println("Released");
irrecv.enableIRIn(); // Re-enable receiver
}
if (buttonState) {
Serial.println("Pressed, sending");
digitalWrite(STATUS_PIN, HIGH);
sendCode(lastButtonState == buttonState);
digitalWrite(STATUS_PIN, LOW);
delay(50); // Wait a bit between retransmissions
}
else if (irrecv.decode(&results)) {
digitalWrite(STATUS_PIN, HIGH);
storeCode(&results);
irrecv.resume(); // resume receiver
digitalWrite(STATUS_PIN, LOW);
}
lastButtonState = buttonState;
}

View File

@ -1,28 +0,0 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // Receive the next value
}
}

View File

@ -1,81 +0,0 @@
/*
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.print("Unknown encoding: ");
}
else if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
else if (results->decode_type == PANASONIC) {
Serial.print("Decoded PANASONIC - Address: ");
Serial.print(results->panasonicAddress,HEX);
Serial.print(" Value: ");
}
else if (results->decode_type == JVC) {
Serial.print("Decoded JVC: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
dump(&results);
irrecv.resume(); // Receive the next value
}
}

View File

@ -1,85 +0,0 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int RELAY_PIN = 4;
IRrecv irrecv(RECV_PIN);
decode_results results;
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void setup()
{
pinMode(RELAY_PIN, OUTPUT);
pinMode(13, OUTPUT);
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
int on = 0;
unsigned long last = millis();
void loop() {
if (irrecv.decode(&results)) {
// If it's been at least 1/4 second since the last
// IR received, toggle the relay
if (millis() - last > 250) {
on = !on;
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
digitalWrite(13, on ? HIGH : LOW);
dump(&results);
}
last = millis();
irrecv.resume(); // Receive the next value
}
}

View File

@ -1,25 +0,0 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
IRsend irsend;
void setup()
{
Serial.begin(9600);
}
void loop() {
if (Serial.read() != -1) {
for (int i = 0; i < 3; i++) {
irsend.sendSony(0xa90, 12); // Sony TV power code
delay(40);
}
}
}

View File

@ -1,190 +0,0 @@
/*
* IRremote: IRtest unittest
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
* You must then recompile the library by removing IRremote.o and restarting
* the arduino IDE.
*/
#include <IRremote.h>
#include <IRremoteInt.h>
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
IRrecv irrecv(0);
decode_results results;
class IRsendDummy :
public IRsend
{
public:
// For testing, just log the marks/spaces
#define SENDLOG_LEN 128
int sendlog[SENDLOG_LEN];
int sendlogcnt;
IRsendDummy() :
IRsend() {
}
void reset() {
sendlogcnt = 0;
}
void mark(int time) {
sendlog[sendlogcnt] = time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
void space(int time) {
sendlog[sendlogcnt] = -time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
// Copies the dummy buf into the interrupt buf
void useDummyBuf() {
int last = SPACE;
irparams.rcvstate = STATE_STOP;
irparams.rawlen = 1; // Skip the gap
for (int i = 0 ; i < sendlogcnt; i++) {
if (sendlog[i] < 0) {
if (last == MARK) {
// New space
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
last = SPACE;
}
else {
// More space
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
}
}
else if (sendlog[i] > 0) {
if (last == SPACE) {
// New mark
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
last = MARK;
}
else {
// More mark
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
}
}
}
if (irparams.rawlen % 2) {
irparams.rawlen--; // Remove trailing space
}
}
};
IRsendDummy irsenddummy;
void verify(unsigned long val, int bits, int type) {
irsenddummy.useDummyBuf();
irrecv.decode(&results);
Serial.print("Testing ");
Serial.print(val, HEX);
if (results.value == val && results.bits == bits && results.decode_type == type) {
Serial.println(": OK");
}
else {
Serial.println(": Error");
dump(&results);
}
}
void testNEC(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendNEC(val, bits);
verify(val, bits, NEC);
}
void testSony(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendSony(val, bits);
verify(val, bits, SONY);
}
void testRC5(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC5(val, bits);
verify(val, bits, RC5);
}
void testRC6(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC6(val, bits);
verify(val, bits, RC6);
}
void test() {
Serial.println("NEC tests");
testNEC(0x00000000, 32);
testNEC(0xffffffff, 32);
testNEC(0xaaaaaaaa, 32);
testNEC(0x55555555, 32);
testNEC(0x12345678, 32);
Serial.println("Sony tests");
testSony(0xfff, 12);
testSony(0x000, 12);
testSony(0xaaa, 12);
testSony(0x555, 12);
testSony(0x123, 12);
Serial.println("RC5 tests");
testRC5(0xfff, 12);
testRC5(0x000, 12);
testRC5(0xaaa, 12);
testRC5(0x555, 12);
testRC5(0x123, 12);
Serial.println("RC6 tests");
testRC6(0xfffff, 20);
testRC6(0x00000, 20);
testRC6(0xaaaaa, 20);
testRC6(0x55555, 20);
testRC6(0x12345, 20);
}
void setup()
{
Serial.begin(9600);
test();
}
void loop() {
}

View File

@ -1,290 +0,0 @@
/*
* Test send/receive functions of IRremote, using a pair of Arduinos.
*
* Arduino #1 should have an IR LED connected to the send pin (3).
* Arduino #2 should have an IR detector/demodulator connected to the
* receive pin (11) and a visible LED connected to pin 3.
*
* The cycle:
* Arduino #1 will wait 2 seconds, then run through the tests.
* It repeats this forever.
* Arduino #2 will wait for at least one second of no signal
* (to synchronize with #1). It will then wait for the same test
* signals. It will log all the status to the serial port. It will
* also indicate status through the LED, which will flash each time a test
* is completed. If there is an error, it will light up for 5 seconds.
*
* The test passes if the LED flashes 19 times, pauses, and then repeats.
* The test fails if the LED lights for 5 seconds.
*
* The test software automatically decides which board is the sender and which is
* the receiver by looking for an input on the send pin, which will indicate
* the sender. You should hook the serial port to the receiver for debugging.
*
* Copyright 2010 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int LED_PIN = 3;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
#define RECEIVER 1
#define SENDER 2
#define ERROR 3
int mode;
void setup()
{
Serial.begin(9600);
// Check RECV_PIN to decide if we're RECEIVER or SENDER
if (digitalRead(RECV_PIN) == HIGH) {
mode = RECEIVER;
irrecv.enableIRIn();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.println("Receiver mode");
}
else {
mode = SENDER;
Serial.println("Sender mode");
}
}
// Wait for the gap between tests, to synchronize with
// the sender.
// Specifically, wait for a signal followed by a gap of at last gap ms.
void waitForGap(int gap) {
Serial.println("Waiting for gap");
while (1) {
while (digitalRead(RECV_PIN) == LOW) {
}
unsigned long time = millis();
while (digitalRead(RECV_PIN) == HIGH) {
if (millis() - time > gap) {
return;
}
}
}
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
// Test send or receive.
// If mode is SENDER, send a code of the specified type, value, and bits
// If mode is RECEIVER, receive a code and verify that it is of the
// specified type, value, and bits. For success, the LED is flashed;
// for failure, the mode is set to ERROR.
// The motivation behind this method is that the sender and the receiver
// can do the same test calls, and the mode variable indicates whether
// to send or receive.
void test(char *label, int type, unsigned long value, int bits) {
if (mode == SENDER) {
Serial.println(label);
if (type == NEC) {
irsend.sendNEC(value, bits);
}
else if (type == SONY) {
irsend.sendSony(value, bits);
}
else if (type == RC5) {
irsend.sendRC5(value, bits);
}
else if (type == RC6) {
irsend.sendRC6(value, bits);
}
else {
Serial.print(label);
Serial.println("Bad type!");
}
delay(200);
}
else if (mode == RECEIVER) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
if (type == results.decode_type && value == results.value && bits == results.bits) {
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
else {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
}
}
}
// Test raw send or receive. This is similar to the test method,
// except it send/receives raw data.
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
if (mode == SENDER) {
Serial.println(label);
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
delay(200);
}
else if (mode == RECEIVER ) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
// Received length has extra first element for gap
if (rawlen != results.rawlen - 1) {
Serial.print("Bad raw length ");
Serial.println(results.rawlen, DEC);
mode = ERROR;
return;
}
for (int i = 0; i < rawlen; i++) {
long got = results.rawbuf[i+1] * USECPERTICK;
// Adjust for extra duration of marks
if (i % 2 == 0) {
got -= MARK_EXCESS;
}
else {
got += MARK_EXCESS;
}
// See if close enough, within 25%
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
return;
}
}
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
}
// This is the raw data corresponding to NEC 0x12345678
unsigned int sendbuf[] = { /* NEC format */
9000, 4500,
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
560};
void loop() {
if (mode == SENDER) {
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
}
else if (mode == RECEIVER) {
waitForGap(1000);
}
else if (mode == ERROR) {
// Light up for 5 seconds for error
digitalWrite(LED_PIN, HIGH);
delay(5000);
digitalWrite(LED_PIN, LOW);
mode = RECEIVER; // Try again
return;
}
// The test suite.
test("SONY1", SONY, 0x123, 12);
test("SONY2", SONY, 0x000, 12);
test("SONY3", SONY, 0xfff, 12);
test("SONY4", SONY, 0x12345, 20);
test("SONY5", SONY, 0x00000, 20);
test("SONY6", SONY, 0xfffff, 20);
test("NEC1", NEC, 0x12345678, 32);
test("NEC2", NEC, 0x00000000, 32);
test("NEC3", NEC, 0xffffffff, 32);
test("NEC4", NEC, REPEAT, 32);
test("RC51", RC5, 0x12345678, 32);
test("RC52", RC5, 0x0, 32);
test("RC53", RC5, 0xffffffff, 32);
test("RC61", RC6, 0x12345678, 32);
test("RC62", RC6, 0x0, 32);
test("RC63", RC6, 0xffffffff, 32);
// Tests of raw sending and receiving.
// First test sending raw and receiving raw.
// Then test sending raw and receiving decoded NEC
// Then test sending NEC and receiving raw
testRaw("RAW1", sendbuf, 67);
if (mode == SENDER) {
testRaw("RAW2", sendbuf, 67);
test("RAW3", NEC, 0x12345678, 32);
}
else {
test("RAW2", NEC, 0x12345678, 32);
testRaw("RAW3", sendbuf, 67);
}
}

View File

@ -1,29 +0,0 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
#define PanasonicPower 0x100BCBD // Panasonic Power button
#define JVCPower 0xC5E8
IRsend irsend;
void setup()
{
}
void loop() {
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
delayMicroseconds(50);
}

View File

@ -59,19 +59,14 @@ void setup(){
// run the rescue sequence
rescueSequence();
Robot.text("Found obstacle", 5, 12);
// find the track again
goToNext();
Robot.text("Found track", 5, 19);
// run the rescue sequence a second time
rescueSequence();
Robot.text("Found obstacle", 5, 26);
// here you could go on ...
// write status on the screen
Robot.stroke(0, 0, 0);
Robot.text("Done!", 5, 25);
}
void loop(){