Stepper Library supports 5 phase, 5 wire motors.

This commit is contained in:
Ryan Orendorff 2012-02-07 05:33:14 +00:00 committed by Cristian Maglie
parent caf000b005
commit 50ca5d8f75
2 changed files with 338 additions and 189 deletions

View File

@ -1,65 +1,79 @@
/*
Stepper.cpp - - Stepper library for Wiring/Arduino - Version 0.5
Original library (0.1) by Tom Igoe.
Two-wire modifications (0.2) by Sebastian Gassner
Combination version (0.3) by Tom Igoe and David Mellis
Bug fix for four-wire (0.4) by Tom Igoe, bug fix from Noah Shibley
High-speed stepping mod and timer rollover fix (0.5) by Eugene Kozlenko
Drives a unipolar or bipolar stepper motor using 2 wires or 4 wires
When wiring multiple stepper motors to a microcontroller,
you quickly run out of output pins, with each motor requiring 4 connections.
By making use of the fact that at any time two of the four motor
coils are the inverse of the other two, the number of
control connections can be reduced from 4 to 2.
A slightly modified circuit around a Darlington transistor array or an L293 H-bridge
connects to only 2 microcontroler pins, inverts the signals received,
and delivers the 4 (2 plus 2 inverted ones) output signals required
for driving a stepper motor. Similarly the Arduino motor shields 2 direction pins
may be used.
The sequence of control signals for 4 control wires is as follows:
Step C0 C1 C2 C3
1 1 0 1 0
2 0 1 1 0
3 0 1 0 1
4 1 0 0 1
The sequence of controls signals for 2 control wires is as follows
(columns C1 and C2 from above):
Step C0 C1
1 0 1
2 1 1
3 1 0
4 0 0
The circuits can be found at
http://www.arduino.cc/en/Tutorial/Stepper
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* Stepper.cpp - Stepper library for Wiring/Arduino - Version 0.6
*
* Original library (0.1) by Tom Igoe.
* Two-wire modifications (0.2) by Sebastian Gassner
* Combination version (0.3) by Tom Igoe and David Mellis
* Bug fix for four-wire (0.4) by Tom Igoe, bug fix from Noah Shibley
* High-speed stepping mod and timer rollover fix (0.5) by Eugene Kozlenko
* Five phase five wire (0.6) by Ryan Orendorff
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*
* Drives a unipolar, bipolar, or five phase stepper motor.
*
* When wiring multiple stepper motors to a microcontroller, you quickly run
* out of output pins, with each motor requiring 4 connections.
*
* By making use of the fact that at any time two of the four motor coils are
* the inverse of the other two, the number of control connections can be
* reduced from 4 to 2 for the unipolar and bipolar motors.
*
* A slightly modified circuit around a Darlington transistor array or an
* L293 H-bridge connects to only 2 microcontroler pins, inverts the signals
* received, and delivers the 4 (2 plus 2 inverted ones) output signals
* required for driving a stepper motor. Similarly the Arduino motor shields
* 2 direction pins may be used.
*
* The sequence of control signals for 5 phase, 5 control wires is as follows:
*
* Step C0 C1 C2 C3 C4
* 1 0 1 1 0 1
* 2 0 1 0 0 1
* 3 0 1 0 1 1
* 4 0 1 0 1 0
* 5 1 1 0 1 0
* 6 1 0 0 1 0
* 7 1 0 1 1 0
* 8 1 0 1 0 0
* 9 1 0 1 0 1
* 10 0 0 1 0 1
*
* The sequence of control signals for 4 control wires is as follows:
*
* Step C0 C1 C2 C3
* 1 1 0 1 0
* 2 0 1 1 0
* 3 0 1 0 1
* 4 1 0 0 1
*
* The sequence of controls signals for 2 control wires is as follows
* (columns C1 and C2 from above):
*
* Step C0 C1
* 1 0 1
* 2 1 1
* 3 1 0
* 4 0 0
*
* The circuits can be found at
*
* http://www.arduino.cc/en/Tutorial/Stepper
*/
#include "Arduino.h"
#include "Stepper.h"
@ -69,12 +83,12 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2)
{
this->step_number = 0; // which step the motor is on
this->speed = 0; // the motor speed, in revolutions per minute
this->step_number = 0; // which step the motor is on
this->speed = 0; // the motor speed, in revolutions per minute
this->direction = 0; // motor direction
this->last_step_time = 0; // time stamp in us of the last step taken
this->number_of_steps = number_of_steps; // total number of steps for this motor
this->last_step_time = 0; // time stamp in us of the last step taken
this->number_of_steps = number_of_steps; // total number of steps for this motor
// Arduino pins for the motor control connection:
this->motor_pin_1 = motor_pin_1;
this->motor_pin_2 = motor_pin_2;
@ -82,11 +96,12 @@ Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2)
// setup the pins on the microcontroller:
pinMode(this->motor_pin_1, OUTPUT);
pinMode(this->motor_pin_2, OUTPUT);
// When there are only 2 pins, set the other two to 0:
// When there are only 2 pins, set the others to 0:
this->motor_pin_3 = 0;
this->motor_pin_4 = 0;
this->motor_pin_5 = 0;
// pin_count is used by the stepMotor() method:
this->pin_count = 2;
}
@ -96,15 +111,15 @@ Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2)
* constructor for four-pin version
* Sets which wires should control the motor.
*/
Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2, int motor_pin_3, int motor_pin_4)
Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
int motor_pin_3, int motor_pin_4)
{
this->step_number = 0; // which step the motor is on
this->speed = 0; // the motor speed, in revolutions per minute
this->step_number = 0; // which step the motor is on
this->speed = 0; // the motor speed, in revolutions per minute
this->direction = 0; // motor direction
this->last_step_time = 0; // time stamp in us of the last step taken
this->number_of_steps = number_of_steps; // total number of steps for this motor
this->last_step_time = 0; // time stamp in us of the last step taken
this->number_of_steps = number_of_steps; // total number of steps for this motor
// Arduino pins for the motor control connection:
this->motor_pin_1 = motor_pin_1;
this->motor_pin_2 = motor_pin_2;
@ -117,32 +132,66 @@ Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2, int moto
pinMode(this->motor_pin_3, OUTPUT);
pinMode(this->motor_pin_4, OUTPUT);
// pin_count is used by the stepMotor() method:
this->pin_count = 4;
// When there are 4 pins, set the others to 0:
this->motor_pin_5 = 0;
// pin_count is used by the stepMotor() method:
this->pin_count = 4;
}
/*
Sets the speed in revs per minute
* constructor for five phase motor with five wires
* Sets which wires should control the motor.
*/
Stepper::Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
int motor_pin_3, int motor_pin_4,
int motor_pin_5)
{
this->step_number = 0; // which step the motor is on
this->speed = 0; // the motor speed, in revolutions per minute
this->direction = 0; // motor direction
this->last_step_time = 0; // time stamp in us of the last step taken
this->number_of_steps = number_of_steps; // total number of steps for this motor
*/
// Arduino pins for the motor control connection:
this->motor_pin_1 = motor_pin_1;
this->motor_pin_2 = motor_pin_2;
this->motor_pin_3 = motor_pin_3;
this->motor_pin_4 = motor_pin_4;
this->motor_pin_5 = motor_pin_5;
// setup the pins on the microcontroller:
pinMode(this->motor_pin_1, OUTPUT);
pinMode(this->motor_pin_2, OUTPUT);
pinMode(this->motor_pin_3, OUTPUT);
pinMode(this->motor_pin_4, OUTPUT);
pinMode(this->motor_pin_5, OUTPUT);
// pin_count is used by the stepMotor() method:
this->pin_count = 5;
}
/*
* Sets the speed in revs per minute
*/
void Stepper::setSpeed(long whatSpeed)
{
this->step_delay = 60L * 1000L * 1000L / this->number_of_steps / whatSpeed;
}
/*
Moves the motor steps_to_move steps. If the number is negative,
the motor moves in the reverse direction.
* Moves the motor steps_to_move steps. If the number is negative,
* the motor moves in the reverse direction.
*/
void Stepper::step(int steps_to_move)
{
{
int steps_left = abs(steps_to_move); // how many steps to take
// determine direction based on whether steps_to_mode is + or -:
if (steps_to_move > 0) {this->direction = 1;}
if (steps_to_move < 0) {this->direction = 0;}
// decrement the number of steps, moving one step each time:
while(steps_left > 0) {
// move only if the appropriate delay has passed:
@ -156,8 +205,8 @@ void Stepper::step(int steps_to_move)
if (this->step_number == this->number_of_steps) {
this->step_number = 0;
}
}
else {
}
else {
if (this->step_number == 0) {
this->step_number = this->number_of_steps;
}
@ -165,8 +214,11 @@ void Stepper::step(int steps_to_move)
}
// decrement the steps left:
steps_left--;
// step the motor to step number 0, 1, 2, or 3:
stepMotor(this->step_number % 4);
// step the motor to step number 0, 1, ..., {3 or 10}
if (this->pin_count == 5)
stepMotor(this->step_number % 10);
else
stepMotor(this->step_number % 4);
}
}
}
@ -178,51 +230,126 @@ void Stepper::stepMotor(int thisStep)
{
if (this->pin_count == 2) {
switch (thisStep) {
case 0: /* 01 */
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
case 0: // 01
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
break;
case 1: /* 11 */
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, HIGH);
case 1: // 11
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, HIGH);
break;
case 2: /* 10 */
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
case 2: // 10
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
break;
case 3: /* 00 */
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, LOW);
case 3: // 00
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, LOW);
break;
}
}
}
if (this->pin_count == 4) {
switch (thisStep) {
case 0: // 1010
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
case 0: // 1010
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
break;
case 1: // 0110
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
case 1: // 0110
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
break;
case 2: //0101
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
case 2: //0101
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
break;
case 3: //1001
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
case 3: //1001
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
break;
}
}
}
if (this->pin_count == 5) {
switch (thisStep) {
case 0: // 01101
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
digitalWrite(motor_pin_5, HIGH);
break;
case 1: // 01001
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, LOW);
digitalWrite(motor_pin_5, HIGH);
break;
case 2: // 01011
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
digitalWrite(motor_pin_5, HIGH);
break;
case 3: // 01010
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
digitalWrite(motor_pin_5, LOW);
break;
case 4: // 11010
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, HIGH);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
digitalWrite(motor_pin_5, LOW);
break;
case 5: // 10010
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, LOW);
digitalWrite(motor_pin_4, HIGH);
digitalWrite(motor_pin_5, LOW);
break;
case 6: // 10110
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, HIGH);
digitalWrite(motor_pin_5, LOW);
break;
case 7: // 10100
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
digitalWrite(motor_pin_5, LOW);
break;
case 8: // 10101
digitalWrite(motor_pin_1, HIGH);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
digitalWrite(motor_pin_5, HIGH);
break;
case 9: // 00101
digitalWrite(motor_pin_1, LOW);
digitalWrite(motor_pin_2, LOW);
digitalWrite(motor_pin_3, HIGH);
digitalWrite(motor_pin_4, LOW);
digitalWrite(motor_pin_5, HIGH);
break;
}
}
}

View File

@ -1,61 +1,78 @@
/*
Stepper.h - - Stepper library for Wiring/Arduino - Version 0.5
Original library (0.1) by Tom Igoe.
Two-wire modifications (0.2) by Sebastian Gassner
Combination version (0.3) by Tom Igoe and David Mellis
Bug fix for four-wire (0.4) by Tom Igoe, bug fix from Noah Shibley
High-speed stepping mod and timer rollover fix (0.5) by Eugene Kozlenko
Drives a unipolar or bipolar stepper motor using 2 wires or 4 wires
When wiring multiple stepper motors to a microcontroller,
you quickly run out of output pins, with each motor requiring 4 connections.
By making use of the fact that at any time two of the four motor
coils are the inverse of the other two, the number of
control connections can be reduced from 4 to 2.
A slightly modified circuit around a Darlington transistor array or an L293 H-bridge
connects to only 2 microcontroler pins, inverts the signals received,
and delivers the 4 (2 plus 2 inverted ones) output signals required
for driving a stepper motor. Similarly the Arduino motor shields 2 direction pins
may be used.
The sequence of control signals for 4 control wires is as follows:
Step C0 C1 C2 C3
1 1 0 1 0
2 0 1 1 0
3 0 1 0 1
4 1 0 0 1
The sequence of controls signals for 2 control wires is as follows
(columns C1 and C2 from above):
Step C0 C1
1 0 1
2 1 1
3 1 0
4 0 0
The circuits can be found at
http://www.arduino.cc/en/Tutorial/Stepper
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
* Stepper.h - Stepper library for Wiring/Arduino - Version 0.6
*
* Original library (0.1) by Tom Igoe.
* Two-wire modifications (0.2) by Sebastian Gassner
* Combination version (0.3) by Tom Igoe and David Mellis
* Bug fix for four-wire (0.4) by Tom Igoe, bug fix from Noah Shibley
* High-speed stepping mod and timer rollover fix (0.5) by Eugene Kozlenko
* Five phase five wire (0.6) by Ryan Orendorff
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*
* Drives a unipolar, bipolar, or five phase stepper motor.
*
* When wiring multiple stepper motors to a microcontroller, you quickly run
* out of output pins, with each motor requiring 4 connections.
*
* By making use of the fact that at any time two of the four motor coils are
* the inverse of the other two, the number of control connections can be
* reduced from 4 to 2 for the unipolar and bipolar motors.
*
* A slightly modified circuit around a Darlington transistor array or an
* L293 H-bridge connects to only 2 microcontroler pins, inverts the signals
* received, and delivers the 4 (2 plus 2 inverted ones) output signals
* required for driving a stepper motor. Similarly the Arduino motor shields
* 2 direction pins may be used.
*
* The sequence of control signals for 5 phase, 5 control wires is as follows:
*
* Step C0 C1 C2 C3 C4
* 1 0 1 1 0 1
* 2 0 1 0 0 1
* 3 0 1 0 1 1
* 4 0 1 0 1 0
* 5 1 1 0 1 0
* 6 1 0 0 1 0
* 7 1 0 1 1 0
* 8 1 0 1 0 0
* 9 1 0 1 0 1
* 10 0 0 1 0 1
*
* The sequence of control signals for 4 control wires is as follows:
*
* Step C0 C1 C2 C3
* 1 1 0 1 0
* 2 0 1 1 0
* 3 0 1 0 1
* 4 1 0 0 1
*
* The sequence of controls signals for 2 control wires is as follows
* (columns C1 and C2 from above):
*
* Step C0 C1
* 1 0 1
* 2 1 1
* 3 1 0
* 4 0 0
*
* The circuits can be found at
*
* http://www.arduino.cc/en/Tutorial/Stepper
*/
// ensure this library description is only included once
#ifndef Stepper_h
@ -66,7 +83,11 @@ class Stepper {
public:
// constructors:
Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2);
Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2, int motor_pin_3, int motor_pin_4);
Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
int motor_pin_3, int motor_pin_4);
Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
int motor_pin_3, int motor_pin_4,
int motor_pin_5);
// speed setter method:
void setSpeed(long whatSpeed);
@ -78,21 +99,22 @@ class Stepper {
private:
void stepMotor(int this_step);
int direction; // Direction of rotation
int speed; // Speed in RPMs
unsigned long step_delay; // delay between steps, in us, based on speed
int direction; // Direction of rotation
int speed; // Speed in RPMs
unsigned long step_delay; // delay between steps, in ms, based on speed
int number_of_steps; // total number of steps this motor can take
int pin_count; // whether you're driving the motor with 2 or 4 pins
int step_number; // which step the motor is on
int pin_count; // how many pins are in use.
int step_number; // which step the motor is on
// motor pin numbers:
int motor_pin_1;
int motor_pin_2;
int motor_pin_3;
int motor_pin_4;
unsigned long last_step_time; // time stamp in us of when the last step was taken
int motor_pin_5; // Only 5 phase motor
unsigned long last_step_time; // time stamp in us of when the last step was taken
};
#endif