WiFi library to the new format

This commit is contained in:
Fede85 2013-07-19 16:20:34 +02:00
parent f84a4ae1cd
commit 5527c44aa4
35 changed files with 0 additions and 5173 deletions

View File

@ -1,231 +0,0 @@
#include "wifi_drv.h"
#include "WiFi.h"
extern "C" {
#include "utility/wl_definitions.h"
#include "utility/wl_types.h"
#include "debug.h"
}
// XXX: don't make assumptions about the value of MAX_SOCK_NUM.
int16_t WiFiClass::_state[MAX_SOCK_NUM] = { NA_STATE, NA_STATE, NA_STATE, NA_STATE };
uint16_t WiFiClass::_server_port[MAX_SOCK_NUM] = { 0, 0, 0, 0 };
WiFiClass::WiFiClass()
{
// Driver initialization
init();
}
void WiFiClass::init()
{
WiFiDrv::wifiDriverInit();
}
uint8_t WiFiClass::getSocket()
{
for (uint8_t i = 0; i < MAX_SOCK_NUM; ++i)
{
if (WiFiClass::_server_port[i] == 0)
{
return i;
}
}
return NO_SOCKET_AVAIL;
}
char* WiFiClass::firmwareVersion()
{
return WiFiDrv::getFwVersion();
}
int WiFiClass::begin(char* ssid)
{
uint8_t status = WL_IDLE_STATUS;
uint8_t attempts = WL_MAX_ATTEMPT_CONNECTION;
if (WiFiDrv::wifiSetNetwork(ssid, strlen(ssid)) != WL_FAILURE)
{
do
{
delay(WL_DELAY_START_CONNECTION);
status = WiFiDrv::getConnectionStatus();
}
while ((( status == WL_IDLE_STATUS)||(status == WL_SCAN_COMPLETED))&&(--attempts>0));
}else
{
status = WL_CONNECT_FAILED;
}
return status;
}
int WiFiClass::begin(char* ssid, uint8_t key_idx, const char *key)
{
uint8_t status = WL_IDLE_STATUS;
uint8_t attempts = WL_MAX_ATTEMPT_CONNECTION;
// set encryption key
if (WiFiDrv::wifiSetKey(ssid, strlen(ssid), key_idx, key, strlen(key)) != WL_FAILURE)
{
do
{
delay(WL_DELAY_START_CONNECTION);
status = WiFiDrv::getConnectionStatus();
}while ((( status == WL_IDLE_STATUS)||(status == WL_SCAN_COMPLETED))&&(--attempts>0));
}else{
status = WL_CONNECT_FAILED;
}
return status;
}
int WiFiClass::begin(char* ssid, const char *passphrase)
{
uint8_t status = WL_IDLE_STATUS;
uint8_t attempts = WL_MAX_ATTEMPT_CONNECTION;
// set passphrase
if (WiFiDrv::wifiSetPassphrase(ssid, strlen(ssid), passphrase, strlen(passphrase))!= WL_FAILURE)
{
do
{
delay(WL_DELAY_START_CONNECTION);
status = WiFiDrv::getConnectionStatus();
}
while ((( status == WL_IDLE_STATUS)||(status == WL_SCAN_COMPLETED))&&(--attempts>0));
}else{
status = WL_CONNECT_FAILED;
}
return status;
}
void WiFiClass::config(IPAddress local_ip)
{
WiFiDrv::config(1, (uint32_t)local_ip, 0, 0);
}
void WiFiClass::config(IPAddress local_ip, IPAddress dns_server)
{
WiFiDrv::config(1, (uint32_t)local_ip, 0, 0);
WiFiDrv::setDNS(1, (uint32_t)dns_server, 0);
}
void WiFiClass::config(IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
WiFiDrv::config(2, (uint32_t)local_ip, (uint32_t)gateway, 0);
WiFiDrv::setDNS(1, (uint32_t)dns_server, 0);
}
void WiFiClass::config(IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
WiFiDrv::config(3, (uint32_t)local_ip, (uint32_t)gateway, (uint32_t)subnet);
WiFiDrv::setDNS(1, (uint32_t)dns_server, 0);
}
void WiFiClass::setDNS(IPAddress dns_server1)
{
WiFiDrv::setDNS(1, (uint32_t)dns_server1, 0);
}
void WiFiClass::setDNS(IPAddress dns_server1, IPAddress dns_server2)
{
WiFiDrv::setDNS(2, (uint32_t)dns_server1, (uint32_t)dns_server2);
}
int WiFiClass::disconnect()
{
return WiFiDrv::disconnect();
}
uint8_t* WiFiClass::macAddress(uint8_t* mac)
{
uint8_t* _mac = WiFiDrv::getMacAddress();
memcpy(mac, _mac, WL_MAC_ADDR_LENGTH);
return mac;
}
IPAddress WiFiClass::localIP()
{
IPAddress ret;
WiFiDrv::getIpAddress(ret);
return ret;
}
IPAddress WiFiClass::subnetMask()
{
IPAddress ret;
WiFiDrv::getSubnetMask(ret);
return ret;
}
IPAddress WiFiClass::gatewayIP()
{
IPAddress ret;
WiFiDrv::getGatewayIP(ret);
return ret;
}
char* WiFiClass::SSID()
{
return WiFiDrv::getCurrentSSID();
}
uint8_t* WiFiClass::BSSID(uint8_t* bssid)
{
uint8_t* _bssid = WiFiDrv::getCurrentBSSID();
memcpy(bssid, _bssid, WL_MAC_ADDR_LENGTH);
return bssid;
}
int32_t WiFiClass::RSSI()
{
return WiFiDrv::getCurrentRSSI();
}
uint8_t WiFiClass::encryptionType()
{
return WiFiDrv::getCurrentEncryptionType();
}
int8_t WiFiClass::scanNetworks()
{
uint8_t attempts = 10;
uint8_t numOfNetworks = 0;
if (WiFiDrv::startScanNetworks() == WL_FAILURE)
return WL_FAILURE;
do
{
delay(2000);
numOfNetworks = WiFiDrv::getScanNetworks();
}
while (( numOfNetworks == 0)&&(--attempts>0));
return numOfNetworks;
}
char* WiFiClass::SSID(uint8_t networkItem)
{
return WiFiDrv::getSSIDNetoworks(networkItem);
}
int32_t WiFiClass::RSSI(uint8_t networkItem)
{
return WiFiDrv::getRSSINetoworks(networkItem);
}
uint8_t WiFiClass::encryptionType(uint8_t networkItem)
{
return WiFiDrv::getEncTypeNetowrks(networkItem);
}
uint8_t WiFiClass::status()
{
return WiFiDrv::getConnectionStatus();
}
int WiFiClass::hostByName(const char* aHostname, IPAddress& aResult)
{
return WiFiDrv::getHostByName(aHostname, aResult);
}
WiFiClass WiFi;

View File

@ -1,227 +0,0 @@
#ifndef WiFi_h
#define WiFi_h
#include <inttypes.h>
extern "C" {
#include "utility/wl_definitions.h"
#include "utility/wl_types.h"
}
#include "IPAddress.h"
#include "WiFiClient.h"
#include "WiFiServer.h"
class WiFiClass
{
private:
static void init();
public:
static int16_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
WiFiClass();
/*
* Get the first socket available
*/
static uint8_t getSocket();
/*
* Get firmware version
*/
static char* firmwareVersion();
/* Start Wifi connection for OPEN networks
*
* param ssid: Pointer to the SSID string.
*/
int begin(char* ssid);
/* Start Wifi connection with WEP encryption.
* Configure a key into the device. The key type (WEP-40, WEP-104)
* is determined by the size of the key (5 bytes for WEP-40, 13 bytes for WEP-104).
*
* param ssid: Pointer to the SSID string.
* param key_idx: The key index to set. Valid values are 0-3.
* param key: Key input buffer.
*/
int begin(char* ssid, uint8_t key_idx, const char* key);
/* Start Wifi connection with passphrase
* the most secure supported mode will be automatically selected
*
* param ssid: Pointer to the SSID string.
* param passphrase: Passphrase. Valid characters in a passphrase
* must be between ASCII 32-126 (decimal).
*/
int begin(char* ssid, const char *passphrase);
/* Change Ip configuration settings disabling the dhcp client
*
* param local_ip: Static ip configuration
*/
void config(IPAddress local_ip);
/* Change Ip configuration settings disabling the dhcp client
*
* param local_ip: Static ip configuration
* param dns_server: IP configuration for DNS server 1
*/
void config(IPAddress local_ip, IPAddress dns_server);
/* Change Ip configuration settings disabling the dhcp client
*
* param local_ip: Static ip configuration
* param dns_server: IP configuration for DNS server 1
* param gateway : Static gateway configuration
*/
void config(IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
/* Change Ip configuration settings disabling the dhcp client
*
* param local_ip: Static ip configuration
* param dns_server: IP configuration for DNS server 1
* param gateway: Static gateway configuration
* param subnet: Static Subnet mask
*/
void config(IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
/* Change DNS Ip configuration
*
* param dns_server1: ip configuration for DNS server 1
*/
void setDNS(IPAddress dns_server1);
/* Change DNS Ip configuration
*
* param dns_server1: ip configuration for DNS server 1
* param dns_server2: ip configuration for DNS server 2
*
*/
void setDNS(IPAddress dns_server1, IPAddress dns_server2);
/*
* Disconnect from the network
*
* return: one value of wl_status_t enum
*/
int disconnect(void);
/*
* Get the interface MAC address.
*
* return: pointer to uint8_t array with length WL_MAC_ADDR_LENGTH
*/
uint8_t* macAddress(uint8_t* mac);
/*
* Get the interface IP address.
*
* return: Ip address value
*/
IPAddress localIP();
/*
* Get the interface subnet mask address.
*
* return: subnet mask address value
*/
IPAddress subnetMask();
/*
* Get the gateway ip address.
*
* return: gateway ip address value
*/
IPAddress gatewayIP();
/*
* Return the current SSID associated with the network
*
* return: ssid string
*/
char* SSID();
/*
* Return the current BSSID associated with the network.
* It is the MAC address of the Access Point
*
* return: pointer to uint8_t array with length WL_MAC_ADDR_LENGTH
*/
uint8_t* BSSID(uint8_t* bssid);
/*
* Return the current RSSI /Received Signal Strength in dBm)
* associated with the network
*
* return: signed value
*/
int32_t RSSI();
/*
* Return the Encryption Type associated with the network
*
* return: one value of wl_enc_type enum
*/
uint8_t encryptionType();
/*
* Start scan WiFi networks available
*
* return: Number of discovered networks
*/
int8_t scanNetworks();
/*
* Return the SSID discovered during the network scan.
*
* param networkItem: specify from which network item want to get the information
*
* return: ssid string of the specified item on the networks scanned list
*/
char* SSID(uint8_t networkItem);
/*
* Return the encryption type of the networks discovered during the scanNetworks
*
* param networkItem: specify from which network item want to get the information
*
* return: encryption type (enum wl_enc_type) of the specified item on the networks scanned list
*/
uint8_t encryptionType(uint8_t networkItem);
/*
* Return the RSSI of the networks discovered during the scanNetworks
*
* param networkItem: specify from which network item want to get the information
*
* return: signed value of RSSI of the specified item on the networks scanned list
*/
int32_t RSSI(uint8_t networkItem);
/*
* Return Connection status.
*
* return: one of the value defined in wl_status_t
*/
uint8_t status();
/*
* Resolve the given hostname to an IP address.
* param aHostname: Name to be resolved
* param aResult: IPAddress structure to store the returned IP address
* result: 1 if aIPAddrString was successfully converted to an IP address,
* else error code
*/
int hostByName(const char* aHostname, IPAddress& aResult);
friend class WiFiClient;
friend class WiFiServer;
};
extern WiFiClass WiFi;
#endif

View File

@ -1,179 +0,0 @@
extern "C" {
#include "utility/wl_definitions.h"
#include "utility/wl_types.h"
#include "socket.h"
#include "string.h"
#include "utility/debug.h"
}
#include "WiFi.h"
#include "WiFiClient.h"
#include "WiFiServer.h"
#include "server_drv.h"
uint16_t WiFiClient::_srcport = 1024;
WiFiClient::WiFiClient() : _sock(MAX_SOCK_NUM) {
}
WiFiClient::WiFiClient(uint8_t sock) : _sock(sock) {
}
int WiFiClient::connect(const char* host, uint16_t port) {
IPAddress remote_addr;
if (WiFi.hostByName(host, remote_addr))
{
return connect(remote_addr, port);
}
return 0;
}
int WiFiClient::connect(IPAddress ip, uint16_t port) {
_sock = getFirstSocket();
if (_sock != NO_SOCKET_AVAIL)
{
ServerDrv::startClient(uint32_t(ip), port, _sock);
WiFiClass::_state[_sock] = _sock;
unsigned long start = millis();
// wait 4 second for the connection to close
while (!connected() && millis() - start < 10000)
delay(1);
if (!connected())
{
return 0;
}
}else{
Serial.println("No Socket available");
return 0;
}
return 1;
}
size_t WiFiClient::write(uint8_t b) {
return write(&b, 1);
}
size_t WiFiClient::write(const uint8_t *buf, size_t size) {
if (_sock >= MAX_SOCK_NUM)
{
setWriteError();
return 0;
}
if (size==0)
{
setWriteError();
return 0;
}
if (!ServerDrv::sendData(_sock, buf, size))
{
setWriteError();
return 0;
}
if (!ServerDrv::checkDataSent(_sock))
{
setWriteError();
return 0;
}
return size;
}
int WiFiClient::available() {
if (_sock != 255)
{
return ServerDrv::availData(_sock);
}
return 0;
}
int WiFiClient::read() {
uint8_t b;
if (!available())
return -1;
ServerDrv::getData(_sock, &b);
return b;
}
int WiFiClient::read(uint8_t* buf, size_t size) {
if (!ServerDrv::getDataBuf(_sock, buf, &size))
return -1;
return 0;
}
int WiFiClient::peek() {
uint8_t b;
if (!available())
return -1;
ServerDrv::getData(_sock, &b, 1);
return b;
}
void WiFiClient::flush() {
while (available())
read();
}
void WiFiClient::stop() {
if (_sock == 255)
return;
ServerDrv::stopClient(_sock);
WiFiClass::_state[_sock] = NA_STATE;
int count = 0;
// wait maximum 5 secs for the connection to close
while (status() != CLOSED && ++count < 50)
delay(100);
_sock = 255;
}
uint8_t WiFiClient::connected() {
if (_sock == 255) {
return 0;
} else {
uint8_t s = status();
return !(s == LISTEN || s == CLOSED || s == FIN_WAIT_1 ||
s == FIN_WAIT_2 || s == TIME_WAIT ||
s == SYN_SENT || s== SYN_RCVD ||
(s == CLOSE_WAIT));
}
}
uint8_t WiFiClient::status() {
if (_sock == 255) {
return CLOSED;
} else {
return ServerDrv::getClientState(_sock);
}
}
WiFiClient::operator bool() {
return _sock != 255;
}
// Private Methods
uint8_t WiFiClient::getFirstSocket()
{
for (int i = 0; i < MAX_SOCK_NUM; i++) {
if (WiFiClass::_state[i] == NA_STATE)
{
return i;
}
}
return SOCK_NOT_AVAIL;
}

View File

@ -1,40 +0,0 @@
#ifndef wificlient_h
#define wificlient_h
#include "Arduino.h"
#include "Print.h"
#include "Client.h"
#include "IPAddress.h"
class WiFiClient : public Client {
public:
WiFiClient();
WiFiClient(uint8_t sock);
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
friend class WiFiServer;
using Print::write;
private:
static uint16_t _srcport;
uint8_t _sock; //not used
uint16_t _socket;
uint8_t getFirstSocket();
};
#endif

View File

@ -1,89 +0,0 @@
#include <string.h>
#include "server_drv.h"
extern "C" {
#include "utility/debug.h"
}
#include "WiFi.h"
#include "WiFiClient.h"
#include "WiFiServer.h"
WiFiServer::WiFiServer(uint16_t port)
{
_port = port;
}
void WiFiServer::begin()
{
uint8_t _sock = WiFiClass::getSocket();
if (_sock != NO_SOCKET_AVAIL)
{
ServerDrv::startServer(_port, _sock);
WiFiClass::_server_port[_sock] = _port;
WiFiClass::_state[_sock] = _sock;
}
}
WiFiClient WiFiServer::available(byte* status)
{
static int cycle_server_down = 0;
const int TH_SERVER_DOWN = 50;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
if (WiFiClass::_server_port[sock] == _port)
{
WiFiClient client(sock);
uint8_t _status = client.status();
uint8_t _ser_status = this->status();
if (status != NULL)
*status = _status;
//server not in listen state, restart it
if ((_ser_status == 0)&&(cycle_server_down++ > TH_SERVER_DOWN))
{
ServerDrv::startServer(_port, sock);
cycle_server_down = 0;
}
if (_status == ESTABLISHED)
{
return client; //TODO
}
}
}
return WiFiClient(255);
}
uint8_t WiFiServer::status() {
return ServerDrv::getServerState(0);
}
size_t WiFiServer::write(uint8_t b)
{
return write(&b, 1);
}
size_t WiFiServer::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
if (WiFiClass::_server_port[sock] != 0)
{
WiFiClient client(sock);
if (WiFiClass::_server_port[sock] == _port &&
client.status() == ESTABLISHED)
{
n+=client.write(buffer, size);
}
}
}
return n;
}

View File

@ -1,27 +0,0 @@
#ifndef wifiserver_h
#define wifiserver_h
extern "C" {
#include "utility/wl_definitions.h"
}
#include "Server.h"
class WiFiClient;
class WiFiServer : public Server {
private:
uint16_t _port;
void* pcb;
public:
WiFiServer(uint16_t);
WiFiClient available(uint8_t* status = NULL);
void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
uint8_t status();
using Print::write;
};
#endif

View File

@ -1,163 +0,0 @@
extern "C" {
#include "utility/debug.h"
#include "utility/wifi_spi.h"
}
#include <string.h>
#include "server_drv.h"
#include "wifi_drv.h"
#include "WiFi.h"
#include "WiFiUdp.h"
#include "WiFiClient.h"
#include "WiFiServer.h"
/* Constructor */
WiFiUDP::WiFiUDP() : _sock(NO_SOCKET_AVAIL) {}
/* Start WiFiUDP socket, listening at local port PORT */
uint8_t WiFiUDP::begin(uint16_t port) {
uint8_t sock = WiFiClass::getSocket();
if (sock != NO_SOCKET_AVAIL)
{
ServerDrv::startServer(port, sock, UDP_MODE);
WiFiClass::_server_port[sock] = port;
_sock = sock;
_port = port;
return 1;
}
return 0;
}
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int WiFiUDP::available() {
if (_sock != NO_SOCKET_AVAIL)
{
return ServerDrv::availData(_sock);
}
return 0;
}
/* Release any resources being used by this WiFiUDP instance */
void WiFiUDP::stop()
{
if (_sock == NO_SOCKET_AVAIL)
return;
ServerDrv::stopClient(_sock);
_sock = NO_SOCKET_AVAIL;
}
int WiFiUDP::beginPacket(const char *host, uint16_t port)
{
// Look up the host first
int ret = 0;
IPAddress remote_addr;
if (WiFi.hostByName(host, remote_addr))
{
return beginPacket(remote_addr, port);
}
return ret;
}
int WiFiUDP::beginPacket(IPAddress ip, uint16_t port)
{
if (_sock == NO_SOCKET_AVAIL)
_sock = WiFiClass::getSocket();
if (_sock != NO_SOCKET_AVAIL)
{
ServerDrv::startClient(uint32_t(ip), port, _sock, UDP_MODE);
WiFiClass::_state[_sock] = _sock;
return 1;
}
return 0;
}
int WiFiUDP::endPacket()
{
return ServerDrv::sendUdpData(_sock);
}
size_t WiFiUDP::write(uint8_t byte)
{
return write(&byte, 1);
}
size_t WiFiUDP::write(const uint8_t *buffer, size_t size)
{
ServerDrv::insertDataBuf(_sock, buffer, size);
return size;
}
int WiFiUDP::parsePacket()
{
return available();
}
int WiFiUDP::read()
{
uint8_t b;
if (available())
{
ServerDrv::getData(_sock, &b);
return b;
}else{
return -1;
}
}
int WiFiUDP::read(unsigned char* buffer, size_t len)
{
if (available())
{
size_t size = 0;
if (!ServerDrv::getDataBuf(_sock, buffer, &size))
return -1;
// TODO check if the buffer is too smal respect to buffer size
return size;
}else{
return -1;
}
}
int WiFiUDP::peek()
{
uint8_t b;
if (!available())
return -1;
ServerDrv::getData(_sock, &b, 1);
return b;
}
void WiFiUDP::flush()
{
while (available())
read();
}
IPAddress WiFiUDP::remoteIP()
{
uint8_t _remoteIp[4] = {0};
uint8_t _remotePort[2] = {0};
WiFiDrv::getRemoteData(_sock, _remoteIp, _remotePort);
IPAddress ip(_remoteIp);
return ip;
}
uint16_t WiFiUDP::remotePort()
{
uint8_t _remoteIp[4] = {0};
uint8_t _remotePort[2] = {0};
WiFiDrv::getRemoteData(_sock, _remoteIp, _remotePort);
uint16_t port = (_remotePort[0]<<8)+_remotePort[1];
return port;
}

View File

@ -1,61 +0,0 @@
#ifndef wifiudp_h
#define wifiudp_h
#include <Udp.h>
#define UDP_TX_PACKET_MAX_SIZE 24
class WiFiUDP : public UDP {
private:
uint8_t _sock; // socket ID for Wiz5100
uint16_t _port; // local port to listen on
public:
WiFiUDP(); // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
using Print::write;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP();
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort();
friend class WiFiDrv;
};
#endif

View File

@ -1,121 +0,0 @@
/*
This example connects to an unencrypted Wifi network.
Then it prints the MAC address of the Wifi shield,
the IP address obtained, and other network details.
Circuit:
* WiFi shield attached
created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe
*/
#include <WiFi.h>
char ssid[] = "yourNetwork"; // the name of your network
int status = WL_IDLE_STATUS; // the Wifi radio's status
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to open SSID: ");
Serial.println(ssid);
status = WiFi.begin(ssid);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the data:
Serial.print("You're connected to the network");
printCurrentNet();
printWifiData();
}
void loop() {
// check the network connection once every 10 seconds:
delay(10000);
printCurrentNet();
}
void printWifiData() {
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
Serial.println(ip);
// print your MAC address:
byte mac[6];
WiFi.macAddress(mac);
Serial.print("MAC address: ");
Serial.print(mac[5],HEX);
Serial.print(":");
Serial.print(mac[4],HEX);
Serial.print(":");
Serial.print(mac[3],HEX);
Serial.print(":");
Serial.print(mac[2],HEX);
Serial.print(":");
Serial.print(mac[1],HEX);
Serial.print(":");
Serial.println(mac[0],HEX);
// print your subnet mask:
IPAddress subnet = WiFi.subnetMask();
Serial.print("NetMask: ");
Serial.println(subnet);
// print your gateway address:
IPAddress gateway = WiFi.gatewayIP();
Serial.print("Gateway: ");
Serial.println(gateway);
}
void printCurrentNet() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print the MAC address of the router you're attached to:
byte bssid[6];
WiFi.BSSID(bssid);
Serial.print("BSSID: ");
Serial.print(bssid[5],HEX);
Serial.print(":");
Serial.print(bssid[4],HEX);
Serial.print(":");
Serial.print(bssid[3],HEX);
Serial.print(":");
Serial.print(bssid[2],HEX);
Serial.print(":");
Serial.print(bssid[1],HEX);
Serial.print(":");
Serial.println(bssid[0],HEX);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.println(rssi);
// print the encryption type:
byte encryption = WiFi.encryptionType();
Serial.print("Encryption Type:");
Serial.println(encryption,HEX);
}

View File

@ -1,126 +0,0 @@
/*
This example connects to a WEP-encrypted Wifi network.
Then it prints the MAC address of the Wifi shield,
the IP address obtained, and other network details.
If you use 40-bit WEP, you need a key that is 10 characters long,
and the characters must be hexadecimal (0-9 or A-F).
e.g. for 40-bit, ABBADEAF01 will work, but ABBADEAF won't work
(too short) and ABBAISDEAF won't work (I and S are not
hexadecimal characters).
For 128-bit, you need a string that is 26 characters long.
D0D0DEADF00DABBADEAFBEADED will work because it's 26 characters,
all in the 0-9, A-F range.
Circuit:
* WiFi shield attached
created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe
*/
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char key[] = "D0D0DEADF00DABBADEAFBEADED"; // your network key
int keyIndex = 0; // your network key Index number
int status = WL_IDLE_STATUS; // the Wifi radio's status
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to WEP network, SSID: ");
Serial.println(ssid);
status = WiFi.begin(ssid, keyIndex, key);
// wait 10 seconds for connection:
delay(10000);
}
// once you are connected :
Serial.print("You're connected to the network");
printCurrentNet();
printWifiData();
}
void loop() {
// check the network connection once every 10 seconds:
delay(10000);
printCurrentNet();
}
void printWifiData() {
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
Serial.println(ip);
// print your MAC address:
byte mac[6];
WiFi.macAddress(mac);
Serial.print("MAC address: ");
Serial.print(mac[5],HEX);
Serial.print(":");
Serial.print(mac[4],HEX);
Serial.print(":");
Serial.print(mac[3],HEX);
Serial.print(":");
Serial.print(mac[2],HEX);
Serial.print(":");
Serial.print(mac[1],HEX);
Serial.print(":");
Serial.println(mac[0],HEX);
}
void printCurrentNet() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print the MAC address of the router you're attached to:
byte bssid[6];
WiFi.BSSID(bssid);
Serial.print("BSSID: ");
Serial.print(bssid[5],HEX);
Serial.print(":");
Serial.print(bssid[4],HEX);
Serial.print(":");
Serial.print(bssid[3],HEX);
Serial.print(":");
Serial.print(bssid[2],HEX);
Serial.print(":");
Serial.print(bssid[1],HEX);
Serial.print(":");
Serial.println(bssid[0],HEX);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.println(rssi);
// print the encryption type:
byte encryption = WiFi.encryptionType();
Serial.print("Encryption Type:");
Serial.println(encryption,HEX);
Serial.println();
}

View File

@ -1,116 +0,0 @@
/*
This example connects to an unencrypted Wifi network.
Then it prints the MAC address of the Wifi shield,
the IP address obtained, and other network details.
Circuit:
* WiFi shield attached
created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe
*/
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int status = WL_IDLE_STATUS; // the Wifi radio's status
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the data:
Serial.print("You're connected to the network");
printCurrentNet();
printWifiData();
}
void loop() {
// check the network connection once every 10 seconds:
delay(10000);
printCurrentNet();
}
void printWifiData() {
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
Serial.println(ip);
// print your MAC address:
byte mac[6];
WiFi.macAddress(mac);
Serial.print("MAC address: ");
Serial.print(mac[5],HEX);
Serial.print(":");
Serial.print(mac[4],HEX);
Serial.print(":");
Serial.print(mac[3],HEX);
Serial.print(":");
Serial.print(mac[2],HEX);
Serial.print(":");
Serial.print(mac[1],HEX);
Serial.print(":");
Serial.println(mac[0],HEX);
}
void printCurrentNet() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print the MAC address of the router you're attached to:
byte bssid[6];
WiFi.BSSID(bssid);
Serial.print("BSSID: ");
Serial.print(bssid[5],HEX);
Serial.print(":");
Serial.print(bssid[4],HEX);
Serial.print(":");
Serial.print(bssid[3],HEX);
Serial.print(":");
Serial.print(bssid[2],HEX);
Serial.print(":");
Serial.print(bssid[1],HEX);
Serial.print(":");
Serial.println(bssid[0],HEX);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.println(rssi);
// print the encryption type:
byte encryption = WiFi.encryptionType();
Serial.print("Encryption Type:");
Serial.println(encryption,HEX);
Serial.println();
}

View File

@ -1,119 +0,0 @@
/*
This example prints the Wifi shield's MAC address, and
scans for available Wifi networks using the Wifi shield.
Every ten seconds, it scans again. It doesn't actually
connect to any network, so no encryption scheme is specified.
Circuit:
* WiFi shield attached
created 13 July 2010
by dlf (Metodo2 srl)
modified 21 Junn 2012
by Tom Igoe and Jaymes Dec
*/
#include <SPI.h>
#include <WiFi.h>
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// Print WiFi MAC address:
printMacAddress();
// scan for existing networks:
Serial.println("Scanning available networks...");
listNetworks();
}
void loop() {
delay(10000);
// scan for existing networks:
Serial.println("Scanning available networks...");
listNetworks();
}
void printMacAddress() {
// the MAC address of your Wifi shield
byte mac[6];
// print your MAC address:
WiFi.macAddress(mac);
Serial.print("MAC: ");
Serial.print(mac[5],HEX);
Serial.print(":");
Serial.print(mac[4],HEX);
Serial.print(":");
Serial.print(mac[3],HEX);
Serial.print(":");
Serial.print(mac[2],HEX);
Serial.print(":");
Serial.print(mac[1],HEX);
Serial.print(":");
Serial.println(mac[0],HEX);
}
void listNetworks() {
// scan for nearby networks:
Serial.println("** Scan Networks **");
int numSsid = WiFi.scanNetworks();
if (numSsid == -1)
{
Serial.println("Couldn't get a wifi connection");
while(true);
}
// print the list of networks seen:
Serial.print("number of available networks:");
Serial.println(numSsid);
// print the network number and name for each network found:
for (int thisNet = 0; thisNet<numSsid; thisNet++) {
Serial.print(thisNet);
Serial.print(") ");
Serial.print(WiFi.SSID(thisNet));
Serial.print("\tSignal: ");
Serial.print(WiFi.RSSI(thisNet));
Serial.print(" dBm");
Serial.print("\tEncryption: ");
printEncryptionType(WiFi.encryptionType(thisNet));
}
}
void printEncryptionType(int thisType) {
// read the encryption type and print out the name:
switch (thisType) {
case ENC_TYPE_WEP:
Serial.println("WEP");
break;
case ENC_TYPE_TKIP:
Serial.println("WPA");
break;
case ENC_TYPE_CCMP:
Serial.println("WPA2");
break;
case ENC_TYPE_NONE:
Serial.println("None");
break;
case ENC_TYPE_AUTO:
Serial.println("Auto");
break;
}
}

View File

@ -1,129 +0,0 @@
/*
WiFi Web Server LED Blink
A simple web server that lets you blink an LED via the web.
This sketch will print the IP address of your WiFi Shield (once connected)
to the Serial monitor. From there, you can open that address in a web browser
to turn on and off the LED on pin 9.
If the IP address of your shield is yourAddress:
http://yourAddress/H turns the LED on
http://yourAddress/L turns it off
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
Circuit:
* WiFi shield attached
* LED attached to pin 9
created 25 Nov 2012
by Tom Igoe
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS;
WiFiServer server(80);
void setup() {
Serial.begin(9600); // initialize serial communication
pinMode(9, OUTPUT); // set the LED pin mode
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
while(true); // don't continue
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to Network named: ");
Serial.println(ssid); // print the network name (SSID);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
server.begin(); // start the web server on port 80
printWifiStatus(); // you're connected now, so print out the status
}
void loop() {
WiFiClient client = server.available(); // listen for incoming clients
if (client) { // if you get a client,
Serial.println("new client"); // print a message out the serial port
String currentLine = ""; // make a String to hold incoming data from the client
while (client.connected()) { // loop while the client's connected
if (client.available()) { // if there's bytes to read from the client,
char c = client.read(); // read a byte, then
Serial.write(c); // print it out the serial monitor
if (c == '\n') { // if the byte is a newline character
// if the current line is blank, you got two newline characters in a row.
// that's the end of the client HTTP request, so send a response:
if (currentLine.length() == 0) {
// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming, then a blank line:
client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");
client.println();
// the content of the HTTP response follows the header:
client.print("Click <a href=\"/H\">here</a> turn the LED on pin 9 on<br>");
client.print("Click <a href=\"/L\">here</a> turn the LED on pin 9 off<br>");
// The HTTP response ends with another blank line:
client.println();
// break out of the while loop:
break;
}
else { // if you got a newline, then clear currentLine:
currentLine = "";
}
}
else if (c != '\r') { // if you got anything else but a carriage return character,
currentLine += c; // add it to the end of the currentLine
}
// Check to see if the client request was "GET /H" or "GET /L":
if (currentLine.endsWith("GET /H")) {
digitalWrite(9, HIGH); // GET /H turns the LED on
}
if (currentLine.endsWith("GET /L")) {
digitalWrite(9, LOW); // GET /L turns the LED off
}
}
}
// close the connection:
client.stop();
Serial.println("client disonnected");
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
// print where to go in a browser:
Serial.print("To see this page in action, open a browser to http://");
Serial.println(ip);
}

View File

@ -1,111 +0,0 @@
/*
Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
Circuit:
* WiFi shield attached
created 18 Dec 2009
by David A. Mellis
modified 31 May 2012
by Tom Igoe
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS;
WiFiServer server(23);
boolean alreadyConnected = false; // whether or not the client was connected previously
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// start the server:
server.begin();
// you're connected now, so print out the status:
printWifiStatus();
}
void loop() {
// wait for a new client:
WiFiClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!alreadyConnected) {
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.println("Hello, client!");
alreadyConnected = true;
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,190 +0,0 @@
/*
Wifi Pachube sensor client
This sketch connects an analog sensor to Pachube (http://www.pachube.com)
using an Arduino Wifi shield.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
This example has been updated to use version 2.0 of the Pachube API.
To make it work, create a feed with a datastream, and give it the ID
sensor1. Or change the code below to match your feed.
Circuit:
* Analog sensor attached to analog in 0
* Wifi shield attached to pins 10, 11, 12, 13
created 13 Mar 2012
modified 31 May 2012
by Tom Igoe
modified 8 Sept 2012
by Scott Fitzgerald
This code is in the public domain.
*/
#include <SPI.h>
#include <WiFi.h>
#define APIKEY "YOUR API KEY GOES HERE" // replace your pachube api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Arduino Project" // user agent is the project name
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int status = WL_IDLE_STATUS;
// initialize the library instance:
WiFiClient client;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
IPAddress server(216,52,233,121); // numeric IP for api.pachube.com
//char server[] = "api.pachube.com"; // name address for pachube API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to pachube.com
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the status:
printWifiStatus();
}
void loop() {
// read the analog sensor:
int sensorReading = analogRead(A0);
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
while (client.available()) {
char c = client.read();
Serial.print(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
sendData(sensorReading);
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void sendData(int thisData) {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.pachube.com");
client.print("X-ApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
// calculate the length of the sensor reading in bytes:
// 8 bytes for "sensor1," + number of digits of the data:
int thisLength = 8 + getLength(thisData);
client.println(thisLength);
// last pieces of the HTTP PUT request:
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.print("sensor1,");
client.println(thisData);
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}
// This method calculates the number of digits in the
// sensor reading. Since each digit of the ASCII decimal
// representation is a byte, the number of digits equals
// the number of bytes:
int getLength(int someValue) {
// there's at least one byte:
int digits = 1;
// continually divide the value by ten,
// adding one to the digit count for each
// time you divide, until you're at 0:
int dividend = someValue /10;
while (dividend > 0) {
dividend = dividend /10;
digits++;
}
// return the number of digits:
return digits;
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,177 +0,0 @@
/*
Wifi Pachube sensor client with Strings
This sketch connects an analog sensor to Pachube (http://www.pachube.com)
using a Arduino Wifi shield.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
This example has been updated to use version 2.0 of the pachube.com API.
To make it work, create a feed with a datastream, and give it the ID
sensor1. Or change the code below to match your feed.
This example uses the String library, which is part of the Arduino core from
version 0019.
Circuit:
* Analog sensor attached to analog in 0
* Wifi shield attached to pins 10, 11, 12, 13
created 16 Mar 2012
modified 31 May 2012
by Tom Igoe
modified 8 Sept 2012
by Scott Fitzgerald
This code is in the public domain.
*/
#include <SPI.h>
#include <WiFi.h>
#define APIKEY "YOUR API KEY GOES HERE" // replace your pachube api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Arduino Project" // user agent is the project name
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int status = WL_IDLE_STATUS;
// initialize the library instance:
WiFiClient client;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(216,52,233,121); // numeric IP for api.pachube.com
char server[] = "api.pachube.com"; // name address for pachube API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to pachube.com
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the status:
printWifiStatus();
}
void loop() {
// read the analog sensor:
int sensorReading = analogRead(A0);
// convert the data to a String to send it:
String dataString = "sensor1,";
dataString += sensorReading;
// you can append multiple readings to this String if your
// pachube feed is set up to handle multiple values:
int otherSensorReading = analogRead(A1);
dataString += "\nsensor2,";
dataString += otherSensorReading;
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
while (client.available()) {
char c = client.read();
Serial.print(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
sendData(dataString);
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void sendData(String thisData) {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.pachube.com");
client.print("X-ApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
client.println(thisData.length());
// last pieces of the HTTP PUT request:
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.println(thisData);
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,163 +0,0 @@
/*
Wifi Twitter Client with Strings
This sketch connects to Twitter using using an Arduino WiFi shield.
It parses the XML returned, and looks for <text>this is a tweet</text>
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
This example uses the String library, which is part of the Arduino core from
version 0019.
Circuit:
* WiFi shield attached to pins 10, 11, 12, 13
created 23 apr 2012
modified 31 May 2012
by Tom Igoe
This code is in the public domain.
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "password"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS; // status of the wifi connection
// initialize the library instance:
WiFiClient client;
const unsigned long requestInterval = 30*1000; // delay between requests; 30 seconds
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(199,59,149,200); // numeric IP for api.twitter.com
char server[] = "api.twitter.com"; // name address for twitter API
boolean requested; // whether you've made a request since connecting
unsigned long lastAttemptTime = 0; // last time you connected to the server, in milliseconds
String currentLine = ""; // string to hold the text from server
String tweet = ""; // string to hold the tweet
boolean readingTweet = false; // if you're currently reading the tweet
void setup() {
// reserve space for the strings:
currentLine.reserve(256);
tweet.reserve(150);
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the status:
printWifiStatus();
connectToServer();
}
void loop()
{
if (client.connected()) {
if (client.available()) {
// read incoming bytes:
char inChar = client.read();
// add incoming byte to end of line:
currentLine += inChar;
// if you get a newline, clear the line:
if (inChar == '\n') {
currentLine = "";
}
// if the current line ends with <text>, it will
// be followed by the tweet:
if ( currentLine.endsWith("<text>")) {
// tweet is beginning. Clear the tweet string:
readingTweet = true;
tweet = "";
// break out of the loop so this character isn't added to the tweet:
return;
}
// if you're currently reading the bytes of a tweet,
// add them to the tweet String:
if (readingTweet) {
if (inChar != '<') {
tweet += inChar;
}
else {
// if you got a "<" character,
// you've reached the end of the tweet:
readingTweet = false;
Serial.println(tweet);
// close the connection to the server:
client.stop();
}
}
}
}
else if (millis() - lastAttemptTime > requestInterval) {
// if you're not connected, and two minutes have passed since
// your last connection, then attempt to connect again:
connectToServer();
}
}
void connectToServer() {
// attempt to connect, and wait a millisecond:
Serial.println("connecting to server...");
if (client.connect(server, 80)) {
Serial.println("making HTTP request...");
// make HTTP GET request to twitter:
client.println("GET /1/statuses/user_timeline.xml?screen_name=arduino HTTP/1.1");
client.println("Host: api.twitter.com");
client.println("Connection: close");
client.println();
}
// note the time of this connect attempt:
lastAttemptTime = millis();
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,182 +0,0 @@
/*
Udp NTP Client
Get the time from a Network Time Protocol (NTP) time server
Demonstrates use of UDP sendPacket and ReceivePacket
For more on NTP time servers and the messages needed to communicate with them,
see http://en.wikipedia.org/wiki/Network_Time_Protocol
created 4 Sep 2010
by Michael Margolis
modified 9 Apr 2012
by Tom Igoe
This code is in the public domain.
*/
#include <SPI.h>
#include <WiFi.h>
#include <WiFiUdp.h>
int status = WL_IDLE_STATUS;
char ssid[] = "mynetwork"; // your network SSID (name)
char pass[] = "mypassword"; // your network password
int keyIndex = 0; // your network key Index number (needed only for WEP)
unsigned int localPort = 2390; // local port to listen for UDP packets
IPAddress timeServer(129, 6, 15, 28); // time.nist.gov NTP server
const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
// A UDP instance to let us send and receive packets over UDP
WiFiUDP Udp;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
Serial.println("Connected to wifi");
printWifiStatus();
Serial.println("\nStarting connection to server...");
Udp.begin(localPort);
}
void loop()
{
sendNTPpacket(timeServer); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);
Serial.println( Udp.parsePacket() );
if ( Udp.parsePacket() ) {
Serial.println("packet received");
// We've received a packet, read the data from it
Udp.read(packetBuffer,NTP_PACKET_SIZE); // read the packet into the buffer
//the timestamp starts at byte 40 of the received packet and is four bytes,
// or two words, long. First, esxtract the two words:
unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = " );
Serial.println(secsSince1900);
// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);
// print the hour, minute and second:
Serial.print("The UTC time is "); // UTC is the time at Greenwich Meridian (GMT)
Serial.print((epoch % 86400L) / 3600); // print the hour (86400 equals secs per day)
Serial.print(':');
if ( ((epoch % 3600) / 60) < 10 ) {
// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');
}
Serial.print((epoch % 3600) / 60); // print the minute (3600 equals secs per minute)
Serial.print(':');
if ( (epoch % 60) < 10 ) {
// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');
}
Serial.println(epoch %60); // print the second
}
// wait ten seconds before asking for the time again
delay(10000);
}
// send an NTP request to the time server at the given address
unsigned long sendNTPpacket(IPAddress& address)
{
//Serial.println("1");
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
//Serial.println("2");
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
//Serial.println("3");
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
//Serial.println("4");
Udp.write(packetBuffer,NTP_PACKET_SIZE);
//Serial.println("5");
Udp.endPacket();
//Serial.println("6");
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,112 +0,0 @@
/*
WiFi UDP Send and Receive String
This sketch wait an UDP packet on localPort using a WiFi shield.
When a packet is received an Acknowledge packet is sent to the client on port remotePort
Circuit:
* WiFi shield attached
created 30 December 2012
by dlf (Metodo2 srl)
*/
#include <SPI.h>
#include <WiFi.h>
#include <WiFiUdp.h>
int status = WL_IDLE_STATUS;
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = 0; // your network key Index number (needed only for WEP)
unsigned int localPort = 2390; // local port to listen on
char packetBuffer[255]; //buffer to hold incoming packet
char ReplyBuffer[] = "acknowledged"; // a string to send back
WiFiUDP Udp;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid);
// wait 10 seconds for connection:
delay(10000);
}
Serial.println("Connected to wifi");
printWifiStatus();
Serial.println("\nStarting connection to server...");
// if you get a connection, report back via serial:
Udp.begin(localPort);
}
void loop() {
// if there's data available, read a packet
int packetSize = Udp.parsePacket();
if(packetSize)
{
Serial.print("Received packet of size ");
Serial.println(packetSize);
Serial.print("From ");
IPAddress remoteIp = Udp.remoteIP();
Serial.print(remoteIp);
Serial.print(", port ");
Serial.println(Udp.remotePort());
// read the packet into packetBufffer
int len = Udp.read(packetBuffer,255);
if (len >0) packetBuffer[len]=0;
Serial.println("Contents:");
Serial.println(packetBuffer);
// send a reply, to the IP address and port that sent us the packet we received
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(ReplyBuffer);
Udp.endPacket();
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,121 +0,0 @@
/*
Web client
This sketch connects to a website (http://www.google.com)
using a WiFi shield.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
Circuit:
* WiFi shield attached
created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password (use for WPA, or use as key for WEP)
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "www.google.com"; // name address for Google (using DNS)
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
WiFiClient client;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
Serial.println("Connected to wifi");
printWifiStatus();
Serial.println("\nStarting connection to server...");
// if you get a connection, report back via serial:
if (client.connect(server, 80)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET /search?q=arduino HTTP/1.1");
client.println("Host: www.google.com");
client.println("Connection: close");
client.println();
}
}
void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {
char c = client.read();
Serial.write(c);
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting from server.");
client.stop();
// do nothing forevermore:
while(true);
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,138 +0,0 @@
/*
Repeating Wifi Web client
This sketch connects to a a web server and makes a request
using an Arduino Wifi shield.
Circuit:
* Wifi shield attached to pins 10, 11, 12, 13
created 23 April 2012
modifide 31 May 2012
by Tom Igoe
http://arduino.cc/en/Tutorial/WifiWebClientRepeating
This code is in the public domain.
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS;
// Initialize the Wifi client library
WiFiClient client;
// server address:
char server[] = "www.arduino.cc";
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; // delay between updates, in milliseconds
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
// you're connected now, so print out the status:
printWifiStatus();
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
while (client.available()) {
char c = client.read();
Serial.write(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
httpRequest();
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void httpRequest() {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println("disconnecting.");
client.stop();
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,134 +0,0 @@
/*
WiFi Web Server
A simple web server that shows the value of the analog input pins.
using a WiFi shield.
This example is written for a network using WPA encryption. For
WEP or WPA, change the Wifi.begin() call accordingly.
Circuit:
* WiFi shield attached
* Analog inputs attached to pins A0 through A5 (optional)
created 13 July 2010
by dlf (Metodo2 srl)
modified 31 May 2012
by Tom Igoe
*/
#include <SPI.h>
#include <WiFi.h>
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int keyIndex = 0; // your network key Index number (needed only for WEP)
int status = WL_IDLE_STATUS;
WiFiServer server(80);
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// check for the presence of the shield:
if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while(true);
}
// attempt to connect to Wifi network:
while ( status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);
// wait 10 seconds for connection:
delay(10000);
}
server.begin();
// you're connected now, so print out the status:
printWifiStatus();
}
void loop() {
// listen for incoming clients
WiFiClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close"); // the connection will be closed after completion of the response
client.println("Refresh: 5"); // refresh the page automatically every 5 sec
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.println("<br />");
}
client.println("</html>");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
Serial.println("client disonnected");
}
}
void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
}

View File

@ -1,51 +0,0 @@
#######################################
# Syntax Coloring Map For WiFi
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
WiFi KEYWORD1
Client KEYWORD1
Server KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
status KEYWORD2
connect KEYWORD2
write KEYWORD2
available KEYWORD2
config KEYWORD2
setDNS KEYWORD2
read KEYWORD2
flush KEYWORD2
stop KEYWORD2
connected KEYWORD2
begin KEYWORD2
disconnect KEYWORD2
macAddress KEYWORD2
localIP KEYWORD2
subnetMask KEYWORD2
gatewayIP KEYWORD2
SSID KEYWORD2
BSSID KEYWORD2
RSSI KEYWORD2
encryptionType KEYWORD2
getResult KEYWORD2
getSocket KEYWORD2
WiFiClient KEYWORD2
WiFiServer KEYWORD2
WiFiUDP KEYWORD2
beginPacket KEYWORD2
endPacket KEYWORD2
parsePacket KEYWORD2
remoteIP KEYWORD2
remotePort KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

View File

@ -1,77 +0,0 @@
//*********************************************/
//
// File: debug.h
//
// Author: dlf (Metodo2 srl)
//
//********************************************/
#ifndef Debug_H
#define Debug_H
#include <stdio.h>
#include <string.h>
#define PRINT_FILE_LINE() do { \
Serial.print("[");Serial.print(__FILE__); \
Serial.print("::");Serial.print(__LINE__);Serial.print("]");\
}while (0);
#ifdef _DEBUG_
#define INFO(format, args...) do { \
char buf[250]; \
sprintf(buf, format, args); \
Serial.println(buf); \
} while(0);
#define INFO1(x) do { PRINT_FILE_LINE() Serial.print("-I-");\
Serial.println(x); \
}while (0);
#define INFO2(x,y) do { PRINT_FILE_LINE() Serial.print("-I-");\
Serial.print(x,16);Serial.print(",");Serial.println(y,16); \
}while (0);
#else
#define INFO1(x) do {} while(0);
#define INFO2(x,y) do {} while(0);
#define INFO(format, args...) do {} while(0);
#endif
#if 0
#define WARN(args) do { PRINT_FILE_LINE() \
Serial.print("-W-"); Serial.println(args); \
}while (0);
#else
#define WARN(args) do {} while (0);
#endif
#if _DEBUG_SPI_
#define DBG_PIN2 5
#define DBG_PIN 4
#define START() digitalWrite(DBG_PIN2, HIGH);
#define END() digitalWrite(DBG_PIN2, LOW);
#define SET_TRIGGER() digitalWrite(DBG_PIN, HIGH);
#define RST_TRIGGER() digitalWrite(DBG_PIN, LOW);
#define INIT_TRIGGER() pinMode(DBG_PIN, OUTPUT); \
pinMode(DBG_PIN2, OUTPUT); \
RST_TRIGGER()
#define TOGGLE_TRIGGER() SET_TRIGGER() \
delayMicroseconds(2); \
RST_TRIGGER()
#else
#define START()
#define END()
#define SET_TRIGGER()
#define RST_TRIGGER()
#define INIT_TRIGGER()
#define TOGGLE_TRIGGER()
#endif
#endif

View File

@ -1,308 +0,0 @@
//#define _DEBUG_
#include "server_drv.h"
#include "Arduino.h"
#include "spi_drv.h"
extern "C" {
#include "wl_types.h"
#include "debug.h"
}
// Start server TCP on port specified
void ServerDrv::startServer(uint16_t port, uint8_t sock, uint8_t protMode)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(START_SERVER_TCP_CMD, PARAM_NUMS_3);
SpiDrv::sendParam(port);
SpiDrv::sendParam(&sock, 1);
SpiDrv::sendParam(&protMode, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(START_SERVER_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
}
// Start server TCP on port specified
void ServerDrv::startClient(uint32_t ipAddress, uint16_t port, uint8_t sock, uint8_t protMode)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(START_CLIENT_TCP_CMD, PARAM_NUMS_4);
SpiDrv::sendParam((uint8_t*)&ipAddress, sizeof(ipAddress));
SpiDrv::sendParam(port);
SpiDrv::sendParam(&sock, 1);
SpiDrv::sendParam(&protMode, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(START_CLIENT_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
}
// Start server TCP on port specified
void ServerDrv::stopClient(uint8_t sock)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(STOP_CLIENT_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(STOP_CLIENT_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
}
uint8_t ServerDrv::getServerState(uint8_t sock)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_STATE_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(GET_STATE_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
return _data;
}
uint8_t ServerDrv::getClientState(uint8_t sock)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CLIENT_STATE_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(GET_CLIENT_STATE_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
return _data;
}
uint16_t ServerDrv::availData(uint8_t sock)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(AVAIL_DATA_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
uint16_t len = 0;
SpiDrv::waitResponseCmd(AVAIL_DATA_TCP_CMD, PARAM_NUMS_1, (uint8_t*)&len, &_dataLen);
SpiDrv::spiSlaveDeselect();
return len;
}
bool ServerDrv::getData(uint8_t sock, uint8_t *data, uint8_t peek)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_DATA_TCP_CMD, PARAM_NUMS_2);
SpiDrv::sendParam(&sock, sizeof(sock));
SpiDrv::sendParam(peek, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseData8(GET_DATA_TCP_CMD, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
if (_dataLen!=0)
{
*data = _data;
return true;
}
return false;
}
bool ServerDrv::getDataBuf(uint8_t sock, uint8_t *_data, uint16_t *_dataLen)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_DATABUF_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendBuffer(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
if (!SpiDrv::waitResponseData16(GET_DATABUF_TCP_CMD, _data, _dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
if (*_dataLen!=0)
{
return true;
}
return false;
}
bool ServerDrv::insertDataBuf(uint8_t sock, const uint8_t *data, uint16_t _len)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(INSERT_DATABUF_CMD, PARAM_NUMS_2);
SpiDrv::sendBuffer(&sock, sizeof(sock));
SpiDrv::sendBuffer((uint8_t *)data, _len, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseData8(INSERT_DATABUF_CMD, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
if (_dataLen!=0)
{
return (_data == 1);
}
return false;
}
bool ServerDrv::sendUdpData(uint8_t sock)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SEND_DATA_UDP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseData8(SEND_DATA_UDP_CMD, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
if (_dataLen!=0)
{
return (_data == 1);
}
return false;
}
bool ServerDrv::sendData(uint8_t sock, const uint8_t *data, uint16_t len)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SEND_DATA_TCP_CMD, PARAM_NUMS_2);
SpiDrv::sendBuffer(&sock, sizeof(sock));
SpiDrv::sendBuffer((uint8_t *)data, len, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseData8(SEND_DATA_TCP_CMD, &_data, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
if (_dataLen!=0)
{
return (_data == 1);
}
return false;
}
uint8_t ServerDrv::checkDataSent(uint8_t sock)
{
const uint16_t TIMEOUT_DATA_SENT = 25;
uint16_t timeout = 0;
uint8_t _data = 0;
uint8_t _dataLen = 0;
do {
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(DATA_SENT_TCP_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
if (!SpiDrv::waitResponseCmd(DATA_SENT_TCP_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse isDataSent");
}
SpiDrv::spiSlaveDeselect();
if (_data) timeout = 0;
else{
++timeout;
delay(100);
}
}while((_data==0)&&(timeout<TIMEOUT_DATA_SENT));
return (timeout==TIMEOUT_DATA_SENT)?0:1;
}
ServerDrv serverDrv;

View File

@ -1,41 +0,0 @@
#ifndef Server_Drv_h
#define Server_Drv_h
#include <inttypes.h>
#include "wifi_spi.h"
typedef enum eProtMode {TCP_MODE, UDP_MODE}tProtMode;
class ServerDrv
{
public:
// Start server TCP on port specified
static void startServer(uint16_t port, uint8_t sock, uint8_t protMode=TCP_MODE);
static void startClient(uint32_t ipAddress, uint16_t port, uint8_t sock, uint8_t protMode=TCP_MODE);
static void stopClient(uint8_t sock);
static uint8_t getServerState(uint8_t sock);
static uint8_t getClientState(uint8_t sock);
static bool getData(uint8_t sock, uint8_t *data, uint8_t peek = 0);
static bool getDataBuf(uint8_t sock, uint8_t *data, uint16_t *len);
static bool insertDataBuf(uint8_t sock, const uint8_t *_data, uint16_t _dataLen);
static bool sendData(uint8_t sock, const uint8_t *data, uint16_t len);
static bool sendUdpData(uint8_t sock);
static uint16_t availData(uint8_t sock);
static uint8_t checkDataSent(uint8_t sock);
};
extern ServerDrv serverDrv;
#endif

View File

@ -1,20 +0,0 @@
/*
*
@file socket.c
@brief define function of socket API
*
*/
#include <inttypes.h>
#include "socket.h"
SOCKET socket(uint8 protocol) {return 0;} // Opens a socket(TCP or UDP or IP_RAW mode)
void close(SOCKET s) {} // Close socket
uint8 connect(SOCKET s, uint8 * addr, uint16 port) {return 0;} // Establish TCP connection (Active connection)
void disconnect(SOCKET s) {} // disconnect the connection
uint8 listen(SOCKET s) { return 0;} // Establish TCP connection (Passive connection)
uint16 send(SOCKET s, const uint8 * buf, uint16 len) { return 0;} // Send data (TCP)
uint16 recv(SOCKET s, uint8 * buf, uint16 len) {return 0;} // Receive data (TCP)
uint16 sendto(SOCKET s, const uint8 * buf, uint16 len, uint8 * addr, uint16 port) {return 0;} // Send data (UDP/IP RAW)
uint16 recvfrom(SOCKET s, uint8 * buf, uint16 len, uint8 * addr, uint16 *port) {return 0;} // Receive data (UDP/IP RAW)
uint16 igmpsend(SOCKET s, const uint8 * buf, uint16 len) {return 0;}

View File

@ -1,87 +0,0 @@
/*
*
@file socket.h
@brief define function of socket API
*
*/
#ifndef _SOCKET_H_
#define _SOCKET_H_
#define TCP_SOCKET 1
#define UDP_SOCKET 2
#define RAW_SOCKET 3
#define SOCK_NOT_AVAIL 255
#include "wl_definitions.h"
/**
* The 8-bit signed data type.
*/
typedef char int8;
/**
* The volatile 8-bit signed data type.
*/
typedef volatile char vint8;
/**
* The 8-bit unsigned data type.
*/
typedef unsigned char uint8;
/**
* The volatile 8-bit unsigned data type.
*/
typedef volatile unsigned char vuint8;
/**
* The 16-bit signed data type.
*/
typedef int int16;
/**
* The volatile 16-bit signed data type.
*/
typedef volatile int vint16;
/**
* The 16-bit unsigned data type.
*/
typedef unsigned int uint16;
/**
* The volatile 16-bit unsigned data type.
*/
typedef volatile unsigned int vuint16;
/**
* The 32-bit signed data type.
*/
typedef long int32;
/**
* The volatile 32-bit signed data type.
*/
typedef volatile long vint32;
/**
* The 32-bit unsigned data type.
*/
typedef unsigned long uint32;
/**
* The volatile 32-bit unsigned data type.
*/
typedef volatile unsigned long vuint32;
/* bsd */
typedef uint8 u_char; /**< 8-bit value */
typedef uint16_t SOCKET;
typedef uint16 u_short; /**< 16-bit value */
typedef uint16 u_int; /**< 16-bit value */
typedef uint32 u_long; /**< 32-bit value */
extern SOCKET socket(uint8 protocol); // Opens a socket(TCP or UDP or IP_RAW mode)
extern void close(SOCKET s); // Close socket
extern uint8 connect(SOCKET s, uint8 * addr, uint16 port); // Establish TCP connection (Active connection)
extern void disconnect(SOCKET s); // disconnect the connection
extern uint8 listen(SOCKET s); // Establish TCP connection (Passive connection)
extern uint16 send(SOCKET s, const uint8 * buf, uint16 len); // Send data (TCP)
extern uint16 recv(SOCKET s, uint8 * buf, uint16 len); // Receive data (TCP)
extern uint16 sendto(SOCKET s, const uint8 * buf, uint16 len, uint8 * addr, uint16 port); // Send data (UDP/IP RAW)
extern uint16 recvfrom(SOCKET s, uint8 * buf, uint16 len, uint8 * addr, uint16 *port); // Receive data (UDP/IP RAW)
extern uint16 igmpsend(SOCKET s, const uint8 * buf, uint16 len);
#endif
/* _SOCKET_H_ */

View File

@ -1,506 +0,0 @@
#include "Arduino.h"
#include "spi_drv.h"
#include "pins_arduino.h"
//#define _DEBUG_
extern "C" {
#include "debug.h"
}
#define DATAOUT 11 // MOSI
#define DATAIN 12 // MISO
#define SPICLOCK 13 // sck
#define SLAVESELECT 10 // ss
#define SLAVEREADY 7 // handshake pin
#define WIFILED 9 // led on wifi shield
#define DELAY_100NS do { asm volatile("nop"); }while(0);
#define DELAY_SPI(X) { int ii=0; do { asm volatile("nop"); }while(++ii<X);}
#define DELAY_TRANSFER() DELAY_SPI(10)
void SpiDrv::begin()
{
// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(SS, OUTPUT);
pinMode(SLAVESELECT, OUTPUT);
pinMode(SLAVEREADY, INPUT);
pinMode(WIFILED, OUTPUT);
digitalWrite(SCK, LOW);
digitalWrite(MOSI, LOW);
digitalWrite(SS, HIGH);
digitalWrite(SLAVESELECT, HIGH);
digitalWrite(WIFILED, LOW);
#ifdef _DEBUG_
INIT_TRIGGER()
#endif
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
//SPSR |= _BV(SPI2X);
}
void SpiDrv::end() {
SPCR &= ~_BV(SPE);
}
void SpiDrv::spiSlaveSelect()
{
digitalWrite(SLAVESELECT,LOW);
}
void SpiDrv::spiSlaveDeselect()
{
digitalWrite(SLAVESELECT,HIGH);
}
void delaySpi()
{
int i = 0;
const int DELAY = 1000;
for (;i<DELAY;++i)
{
int a =a+1;
}
}
char SpiDrv::spiTransfer(volatile char data)
{
SPDR = data; // Start the transmission
while (!(SPSR & (1<<SPIF))) // Wait the end of the transmission
{
};
char result = SPDR;
DELAY_TRANSFER();
return result; // return the received byte
}
int SpiDrv::waitSpiChar(unsigned char waitChar)
{
int timeout = TIMEOUT_CHAR;
unsigned char _readChar = 0;
do{
_readChar = readChar(); //get data byte
if (_readChar == ERR_CMD)
{
WARN("Err cmd received\n");
return -1;
}
}while((timeout-- > 0) && (_readChar != waitChar));
return (_readChar == waitChar);
}
int SpiDrv::readAndCheckChar(char checkChar, char* readChar)
{
getParam((uint8_t*)readChar);
return (*readChar == checkChar);
}
char SpiDrv::readChar()
{
uint8_t readChar = 0;
getParam(&readChar);
return readChar;
}
#define WAIT_START_CMD(x) waitSpiChar(START_CMD)
#define IF_CHECK_START_CMD(x) \
if (!WAIT_START_CMD(_data)) \
{ \
TOGGLE_TRIGGER() \
WARN("Error waiting START_CMD"); \
return 0; \
}else \
#define CHECK_DATA(check, x) \
if (!readAndCheckChar(check, &x)) \
{ \
TOGGLE_TRIGGER() \
WARN("Reply error"); \
INFO2(check, (uint8_t)x); \
return 0; \
}else \
#define waitSlaveReady() (digitalRead(SLAVEREADY) == LOW)
#define waitSlaveSign() (digitalRead(SLAVEREADY) == HIGH)
#define waitSlaveSignalH() while(digitalRead(SLAVEREADY) != HIGH){}
#define waitSlaveSignalL() while(digitalRead(SLAVEREADY) != LOW){}
void SpiDrv::waitForSlaveSign()
{
while (!waitSlaveSign());
}
void SpiDrv::waitForSlaveReady()
{
while (!waitSlaveReady());
}
void SpiDrv::getParam(uint8_t* param)
{
// Get Params data
*param = spiTransfer(DUMMY_DATA);
DELAY_TRANSFER();
}
int SpiDrv::waitResponseCmd(uint8_t cmd, uint8_t numParam, uint8_t* param, uint8_t* param_len)
{
char _data = 0;
int ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
CHECK_DATA(numParam, _data);
{
readParamLen8(param_len);
for (ii=0; ii<(*param_len); ++ii)
{
// Get Params data
//param[ii] = spiTransfer(DUMMY_DATA);
getParam(&param[ii]);
}
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
/*
int SpiDrv::waitResponse(uint8_t cmd, uint8_t numParam, uint8_t* param, uint16_t* param_len)
{
char _data = 0;
int i =0, ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
CHECK_DATA(numParam, _data);
{
readParamLen16(param_len);
for (ii=0; ii<(*param_len); ++ii)
{
// Get Params data
param[ii] = spiTransfer(DUMMY_DATA);
}
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
*/
int SpiDrv::waitResponseData16(uint8_t cmd, uint8_t* param, uint16_t* param_len)
{
char _data = 0;
uint16_t ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
uint8_t numParam = readChar();
if (numParam != 0)
{
readParamLen16(param_len);
for (ii=0; ii<(*param_len); ++ii)
{
// Get Params data
param[ii] = spiTransfer(DUMMY_DATA);
}
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
int SpiDrv::waitResponseData8(uint8_t cmd, uint8_t* param, uint8_t* param_len)
{
char _data = 0;
int ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
uint8_t numParam = readChar();
if (numParam != 0)
{
readParamLen8(param_len);
for (ii=0; ii<(*param_len); ++ii)
{
// Get Params data
param[ii] = spiTransfer(DUMMY_DATA);
}
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
int SpiDrv::waitResponseParams(uint8_t cmd, uint8_t numParam, tParam* params)
{
char _data = 0;
int i =0, ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
uint8_t _numParam = readChar();
if (_numParam != 0)
{
for (i=0; i<_numParam; ++i)
{
params[i].paramLen = readParamLen8();
for (ii=0; ii<params[i].paramLen; ++ii)
{
// Get Params data
params[i].param[ii] = spiTransfer(DUMMY_DATA);
}
}
} else
{
WARN("Error numParam == 0");
return 0;
}
if (numParam != _numParam)
{
WARN("Mismatch numParam");
return 0;
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
/*
int SpiDrv::waitResponse(uint8_t cmd, tParam* params, uint8_t* numParamRead, uint8_t maxNumParams)
{
char _data = 0;
int i =0, ii = 0;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
uint8_t numParam = readChar();
if (numParam > maxNumParams)
{
numParam = maxNumParams;
}
*numParamRead = numParam;
if (numParam != 0)
{
for (i=0; i<numParam; ++i)
{
params[i].paramLen = readParamLen8();
for (ii=0; ii<params[i].paramLen; ++ii)
{
// Get Params data
params[i].param[ii] = spiTransfer(DUMMY_DATA);
}
}
} else
{
WARN("Error numParams == 0");
Serial.println(cmd, 16);
return 0;
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
*/
int SpiDrv::waitResponse(uint8_t cmd, uint8_t* numParamRead, uint8_t** params, uint8_t maxNumParams)
{
char _data = 0;
int i =0, ii = 0;
char *index[WL_SSID_MAX_LENGTH];
for (i = 0 ; i < WL_NETWORKS_LIST_MAXNUM ; i++)
index[i] = (char *)params + WL_SSID_MAX_LENGTH*i;
IF_CHECK_START_CMD(_data)
{
CHECK_DATA(cmd | REPLY_FLAG, _data){};
uint8_t numParam = readChar();
if (numParam > maxNumParams)
{
numParam = maxNumParams;
}
*numParamRead = numParam;
if (numParam != 0)
{
for (i=0; i<numParam; ++i)
{
uint8_t paramLen = readParamLen8();
for (ii=0; ii<paramLen; ++ii)
{
//ssid[ii] = spiTransfer(DUMMY_DATA);
// Get Params data
index[i][ii] = (uint8_t)spiTransfer(DUMMY_DATA);
}
index[i][ii]=0;
}
} else
{
WARN("Error numParams == 0");
readAndCheckChar(END_CMD, &_data);
return 0;
}
readAndCheckChar(END_CMD, &_data);
}
return 1;
}
void SpiDrv::sendParam(uint8_t* param, uint8_t param_len, uint8_t lastParam)
{
int i = 0;
// Send Spi paramLen
sendParamLen8(param_len);
// Send Spi param data
for (i=0; i<param_len; ++i)
{
spiTransfer(param[i]);
}
// if lastParam==1 Send Spi END CMD
if (lastParam == 1)
spiTransfer(END_CMD);
}
void SpiDrv::sendParamLen8(uint8_t param_len)
{
// Send Spi paramLen
spiTransfer(param_len);
}
void SpiDrv::sendParamLen16(uint16_t param_len)
{
// Send Spi paramLen
spiTransfer((uint8_t)((param_len & 0xff00)>>8));
spiTransfer((uint8_t)(param_len & 0xff));
}
uint8_t SpiDrv::readParamLen8(uint8_t* param_len)
{
uint8_t _param_len = spiTransfer(DUMMY_DATA);
if (param_len != NULL)
{
*param_len = _param_len;
}
return _param_len;
}
uint16_t SpiDrv::readParamLen16(uint16_t* param_len)
{
uint16_t _param_len = spiTransfer(DUMMY_DATA)<<8 | (spiTransfer(DUMMY_DATA)& 0xff);
if (param_len != NULL)
{
*param_len = _param_len;
}
return _param_len;
}
void SpiDrv::sendBuffer(uint8_t* param, uint16_t param_len, uint8_t lastParam)
{
uint16_t i = 0;
// Send Spi paramLen
sendParamLen16(param_len);
// Send Spi param data
for (i=0; i<param_len; ++i)
{
spiTransfer(param[i]);
}
// if lastParam==1 Send Spi END CMD
if (lastParam == 1)
spiTransfer(END_CMD);
}
void SpiDrv::sendParam(uint16_t param, uint8_t lastParam)
{
// Send Spi paramLen
sendParamLen8(2);
spiTransfer((uint8_t)((param & 0xff00)>>8));
spiTransfer((uint8_t)(param & 0xff));
// if lastParam==1 Send Spi END CMD
if (lastParam == 1)
spiTransfer(END_CMD);
}
/* Cmd Struct Message */
/* _________________________________________________________________________________ */
/*| START CMD | C/R | CMD |[TOT LEN]| N.PARAM | PARAM LEN | PARAM | .. | END CMD | */
/*|___________|______|______|_________|_________|___________|________|____|_________| */
/*| 8 bit | 1bit | 7bit | 8bit | 8bit | 8bit | nbytes | .. | 8bit | */
/*|___________|______|______|_________|_________|___________|________|____|_________| */
void SpiDrv::sendCmd(uint8_t cmd, uint8_t numParam)
{
// Send Spi START CMD
spiTransfer(START_CMD);
//waitForSlaveSign();
//wait the interrupt trigger on slave
delayMicroseconds(SPI_START_CMD_DELAY);
// Send Spi C + cmd
spiTransfer(cmd & ~(REPLY_FLAG));
// Send Spi totLen
//spiTransfer(totLen);
// Send Spi numParam
spiTransfer(numParam);
// If numParam == 0 send END CMD
if (numParam == 0)
spiTransfer(END_CMD);
}
SpiDrv spiDrv;

View File

@ -1,83 +0,0 @@
#ifndef SPI_Drv_h
#define SPI_Drv_h
#include <inttypes.h>
#include "wifi_spi.h"
#define SPI_START_CMD_DELAY 10
#define NO_LAST_PARAM 0
#define LAST_PARAM 1
#define DUMMY_DATA 0xFF
#define WAIT_FOR_SLAVE_SELECT() \
SpiDrv::waitForSlaveReady(); \
SpiDrv::spiSlaveSelect();
class SpiDrv
{
private:
//static bool waitSlaveReady();
static void waitForSlaveSign();
static void getParam(uint8_t* param);
public:
static void begin();
static void end();
static void spiDriverInit();
static void spiSlaveSelect();
static void spiSlaveDeselect();
static char spiTransfer(volatile char data);
static void waitForSlaveReady();
//static int waitSpiChar(char waitChar, char* readChar);
static int waitSpiChar(unsigned char waitChar);
static int readAndCheckChar(char checkChar, char* readChar);
static char readChar();
static int waitResponseParams(uint8_t cmd, uint8_t numParam, tParam* params);
static int waitResponseCmd(uint8_t cmd, uint8_t numParam, uint8_t* param, uint8_t* param_len);
static int waitResponseData8(uint8_t cmd, uint8_t* param, uint8_t* param_len);
static int waitResponseData16(uint8_t cmd, uint8_t* param, uint16_t* param_len);
/*
static int waitResponse(uint8_t cmd, tParam* params, uint8_t* numParamRead, uint8_t maxNumParams);
static int waitResponse(uint8_t cmd, uint8_t numParam, uint8_t* param, uint16_t* param_len);
*/
static int waitResponse(uint8_t cmd, uint8_t* numParamRead, uint8_t** params, uint8_t maxNumParams);
static void sendParam(uint8_t* param, uint8_t param_len, uint8_t lastParam = NO_LAST_PARAM);
static void sendParamLen8(uint8_t param_len);
static void sendParamLen16(uint16_t param_len);
static uint8_t readParamLen8(uint8_t* param_len = NULL);
static uint16_t readParamLen16(uint16_t* param_len = NULL);
static void sendBuffer(uint8_t* param, uint16_t param_len, uint8_t lastParam = NO_LAST_PARAM);
static void sendParam(uint16_t param, uint8_t lastParam = NO_LAST_PARAM);
static void sendCmd(uint8_t cmd, uint8_t numParam);
};
extern SpiDrv spiDrv;
#endif

View File

@ -1,560 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "Arduino.h"
#include "spi_drv.h"
#include "wifi_drv.h"
#define _DEBUG_
extern "C" {
#include "wifi_spi.h"
#include "wl_types.h"
#include "debug.h"
}
// Array of data to cache the information related to the networks discovered
char WiFiDrv::_networkSsid[][WL_SSID_MAX_LENGTH] = {{"1"},{"2"},{"3"},{"4"},{"5"}};
int32_t WiFiDrv::_networkRssi[WL_NETWORKS_LIST_MAXNUM] = { 0 };
uint8_t WiFiDrv::_networkEncr[WL_NETWORKS_LIST_MAXNUM] = { 0 };
// Cached values of retrieved data
char WiFiDrv::_ssid[] = {0};
uint8_t WiFiDrv::_bssid[] = {0};
uint8_t WiFiDrv::_mac[] = {0};
uint8_t WiFiDrv::_localIp[] = {0};
uint8_t WiFiDrv::_subnetMask[] = {0};
uint8_t WiFiDrv::_gatewayIp[] = {0};
// Firmware version
char WiFiDrv::fwVersion[] = {0};
// Private Methods
void WiFiDrv::getNetworkData(uint8_t *ip, uint8_t *mask, uint8_t *gwip)
{
tParam params[PARAM_NUMS_3] = { {0, (char*)ip}, {0, (char*)mask}, {0, (char*)gwip}};
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_IPADDR_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, sizeof(_dummy), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
SpiDrv::waitResponseParams(GET_IPADDR_CMD, PARAM_NUMS_3, params);
SpiDrv::spiSlaveDeselect();
}
void WiFiDrv::getRemoteData(uint8_t sock, uint8_t *ip, uint8_t *port)
{
tParam params[PARAM_NUMS_2] = { {0, (char*)ip}, {0, (char*)port} };
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_REMOTE_DATA_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&sock, sizeof(sock), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
SpiDrv::waitResponseParams(GET_REMOTE_DATA_CMD, PARAM_NUMS_2, params);
SpiDrv::spiSlaveDeselect();
}
// Public Methods
void WiFiDrv::wifiDriverInit()
{
SpiDrv::begin();
}
int8_t WiFiDrv::wifiSetNetwork(char* ssid, uint8_t ssid_len)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SET_NET_CMD, PARAM_NUMS_1);
SpiDrv::sendParam((uint8_t*)ssid, ssid_len, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(SET_NET_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
return(_data == WIFI_SPI_ACK) ? WL_SUCCESS : WL_FAILURE;
}
int8_t WiFiDrv::wifiSetPassphrase(char* ssid, uint8_t ssid_len, const char *passphrase, const uint8_t len)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SET_PASSPHRASE_CMD, PARAM_NUMS_2);
SpiDrv::sendParam((uint8_t*)ssid, ssid_len, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)passphrase, len, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(SET_PASSPHRASE_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
return _data;
}
int8_t WiFiDrv::wifiSetKey(char* ssid, uint8_t ssid_len, uint8_t key_idx, const void *key, const uint8_t len)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SET_KEY_CMD, PARAM_NUMS_3);
SpiDrv::sendParam((uint8_t*)ssid, ssid_len, NO_LAST_PARAM);
SpiDrv::sendParam(&key_idx, KEY_IDX_LEN, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)key, len, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(SET_KEY_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
return _data;
}
void WiFiDrv::config(uint8_t validParams, uint32_t local_ip, uint32_t gateway, uint32_t subnet)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SET_IP_CONFIG_CMD, PARAM_NUMS_4);
SpiDrv::sendParam((uint8_t*)&validParams, 1, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)&local_ip, 4, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)&gateway, 4, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)&subnet, 4, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(SET_IP_CONFIG_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
}
void WiFiDrv::setDNS(uint8_t validParams, uint32_t dns_server1, uint32_t dns_server2)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SET_DNS_CONFIG_CMD, PARAM_NUMS_3);
SpiDrv::sendParam((uint8_t*)&validParams, 1, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)&dns_server1, 4, NO_LAST_PARAM);
SpiDrv::sendParam((uint8_t*)&dns_server2, 4, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(SET_DNS_CONFIG_CMD, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
}
int8_t WiFiDrv::disconnect()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(DISCONNECT_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
int8_t result = SpiDrv::waitResponseCmd(DISCONNECT_CMD, PARAM_NUMS_1, &_data, &_dataLen);
SpiDrv::spiSlaveDeselect();
return result;
}
uint8_t WiFiDrv::getConnectionStatus()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CONN_STATUS_CMD, PARAM_NUMS_0);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = -1;
uint8_t _dataLen = 0;
SpiDrv::waitResponseCmd(GET_CONN_STATUS_CMD, PARAM_NUMS_1, &_data, &_dataLen);
SpiDrv::spiSlaveDeselect();
return _data;
}
uint8_t* WiFiDrv::getMacAddress()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_MACADDR_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
SpiDrv::waitResponseCmd(GET_MACADDR_CMD, PARAM_NUMS_1, _mac, &_dataLen);
SpiDrv::spiSlaveDeselect();
return _mac;
}
void WiFiDrv::getIpAddress(IPAddress& ip)
{
getNetworkData(_localIp, _subnetMask, _gatewayIp);
ip = _localIp;
}
void WiFiDrv::getSubnetMask(IPAddress& mask)
{
getNetworkData(_localIp, _subnetMask, _gatewayIp);
mask = _subnetMask;
}
void WiFiDrv::getGatewayIP(IPAddress& ip)
{
getNetworkData(_localIp, _subnetMask, _gatewayIp);
ip = _gatewayIp;
}
char* WiFiDrv::getCurrentSSID()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CURR_SSID_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
SpiDrv::waitResponseCmd(GET_CURR_SSID_CMD, PARAM_NUMS_1, (uint8_t*)_ssid, &_dataLen);
SpiDrv::spiSlaveDeselect();
return _ssid;
}
uint8_t* WiFiDrv::getCurrentBSSID()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CURR_BSSID_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
SpiDrv::waitResponseCmd(GET_CURR_BSSID_CMD, PARAM_NUMS_1, _bssid, &_dataLen);
SpiDrv::spiSlaveDeselect();
return _bssid;
}
int32_t WiFiDrv::getCurrentRSSI()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CURR_RSSI_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
int32_t rssi = 0;
SpiDrv::waitResponseCmd(GET_CURR_RSSI_CMD, PARAM_NUMS_1, (uint8_t*)&rssi, &_dataLen);
SpiDrv::spiSlaveDeselect();
return rssi;
}
uint8_t WiFiDrv::getCurrentEncryptionType()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_CURR_ENCT_CMD, PARAM_NUMS_1);
uint8_t _dummy = DUMMY_DATA;
SpiDrv::sendParam(&_dummy, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t dataLen = 0;
uint8_t encType = 0;
SpiDrv::waitResponseCmd(GET_CURR_ENCT_CMD, PARAM_NUMS_1, (uint8_t*)&encType, &dataLen);
SpiDrv::spiSlaveDeselect();
return encType;
}
int8_t WiFiDrv::startScanNetworks()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(START_SCAN_NETWORKS, PARAM_NUMS_0);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(START_SCAN_NETWORKS, PARAM_NUMS_1, &_data, &_dataLen))
{
WARN("error waitResponse");
_data = WL_FAILURE;
}
SpiDrv::spiSlaveDeselect();
return (_data == WL_FAILURE)? _data : WL_SUCCESS;
}
uint8_t WiFiDrv::getScanNetworks()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(SCAN_NETWORKS, PARAM_NUMS_0);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t ssidListNum = 0;
SpiDrv::waitResponse(SCAN_NETWORKS, &ssidListNum, (uint8_t**)_networkSsid, WL_NETWORKS_LIST_MAXNUM);
SpiDrv::spiSlaveDeselect();
return ssidListNum;
}
char* WiFiDrv::getSSIDNetoworks(uint8_t networkItem)
{
if (networkItem >= WL_NETWORKS_LIST_MAXNUM)
return NULL;
return _networkSsid[networkItem];
}
uint8_t WiFiDrv::getEncTypeNetowrks(uint8_t networkItem)
{
if (networkItem >= WL_NETWORKS_LIST_MAXNUM)
return NULL;
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_IDX_ENCT_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&networkItem, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t dataLen = 0;
uint8_t encType = 0;
SpiDrv::waitResponseCmd(GET_IDX_ENCT_CMD, PARAM_NUMS_1, (uint8_t*)&encType, &dataLen);
SpiDrv::spiSlaveDeselect();
return encType;
}
int32_t WiFiDrv::getRSSINetoworks(uint8_t networkItem)
{
if (networkItem >= WL_NETWORKS_LIST_MAXNUM)
return NULL;
int32_t networkRssi = 0;
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_IDX_RSSI_CMD, PARAM_NUMS_1);
SpiDrv::sendParam(&networkItem, 1, LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t dataLen = 0;
SpiDrv::waitResponseCmd(GET_IDX_RSSI_CMD, PARAM_NUMS_1, (uint8_t*)&networkRssi, &dataLen);
SpiDrv::spiSlaveDeselect();
return networkRssi;
}
uint8_t WiFiDrv::reqHostByName(const char* aHostname)
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(REQ_HOST_BY_NAME_CMD, PARAM_NUMS_1);
SpiDrv::sendParam((uint8_t*)aHostname, strlen(aHostname), LAST_PARAM);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _data = 0;
uint8_t _dataLen = 0;
uint8_t result = SpiDrv::waitResponseCmd(REQ_HOST_BY_NAME_CMD, PARAM_NUMS_1, &_data, &_dataLen);
SpiDrv::spiSlaveDeselect();
return result;
}
int WiFiDrv::getHostByName(IPAddress& aResult)
{
uint8_t _ipAddr[WL_IPV4_LENGTH];
IPAddress dummy(0xFF,0xFF,0xFF,0xFF);
int result = 0;
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_HOST_BY_NAME_CMD, PARAM_NUMS_0);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(GET_HOST_BY_NAME_CMD, PARAM_NUMS_1, _ipAddr, &_dataLen))
{
WARN("error waitResponse");
}else{
aResult = _ipAddr;
result = (aResult != dummy);
}
SpiDrv::spiSlaveDeselect();
return result;
}
int WiFiDrv::getHostByName(const char* aHostname, IPAddress& aResult)
{
uint8_t retry = 10;
if (reqHostByName(aHostname))
{
while(!getHostByName(aResult) && --retry > 0)
{
delay(1000);
}
}else{
return 0;
}
return (retry>0);
}
char* WiFiDrv::getFwVersion()
{
WAIT_FOR_SLAVE_SELECT();
// Send Command
SpiDrv::sendCmd(GET_FW_VERSION_CMD, PARAM_NUMS_0);
//Wait the reply elaboration
SpiDrv::waitForSlaveReady();
// Wait for reply
uint8_t _dataLen = 0;
if (!SpiDrv::waitResponseCmd(GET_FW_VERSION_CMD, PARAM_NUMS_1, (uint8_t*)fwVersion, &_dataLen))
{
WARN("error waitResponse");
}
SpiDrv::spiSlaveDeselect();
return fwVersion;
}
WiFiDrv wiFiDrv;

View File

@ -1,248 +0,0 @@
#ifndef WiFi_Drv_h
#define WiFi_Drv_h
#include <inttypes.h>
#include "wifi_spi.h"
#include "IPAddress.h"
#include "../WiFiUdp.h"
// Key index length
#define KEY_IDX_LEN 1
// 5 secs of delay to have the connection established
#define WL_DELAY_START_CONNECTION 5000
// firmware version string length
#define WL_FW_VER_LENGTH 6
class WiFiDrv
{
private:
// settings of requested network
static char _networkSsid[WL_NETWORKS_LIST_MAXNUM][WL_SSID_MAX_LENGTH];
static int32_t _networkRssi[WL_NETWORKS_LIST_MAXNUM];
static uint8_t _networkEncr[WL_NETWORKS_LIST_MAXNUM];
// firmware version string in the format a.b.c
static char fwVersion[WL_FW_VER_LENGTH];
// settings of current selected network
static char _ssid[WL_SSID_MAX_LENGTH];
static uint8_t _bssid[WL_MAC_ADDR_LENGTH];
static uint8_t _mac[WL_MAC_ADDR_LENGTH];
static uint8_t _localIp[WL_IPV4_LENGTH];
static uint8_t _subnetMask[WL_IPV4_LENGTH];
static uint8_t _gatewayIp[WL_IPV4_LENGTH];
/*
* Get network Data information
*/
static void getNetworkData(uint8_t *ip, uint8_t *mask, uint8_t *gwip);
static uint8_t reqHostByName(const char* aHostname);
static int getHostByName(IPAddress& aResult);
/*
* Get remote Data information on UDP socket
*/
static void getRemoteData(uint8_t sock, uint8_t *ip, uint8_t *port);
public:
/*
* Driver initialization
*/
static void wifiDriverInit();
/*
* Set the desired network which the connection manager should try to
* connect to.
*
* The ssid of the desired network should be specified.
*
* param ssid: The ssid of the desired network.
* param ssid_len: Lenght of ssid string.
* return: WL_SUCCESS or WL_FAILURE
*/
static int8_t wifiSetNetwork(char* ssid, uint8_t ssid_len);
/* Start Wifi connection with passphrase
* the most secure supported mode will be automatically selected
*
* param ssid: Pointer to the SSID string.
* param ssid_len: Lenght of ssid string.
* param passphrase: Passphrase. Valid characters in a passphrase
* must be between ASCII 32-126 (decimal).
* param len: Lenght of passphrase string.
* return: WL_SUCCESS or WL_FAILURE
*/
static int8_t wifiSetPassphrase(char* ssid, uint8_t ssid_len, const char *passphrase, const uint8_t len);
/* Start Wifi connection with WEP encryption.
* Configure a key into the device. The key type (WEP-40, WEP-104)
* is determined by the size of the key (5 bytes for WEP-40, 13 bytes for WEP-104).
*
* param ssid: Pointer to the SSID string.
* param ssid_len: Lenght of ssid string.
* param key_idx: The key index to set. Valid values are 0-3.
* param key: Key input buffer.
* param len: Lenght of key string.
* return: WL_SUCCESS or WL_FAILURE
*/
static int8_t wifiSetKey(char* ssid, uint8_t ssid_len, uint8_t key_idx, const void *key, const uint8_t len);
/* Set ip configuration disabling dhcp client
*
* param validParams: set the number of parameters that we want to change
* i.e. validParams = 1 means that we'll change only ip address
* validParams = 3 means that we'll change ip address, gateway and netmask
* param local_ip: Static ip configuration
* param gateway: Static gateway configuration
* param subnet: Static subnet mask configuration
*/
static void config(uint8_t validParams, uint32_t local_ip, uint32_t gateway, uint32_t subnet);
/* Set DNS ip configuration
*
* param validParams: set the number of parameters that we want to change
* i.e. validParams = 1 means that we'll change only dns_server1
* validParams = 2 means that we'll change dns_server1 and dns_server2
* param dns_server1: Static DNS server1 configuration
* param dns_server2: Static DNS server2 configuration
*/
static void setDNS(uint8_t validParams, uint32_t dns_server1, uint32_t dns_server2);
/*
* Disconnect from the network
*
* return: WL_SUCCESS or WL_FAILURE
*/
static int8_t disconnect();
/*
* Disconnect from the network
*
* return: one value of wl_status_t enum
*/
static uint8_t getConnectionStatus();
/*
* Get the interface MAC address.
*
* return: pointer to uint8_t array with length WL_MAC_ADDR_LENGTH
*/
static uint8_t* getMacAddress();
/*
* Get the interface IP address.
*
* return: copy the ip address value in IPAddress object
*/
static void getIpAddress(IPAddress& ip);
/*
* Get the interface subnet mask address.
*
* return: copy the subnet mask address value in IPAddress object
*/
static void getSubnetMask(IPAddress& mask);
/*
* Get the gateway ip address.
*
* return: copy the gateway ip address value in IPAddress object
*/
static void getGatewayIP(IPAddress& ip);
/*
* Return the current SSID associated with the network
*
* return: ssid string
*/
static char* getCurrentSSID();
/*
* Return the current BSSID associated with the network.
* It is the MAC address of the Access Point
*
* return: pointer to uint8_t array with length WL_MAC_ADDR_LENGTH
*/
static uint8_t* getCurrentBSSID();
/*
* Return the current RSSI /Received Signal Strength in dBm)
* associated with the network
*
* return: signed value
*/
static int32_t getCurrentRSSI();
/*
* Return the Encryption Type associated with the network
*
* return: one value of wl_enc_type enum
*/
static uint8_t getCurrentEncryptionType();
/*
* Start scan WiFi networks available
*
* return: Number of discovered networks
*/
static int8_t startScanNetworks();
/*
* Get the networks available
*
* return: Number of discovered networks
*/
static uint8_t getScanNetworks();
/*
* Return the SSID discovered during the network scan.
*
* param networkItem: specify from which network item want to get the information
*
* return: ssid string of the specified item on the networks scanned list
*/
static char* getSSIDNetoworks(uint8_t networkItem);
/*
* Return the RSSI of the networks discovered during the scanNetworks
*
* param networkItem: specify from which network item want to get the information
*
* return: signed value of RSSI of the specified item on the networks scanned list
*/
static int32_t getRSSINetoworks(uint8_t networkItem);
/*
* Return the encryption type of the networks discovered during the scanNetworks
*
* param networkItem: specify from which network item want to get the information
*
* return: encryption type (enum wl_enc_type) of the specified item on the networks scanned list
*/
static uint8_t getEncTypeNetowrks(uint8_t networkItem);
/*
* Resolve the given hostname to an IP address.
* param aHostname: Name to be resolved
* param aResult: IPAddress structure to store the returned IP address
* result: 1 if aIPAddrString was successfully converted to an IP address,
* else error code
*/
static int getHostByName(const char* aHostname, IPAddress& aResult);
/*
* Get the firmware version
* result: version as string with this format a.b.c
*/
static char* getFwVersion();
friend class WiFiUDP;
};
extern WiFiDrv wiFiDrv;
#endif

View File

@ -1,153 +0,0 @@
#ifndef WiFi_Spi_h
#define WiFi_Spi_h
#include "wl_definitions.h"
#define CMD_FLAG 0
#define REPLY_FLAG 1<<7
#define DATA_FLAG 0x40
#define WIFI_SPI_ACK 1
#define WIFI_SPI_ERR 0xFF
#define TIMEOUT_CHAR 1000
//#define MAX_SOCK_NUM 4 /**< Maxmium number of socket */
#define NO_SOCKET_AVAIL 255
#define START_CMD 0xE0
#define END_CMD 0xEE
#define ERR_CMD 0xEF
#define CMD_POS 1 // Position of Command OpCode on SPI stream
#define PARAM_LEN_POS 2 // Position of Param len on SPI stream
enum {
SET_NET_CMD = 0x10,
SET_PASSPHRASE_CMD = 0x11,
SET_KEY_CMD = 0x12,
TEST_CMD = 0x13,
SET_IP_CONFIG_CMD = 0x14,
SET_DNS_CONFIG_CMD = 0x15,
GET_CONN_STATUS_CMD = 0x20,
GET_IPADDR_CMD = 0x21,
GET_MACADDR_CMD = 0x22,
GET_CURR_SSID_CMD = 0x23,
GET_CURR_BSSID_CMD = 0x24,
GET_CURR_RSSI_CMD = 0x25,
GET_CURR_ENCT_CMD = 0x26,
SCAN_NETWORKS = 0x27,
START_SERVER_TCP_CMD= 0x28,
GET_STATE_TCP_CMD = 0x29,
DATA_SENT_TCP_CMD = 0x2A,
AVAIL_DATA_TCP_CMD = 0x2B,
GET_DATA_TCP_CMD = 0x2C,
START_CLIENT_TCP_CMD= 0x2D,
STOP_CLIENT_TCP_CMD = 0x2E,
GET_CLIENT_STATE_TCP_CMD= 0x2F,
DISCONNECT_CMD = 0x30,
GET_IDX_SSID_CMD = 0x31,
GET_IDX_RSSI_CMD = 0x32,
GET_IDX_ENCT_CMD = 0x33,
REQ_HOST_BY_NAME_CMD= 0x34,
GET_HOST_BY_NAME_CMD= 0x35,
START_SCAN_NETWORKS = 0x36,
GET_FW_VERSION_CMD = 0x37,
GET_TEST_CMD = 0x38,
SEND_DATA_UDP_CMD = 0x39,
GET_REMOTE_DATA_CMD = 0x3A,
// All command with DATA_FLAG 0x40 send a 16bit Len
SEND_DATA_TCP_CMD = 0x44,
GET_DATABUF_TCP_CMD = 0x45,
INSERT_DATABUF_CMD = 0x46,
};
enum wl_tcp_state {
CLOSED = 0,
LISTEN = 1,
SYN_SENT = 2,
SYN_RCVD = 3,
ESTABLISHED = 4,
FIN_WAIT_1 = 5,
FIN_WAIT_2 = 6,
CLOSE_WAIT = 7,
CLOSING = 8,
LAST_ACK = 9,
TIME_WAIT = 10
};
enum numParams{
PARAM_NUMS_0,
PARAM_NUMS_1,
PARAM_NUMS_2,
PARAM_NUMS_3,
PARAM_NUMS_4,
PARAM_NUMS_5,
MAX_PARAM_NUMS
};
#define MAX_PARAMS MAX_PARAM_NUMS-1
#define PARAM_LEN_SIZE 1
typedef struct __attribute__((__packed__))
{
uint8_t paramLen;
char* param;
}tParam;
typedef struct __attribute__((__packed__))
{
uint16_t dataLen;
char* data;
}tDataParam;
typedef struct __attribute__((__packed__))
{
unsigned char cmd;
unsigned char tcmd;
unsigned char nParam;
tParam params[MAX_PARAMS];
}tSpiMsg;
typedef struct __attribute__((__packed__))
{
unsigned char cmd;
unsigned char tcmd;
unsigned char nParam;
tDataParam params[MAX_PARAMS];
}tSpiMsgData;
typedef struct __attribute__((__packed__))
{
unsigned char cmd;
unsigned char tcmd;
//unsigned char totLen;
unsigned char nParam;
}tSpiHdr;
typedef struct __attribute__((__packed__))
{
uint8_t paramLen;
uint32_t param;
}tLongParam;
typedef struct __attribute__((__packed__))
{
uint8_t paramLen;
uint16_t param;
}tIntParam;
typedef struct __attribute__((__packed__))
{
uint8_t paramLen;
uint8_t param;
}tByteParam;
#endif

View File

@ -1,52 +0,0 @@
/*
* wl_definitions.h
*
* Created on: Mar 6, 2011
* Author: dlafauci
*/
#ifndef WL_DEFINITIONS_H_
#define WL_DEFINITIONS_H_
// Maximum size of a SSID
#define WL_SSID_MAX_LENGTH 32
// Length of passphrase. Valid lengths are 8-63.
#define WL_WPA_KEY_MAX_LENGTH 63
// Length of key in bytes. Valid values are 5 and 13.
#define WL_WEP_KEY_MAX_LENGTH 13
// Size of a MAC-address or BSSID
#define WL_MAC_ADDR_LENGTH 6
// Size of a MAC-address or BSSID
#define WL_IPV4_LENGTH 4
// Maximum size of a SSID list
#define WL_NETWORKS_LIST_MAXNUM 10
// Maxmium number of socket
#define MAX_SOCK_NUM 4
// Default state value for Wifi state field
#define NA_STATE -1
//Maximum number of attempts to establish wifi connection
#define WL_MAX_ATTEMPT_CONNECTION 10
typedef enum {
WL_NO_SHIELD = 255,
WL_IDLE_STATUS = 0,
WL_NO_SSID_AVAIL,
WL_SCAN_COMPLETED,
WL_CONNECTED,
WL_CONNECT_FAILED,
WL_CONNECTION_LOST,
WL_DISCONNECTED
} wl_status_t;
/* Encryption modes */
enum wl_enc_type { /* Values map to 802.11 encryption suites... */
ENC_TYPE_WEP = 5,
ENC_TYPE_TKIP = 2,
ENC_TYPE_CCMP = 4,
/* ... except these two, 7 and 8 are reserved in 802.11-2007 */
ENC_TYPE_NONE = 7,
ENC_TYPE_AUTO = 8
};
#endif /* WL_DEFINITIONS_H_ */

View File

@ -1,31 +0,0 @@
/*
* wl_types.h
*
* Created on: Jul 30, 2010
* Author: dlafauci
*/
#ifndef _WL_TYPES_H_
#define _WL_TYPES_H_
#include <inttypes.h>
typedef enum {
WL_FAILURE = -1,
WL_SUCCESS = 1,
} wl_error_code_t;
/* Authentication modes */
enum wl_auth_mode {
AUTH_MODE_INVALID,
AUTH_MODE_AUTO,
AUTH_MODE_OPEN_SYSTEM,
AUTH_MODE_SHARED_KEY,
AUTH_MODE_WPA,
AUTH_MODE_WPA2,
AUTH_MODE_WPA_PSK,
AUTH_MODE_WPA2_PSK
};
#endif //_WL_TYPES_H_