Moving bootloaders into the hardware/bootloaders directory.

This commit is contained in:
David A. Mellis 2007-10-06 13:28:43 +00:00
parent 9e48dfc4fd
commit b9d55056c0
9 changed files with 3119 additions and 0 deletions

View File

@ -0,0 +1,979 @@
/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers */
/* */
/* tested with ATmega8, ATmega128 and ATmega168 */
/* should work with other mega's, see code for details */
/* */
/* ATmegaBOOT.c */
/* */
/* 20070626: hacked for Arduino Diecimila (which auto- */
/* resets when a USB connection is made to it) */
/* by D. Mellis */
/* 20060802: hacked for Arduino by D. Cuartielles */
/* based on a previous hack by D. Mellis */
/* and D. Cuartielles */
/* */
/* Monitor and debug functions were added to the original */
/* code by Dr. Erik Lins, chip45.com. (See below) */
/* */
/* Thanks to Karl Pitrich for fixing a bootloader pin */
/* problem and more informative LED blinking! */
/* */
/* For the latest version see: */
/* http://www.chip45.com/ */
/* */
/* ------------------------------------------------------ */
/* */
/* based on stk500boot.c */
/* Copyright (c) 2003, Jason P. Kyle */
/* All rights reserved. */
/* see avr1.org for original file and information */
/* */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General */
/* Public License as published by the Free Software */
/* Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will */
/* be useful, but WITHOUT ANY WARRANTY; without even the */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A */
/* PARTICULAR PURPOSE. See the GNU General Public */
/* License for more details. */
/* */
/* You should have received a copy of the GNU General */
/* Public License along with this program; if not, write */
/* to the Free Software Foundation, Inc., */
/* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* */
/* Licence can be viewed at */
/* http://www.fsf.org/licenses/gpl.txt */
/* */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so */
/* isn't supported. */
/* */
/* Tested with m168 */
/**********************************************************/
/* $Id$ */
/* some includes */
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
/* the current avr-libc eeprom functions do not support the ATmega168 */
/* own eeprom write/read functions are used instead */
#ifndef __AVR_ATmega168__
#include <avr/eeprom.h>
#endif
/* Use the F_CPU defined in Makefile */
/* 20060803: hacked by DojoCorp */
/* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */
/* set the waiting time for the bootloader */
/* get this from the Makefile instead */
/* #define MAX_TIME_COUNT (F_CPU>>4) */
/* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */
#define MAX_ERROR_COUNT 5
/* set the UART baud rate */
/* 20060803: hacked by DojoCorp */
//#define BAUD_RATE 115200
#define BAUD_RATE 19200
/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
/* never allow AVR Studio to do an update !!!! */
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10
/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
/* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */
/* BL0... means UART0, BL1... means UART1 */
#ifdef __AVR_ATmega128__
#define BL_DDR DDRF
#define BL_PORT PORTF
#define BL_PIN PINF
#define BL0 PINF7
#define BL1 PINF6
#else
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR DDRD
#define BL_PORT PORTD
#define BL_PIN PIND
#define BL PIND6
#endif
/* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */
/* if monitor functions are included, LED goes on after monitor was entered */
#ifdef __AVR_ATmega128__
/* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128) */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB7
#else
/* Onboard LED is connected to pin PB2 (e.g. Crumb8, Crumb168) */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
/* 20060803: hacked by DojoCorp, LED pin is B5 in Arduino */
/* #define LED PINB2 */
#define LED PINB5
#endif
/* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */
#ifdef __AVR_ATmega128__
#define MONITOR
#endif
/* define various device id's */
/* manufacturer byte is always the same */
#define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :(
#if defined __AVR_ATmega128__
#define SIG2 0x97
#define SIG3 0x02
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega64__
#define SIG2 0x96
#define SIG3 0x02
#define PAGE_SIZE 0x80U //128 words
#elif defined __AVR_ATmega32__
#define SIG2 0x95
#define SIG3 0x02
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega16__
#define SIG2 0x94
#define SIG3 0x03
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega8__
#define SIG2 0x93
#define SIG3 0x07
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega88__
#define SIG2 0x93
#define SIG3 0x0a
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega168__
#define SIG2 0x94
#define SIG3 0x06
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega162__
#define SIG2 0x94
#define SIG3 0x04
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega163__
#define SIG2 0x94
#define SIG3 0x02
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega169__
#define SIG2 0x94
#define SIG3 0x05
#define PAGE_SIZE 0x40U //64 words
#elif defined __AVR_ATmega8515__
#define SIG2 0x93
#define SIG3 0x06
#define PAGE_SIZE 0x20U //32 words
#elif defined __AVR_ATmega8535__
#define SIG2 0x93
#define SIG3 0x08
#define PAGE_SIZE 0x20U //32 words
#endif
/* function prototypes */
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
void flash_led(uint8_t);
/* some variables */
union address_union {
uint16_t word;
uint8_t byte[2];
} address;
union length_union {
uint16_t word;
uint8_t byte[2];
} length;
struct flags_struct {
unsigned eeprom : 1;
unsigned rampz : 1;
} flags;
uint8_t buff[256];
uint8_t address_high;
uint8_t pagesz=0x80;
uint8_t i;
uint8_t bootuart = 0;
uint8_t error_count = 0;
void (*app_start)(void) = 0x0000;
/* main program starts here */
int main(void)
{
uint8_t ch,ch2;
uint16_t w;
asm volatile("nop\n\t");
/* set pin direction for bootloader pin and enable pullup */
/* for ATmega128, two pins need to be initialized */
#ifdef __AVR_ATmega128__
BL_DDR &= ~_BV(BL0);
BL_DDR &= ~_BV(BL1);
BL_PORT |= _BV(BL0);
BL_PORT |= _BV(BL1);
#else
/* We run the bootloader regardless of the state of this pin. Thus, don't
put it in a different state than the other pins. --DAM, 070709
BL_DDR &= ~_BV(BL);
BL_PORT |= _BV(BL);
*/
#endif
#ifdef __AVR_ATmega128__
/* check which UART should be used for booting */
if(bit_is_clear(BL_PIN, BL0)) {
bootuart = 1;
}
else if(bit_is_clear(BL_PIN, BL1)) {
bootuart = 2;
}
#endif
/* check if flash is programmed already, if not start bootloader anyway */
if(pgm_read_byte_near(0x0000) != 0xFF) {
#ifdef __AVR_ATmega128__
/* no UART was selected, start application */
if(!bootuart) {
app_start();
}
#else
/* check if bootloader pin is set low */
/* we don't start this part neither for the m8, nor m168 */
//if(bit_is_set(BL_PIN, BL)) {
// app_start();
// }
#endif
}
#ifdef __AVR_ATmega128__
/* no bootuart was selected, default to uart 0 */
if(!bootuart) {
bootuart = 1;
}
#endif
/* initialize UART(s) depending on CPU defined */
#ifdef __AVR_ATmega128__
if(bootuart == 1) {
UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSR0A = 0x00;
UCSR0C = 0x06;
UCSR0B = _BV(TXEN0)|_BV(RXEN0);
}
if(bootuart == 2) {
UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSR1A = 0x00;
UCSR1C = 0x06;
UCSR1B = _BV(TXEN1)|_BV(RXEN1);
}
#elif defined __AVR_ATmega163__
UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSRA = 0x00;
UCSRB = _BV(TXEN)|_BV(RXEN);
#elif defined __AVR_ATmega168__
UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSR0B = (1<<RXEN0) | (1<<TXEN0);
UCSR0C = (1<<UCSZ00) | (1<<UCSZ01);
/* Enable internal pull-up resistor on pin D0 (RX), in order
to supress line noise that prevents the bootloader from
timing out (DAM: 20070509) */
DDRD &= ~_BV(PIND0);
PORTD |= _BV(PIND0);
#elif defined __AVR_ATmega8__
/* m8 */
UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate
UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
UCSRB = (1<<RXEN)|(1<<TXEN); // enable Rx & Tx
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // config USART; 8N1
#else
/* m16,m32,m169,m8515,m8535 */
UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
UCSRA = 0x00;
UCSRC = 0x06;
UCSRB = _BV(TXEN)|_BV(RXEN);
#endif
/* set LED pin as output */
LED_DDR |= _BV(LED);
/* flash onboard LED to signal entering of bootloader */
#ifdef __AVR_ATmega128__
// 4x for UART0, 5x for UART1
flash_led(NUM_LED_FLASHES + bootuart);
#else
flash_led(NUM_LED_FLASHES);
#endif
/* 20050803: by DojoCorp, this is one of the parts provoking the
system to stop listening, cancelled from the original */
//putch('\0');
/* forever loop */
for (;;) {
/* get character from UART */
ch = getch();
/* A bunch of if...else if... gives smaller code than switch...case ! */
/* Hello is anyone home ? */
if(ch=='0') {
nothing_response();
}
/* Request programmer ID */
/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry */
/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares. */
else if(ch=='1') {
if (getch() == ' ') {
putch(0x14);
putch('A');
putch('V');
putch('R');
putch(' ');
putch('I');
putch('S');
putch('P');
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* AVR ISP/STK500 board commands DON'T CARE so default nothing_response */
else if(ch=='@') {
ch2 = getch();
if (ch2>0x85) getch();
nothing_response();
}
/* AVR ISP/STK500 board requests */
else if(ch=='A') {
ch2 = getch();
if(ch2==0x80) byte_response(HW_VER); // Hardware version
else if(ch2==0x81) byte_response(SW_MAJOR); // Software major version
else if(ch2==0x82) byte_response(SW_MINOR); // Software minor version
else if(ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56
else byte_response(0x00); // Covers various unnecessary responses we don't care about
}
/* Device Parameters DON'T CARE, DEVICE IS FIXED */
else if(ch=='B') {
getNch(20);
nothing_response();
}
/* Parallel programming stuff DON'T CARE */
else if(ch=='E') {
getNch(5);
nothing_response();
}
/* Enter programming mode */
else if(ch=='P') {
nothing_response();
}
/* Leave programming mode */
else if(ch=='Q') {
nothing_response();
}
/* Erase device, don't care as we will erase one page at a time anyway. */
else if(ch=='R') {
nothing_response();
}
/* Set address, little endian. EEPROM in bytes, FLASH in words */
/* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */
/* This might explain why little endian was used here, big endian used everywhere else. */
else if(ch=='U') {
address.byte[0] = getch();
address.byte[1] = getch();
nothing_response();
}
/* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */
else if(ch=='V') {
getNch(4);
byte_response(0x00);
}
/* Write memory, length is big endian and is in bytes */
else if(ch=='d') {
length.byte[1] = getch();
length.byte[0] = getch();
flags.eeprom = 0;
if (getch() == 'E') flags.eeprom = 1;
for (w=0;w<length.word;w++) {
buff[w] = getch(); // Store data in buffer, can't keep up with serial data stream whilst programming pages
}
if (getch() == ' ') {
if (flags.eeprom) { //Write to EEPROM one byte at a time
for(w=0;w<length.word;w++) {
#ifdef __AVR_ATmega168__
while(EECR & (1<<EEPE));
EEAR = (uint16_t)(void *)address.word;
EEDR = buff[w];
EECR |= (1<<EEMPE);
EECR |= (1<<EEPE);
#else
eeprom_write_byte((void *)address.word,buff[w]);
#endif
address.word++;
}
}
else { //Write to FLASH one page at a time
if (address.byte[1]>127) address_high = 0x01; //Only possible with m128, m256 will need 3rd address byte. FIXME
else address_high = 0x00;
#ifdef __AVR_ATmega128__
RAMPZ = address_high;
#endif
address.word = address.word << 1; //address * 2 -> byte location
/* if ((length.byte[0] & 0x01) == 0x01) length.word++; //Even up an odd number of bytes */
if ((length.byte[0] & 0x01)) length.word++; //Even up an odd number of bytes
cli(); //Disable interrupts, just to be sure
// HACKME: EEPE used to be EEWE
while(bit_is_set(EECR,EEPE)); //Wait for previous EEPROM writes to complete
asm volatile(
"clr r17 \n\t" //page_word_count
"lds r30,address \n\t" //Address of FLASH location (in bytes)
"lds r31,address+1 \n\t"
"ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM
"ldi r29,hi8(buff) \n\t"
"lds r24,length \n\t" //Length of data to be written (in bytes)
"lds r25,length+1 \n\t"
"length_loop: \n\t" //Main loop, repeat for number of words in block
"cpi r17,0x00 \n\t" //If page_word_count=0 then erase page
"brne no_page_erase \n\t"
"wait_spm1: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm1 \n\t"
"ldi r16,0x03 \n\t" //Erase page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"wait_spm2: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm2 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"no_page_erase: \n\t"
"ld r0,Y+ \n\t" //Write 2 bytes into page buffer
"ld r1,Y+ \n\t"
"wait_spm3: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm3 \n\t"
"ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer
"sts %0,r16 \n\t"
"spm \n\t"
"inc r17 \n\t" //page_word_count++
"cpi r17,%1 \n\t"
"brlo same_page \n\t" //Still same page in FLASH
"write_page: \n\t"
"clr r17 \n\t" //New page, write current one first
"wait_spm4: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm4 \n\t"
#ifdef __AVR_ATmega163__
"andi r30,0x80 \n\t" // m163 requires Z6:Z1 to be zero during page write
#endif
"ldi r16,0x05 \n\t" //Write page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
"ori r30,0x7E \n\t" // recover Z6:Z1 state after page write (had to be zero during write)
#endif
"wait_spm5: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm5 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
#ifdef __AVR_ATmega163__
".word 0xFFFF \n\t"
"nop \n\t"
#endif
"same_page: \n\t"
"adiw r30,2 \n\t" //Next word in FLASH
"sbiw r24,2 \n\t" //length-2
"breq final_write \n\t" //Finished
"rjmp length_loop \n\t"
"final_write: \n\t"
"cpi r17,0 \n\t"
"breq block_done \n\t"
"adiw r24,2 \n\t" //length+2, fool above check on length after short page write
"rjmp write_page \n\t"
"block_done: \n\t"
"clr __zero_reg__ \n\t" //restore zero register
#if defined __AVR_ATmega168__
: "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#else
: "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#endif
);
/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
/* exit the bootloader without a power cycle anyhow */
}
putch(0x14);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* Read memory block mode, length is big endian. */
else if(ch=='t') {
length.byte[1] = getch();
length.byte[0] = getch();
#if defined __AVR_ATmega128__
if (address.word>0x7FFF) flags.rampz = 1; // No go with m256, FIXME
else flags.rampz = 0;
#endif
if (getch() == 'E') flags.eeprom = 1;
else {
flags.eeprom = 0;
address.word = address.word << 1; // address * 2 -> byte location
}
if (getch() == ' ') { // Command terminator
putch(0x14);
for (w=0;w < length.word;w++) { // Can handle odd and even lengths okay
if (flags.eeprom) { // Byte access EEPROM read
#ifdef __AVR_ATmega168__
while(EECR & (1<<EEPE));
EEAR = (uint16_t)(void *)address.word;
EECR |= (1<<EERE);
putch(EEDR);
#else
putch(eeprom_read_byte((void *)address.word));
#endif
address.word++;
}
else {
if (!flags.rampz) putch(pgm_read_byte_near(address.word));
#if defined __AVR_ATmega128__
else putch(pgm_read_byte_far(address.word + 0x10000));
// Hmmmm, yuck FIXME when m256 arrvies
#endif
address.word++;
}
}
putch(0x10);
}
}
/* Get device signature bytes */
else if(ch=='u') {
if (getch() == ' ') {
putch(0x14);
putch(SIG1);
putch(SIG2);
putch(SIG3);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
/* Read oscillator calibration byte */
else if(ch=='v') {
byte_response(0x00);
}
#ifdef MONITOR
/* here come the extended monitor commands by Erik Lins */
/* check for three times exclamation mark pressed */
else if(ch=='!') {
ch = getch();
if(ch=='!') {
ch = getch();
if(ch=='!') {
#ifdef __AVR_ATmega128__
uint16_t extaddr;
#endif
uint8_t addrl, addrh;
#ifdef CRUMB128
PGM_P welcome = {"ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r"};
#elif defined PROBOMEGA128
PGM_P welcome = {"ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r"};
#elif defined SAVVY128
PGM_P welcome = {"ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r"};
#endif
/* turn on LED */
LED_DDR |= _BV(LED);
LED_PORT &= ~_BV(LED);
/* print a welcome message and command overview */
for(i=0; welcome[i] != '\0'; ++i) {
putch(welcome[i]);
}
/* test for valid commands */
for(;;) {
putch('\n');
putch('\r');
putch(':');
putch(' ');
ch = getch();
putch(ch);
/* toggle LED */
if(ch == 't') {
if(bit_is_set(LED_PIN,LED)) {
LED_PORT &= ~_BV(LED);
putch('1');
} else {
LED_PORT |= _BV(LED);
putch('0');
}
}
/* read byte from address */
else if(ch == 'r') {
ch = getch(); putch(ch);
addrh = gethex();
addrl = gethex();
putch('=');
ch = *(uint8_t *)((addrh << 8) + addrl);
puthex(ch);
}
/* write a byte to address */
else if(ch == 'w') {
ch = getch(); putch(ch);
addrh = gethex();
addrl = gethex();
ch = getch(); putch(ch);
ch = gethex();
*(uint8_t *)((addrh << 8) + addrl) = ch;
}
/* read from uart and echo back */
else if(ch == 'u') {
for(;;) {
putch(getch());
}
}
#ifdef __AVR_ATmega128__
/* external bus loop */
else if(ch == 'b') {
putch('b');
putch('u');
putch('s');
MCUCR = 0x80;
XMCRA = 0;
XMCRB = 0;
extaddr = 0x1100;
for(;;) {
ch = *(volatile uint8_t *)extaddr;
if(++extaddr == 0) {
extaddr = 0x1100;
}
}
}
#endif
else if(ch == 'j') {
app_start();
}
}
/* end of monitor functions */
}
}
}
/* end of monitor */
#endif
else if (++error_count == MAX_ERROR_COUNT) {
app_start();
}
}
/* end of forever loop */
}
char gethex(void) {
char ah,al;
ah = getch(); putch(ah);
al = getch(); putch(al);
if(ah >= 'a') {
ah = ah - 'a' + 0x0a;
} else if(ah >= '0') {
ah -= '0';
}
if(al >= 'a') {
al = al - 'a' + 0x0a;
} else if(al >= '0') {
al -= '0';
}
return (ah << 4) + al;
}
void puthex(char ch) {
char ah,al;
ah = (ch & 0xf0) >> 4;
if(ah >= 0x0a) {
ah = ah - 0x0a + 'a';
} else {
ah += '0';
}
al = (ch & 0x0f);
if(al >= 0x0a) {
al = al - 0x0a + 'a';
} else {
al += '0';
}
putch(ah);
putch(al);
}
void putch(char ch)
{
#ifdef __AVR_ATmega128__
if(bootuart == 1) {
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
}
else if (bootuart == 2) {
while (!(UCSR1A & _BV(UDRE1)));
UDR1 = ch;
}
#elif defined __AVR_ATmega168__
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
/* m8,16,32,169,8515,8535,163 */
while (!(UCSRA & _BV(UDRE)));
UDR = ch;
#endif
}
char getch(void)
{
#ifdef __AVR_ATmega128__
if(bootuart == 1) {
while(!(UCSR0A & _BV(RXC0)));
return UDR0;
}
else if(bootuart == 2) {
while(!(UCSR1A & _BV(RXC1)));
return UDR1;
}
return 0;
#elif defined __AVR_ATmega168__
uint32_t count = 0;
while(!(UCSR0A & _BV(RXC0))){
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR0;
#else
/* m8,16,32,169,8515,8535,163 */
uint32_t count = 0;
while(!(UCSRA & _BV(RXC))){
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return UDR;
#endif
}
void getNch(uint8_t count)
{
uint8_t i;
for(i=0;i<count;i++) {
#ifdef __AVR_ATmega128__
if(bootuart == 1) {
while(!(UCSR0A & _BV(RXC0)));
UDR0;
}
else if(bootuart == 2) {
while(!(UCSR1A & _BV(RXC1)));
UDR1;
}
#elif defined __AVR_ATmega168__
while(!(UCSR0A & _BV(RXC0)));
UDR0;
#else
/* m8,16,32,169,8515,8535,163 */
/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/
//while(!(UCSRA & _BV(RXC)));
//UDR;
uint8_t i;
for(i=0;i<count;i++) {
getch(); // need to handle time out
}
#endif
}
}
void byte_response(uint8_t val)
{
if (getch() == ' ') {
putch(0x14);
putch(val);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
void nothing_response(void)
{
if (getch() == ' ') {
putch(0x14);
putch(0x10);
} else {
if (++error_count == MAX_ERROR_COUNT)
app_start();
}
}
void flash_led(uint8_t count)
{
/* flash onboard LED three times to signal entering of bootloader */
/* l needs to be volatile or the delay loops below might get
optimized away if compiling with optimizations (DAM). */
volatile uint32_t l;
if (count == 0) {
count = 3;
}
for (i = 0; i < count; ++i) {
LED_PORT |= _BV(LED);
for(l = 0; l < (F_CPU / 1000); ++l);
LED_PORT &= ~_BV(LED);
for(l = 0; l < (F_CPU / 1000); ++l);
}
}
/* end of file ATmegaBOOT.c */

View File

@ -0,0 +1,117 @@
:103800000C94341C0C944F1C0C944F1C0C944F1CA7
:103810000C944F1C0C944F1C0C944F1C0C944F1C7C
:103820000C944F1C0C944F1C0C944F1C0C944F1C6C
:103830000C944F1C0C944F1C0C944F1C0C944F1C5C
:103840000C944F1C0C944F1C0C944F1C0C944F1C4C
:103850000C944F1C0C944F1C0C944F1C0C944F1C3C
:103860000C944F1C0C944F1C11241FBECFEFD4E0BE
:10387000DEBFCDBF11E0A0E0B1E0E8E1FFE302C0B0
:1038800005900D92A230B107D9F712E0A2E0B1E0A5
:1038900001C01D92AD30B107E1F70C94311D0C94BD
:1038A000001CCF93DF93CDB7DEB724970FB6F89403
:1038B000DEBF0FBECDBF382F882309F433E010924E
:1038C0000A02332309F44BC020E02D9A19821A8290
:1038D0001B821C8289819A81AB81BC8180589E4366
:1038E000A040B040A0F489819A81AB81BC8101964F
:1038F000A11DB11D89839A83AB83BC8389819A8181
:10390000AB81BC8180589E43A040B04060F32D98AD
:1039100019821A821B821C8289819A81AB81BC81A7
:1039200080589E43A040B040A0F489819A81AB8129
:10393000BC810196A11DB11D89839A83AB83BC8391
:1039400089819A81AB81BC8180589E43A040B04060
:1039500060F32F5F231708F4B8CF20930A02249650
:103960000FB6F894DEBF0FBECDBFDF91CF910895A3
:10397000EF92FF920F931F93EE24FF248701809113
:10398000C00087FD17C00894E11CF11C011D111D2A
:1039900081E4E81682E4F8068FE0080780E0180763
:1039A00070F3E0910201F091030109958091C0004C
:1039B00087FFE9CF8091C600992787FD90951F91D9
:1039C0000F91FF90EF900895982F8091C00085FF90
:1039D000FCCF9093C60008950E94B81C803271F00D
:1039E000809104018F5F80930401853009F0089570
:1039F000E0910201F09103010995089584E10E948C
:103A0000E41C80E10E94E41C08951F93182F0E947B
:103A1000B81C803269F0809104018F5F80930401AB
:103A2000853079F4E0910201F0910301099509C014
:103A300084E10E94E41C812F0E94E41C80E10E942A
:103A4000E41C1F910895282F882351F090E0809165
:103A5000C00087FFFCCF8091C6009F5F2917B9F790
:103A60000895CFEFD4E0DEBFCDBF000083E38093A5
:103A7000C4001092C50088E18093C10086E0809365
:103A8000C2005098589A259A81E00E94511C0E94C9
:103A9000B81C8033B1F18133B9F1803409F454C0DA
:103AA000813409F45AC0823409F469C0853409F4B8
:103AB0006CC0803531F1813521F1823511F18535C8
:103AC00009F4B2C0863509F4BAC0843609F463C07B
:103AD000843709F4BBC0853709F40EC1863709F471
:103AE0004AC0809104018F5F80930401853079F68C
:103AF000E0910201F091030109950E94B81C803306
:103B000051F60E94EC1CC3CF0E94B81C803249F7CA
:103B100084E10E94E41C81E40E94E41C86E50E948A
:103B2000E41C82E50E94E41C80E20E94E41C89E41B
:103B30000E94E41C83E50E94E41C80E50E94E41CD2
:103B400080E10E94E41CA3CF0E94B81C8638C8F212
:103B50000E94B81C0E94EC1C9ACF0E94B81C8038AE
:103B600009F4F7C0813809F4F8C0823809F4F9C0C3
:103B7000883909F4BDC080E00E94051D88CF84E12A
:103B80000E94231D0E94EC1C82CF85E00E94231D11
:103B90000E94EC1C7CCF0E94B81C809309020E94FA
:103BA000B81C8093080280910C028E7F80930C02D7
:103BB0000E94B81C853409F4C6C080910802909117
:103BC0000902892B09F0ADC00E94B81C803209F0AF
:103BD00088CF80910C0280FFC8C08091080290912C
:103BE00009020097D1F02091060130910701E8E029
:103BF000F1E0AC014E0F5F1FF999FECF32BD21BD40
:103C0000819180BDFA9AF99A2F5F3F4F4E175F0757
:103C100099F7309307012093060184E10E94E41C88
:103C200080E10E94E41C33CF0E94B81C80930601FF
:103C30000E94B81C809307010E94EC1C28CF84E0EE
:103C40000E94231D80E00E94051D21CF0E94B81C08
:103C5000809309020E94B81C809308020E94B81C3D
:103C6000853409F4F4C080910C028E7F80930C029D
:103C70008091060190910701880F991F9093070189
:103C8000809306010E94B81C803209F000CF84E1C5
:103C90000E94E41C2091080230910902211531058F
:103CA00019F1C0E0D0E0E0910601F09107018091A8
:103CB0000C0280FFC4C0F999FECFF2BDE1BDF89AB5
:103CC00080B50E94E41CE0910601F0910701319655
:103CD000F0930701E0930601209108023091090258
:103CE0002196C217D30718F380E10E94E41CCFCEBF
:103CF00083E00E94051DCBCE0E94B81C803209F0E3
:103D0000F0CE84E10E94E41C8EE10E94E41C84E970
:103D10000E94E41C86E00E94E41C80E10E94E41CF6
:103D2000B6CEC0E0D0E008E011E00E94B81CF80177
:103D300081938F0121968091080290910902C81702
:103D4000D90798F341CF80910C02816080930C02D7
:103D500034CF82E00E94051D9ACE81E00E94051DAD
:103D600096CE80E10E94051D92CE8091070187FDCD
:103D700080C010920B028091060190910701880F7C
:103D8000991F90930701809306018091080280FF9C
:103D900009C080910802909109020196909309024E
:103DA00080930802F894F999FECF1127E09106015B
:103DB000F0910701C8E0D1E08091080290910902DA
:103DC000103091F40091570001700130D9F303E0F5
:103DD00000935700E8950091570001700130D9F326
:103DE00001E100935700E895099019900091570060
:103DF00001700130D9F301E000935700E895139565
:103E0000103498F011270091570001700130D9F358
:103E100005E000935700E8950091570001700130CC
:103E2000D9F301E100935700E8953296029709F023
:103E3000C7CF103011F00296E5CF1124EECE81FFEE
:103E40000CC03196F0930701E093060149CF8091B1
:103E50000C02816080930C0215CF84910E94E41CB7
:103E60002091080230910902E0910601F0910701CA
:103E7000E8CF81E080930B027ECF0F931F930E94C7
:103E8000B81C182F0E94E41C0E94B81C082F0E9426
:103E9000E41C11362CF0175501363CF0075508C0CC
:103EA0001033D4F310530136CCF700330CF0005329
:103EB0001295107F100F812F992787FD90951F91E4
:103EC0000F9108951F93282F992787FD9095807F44
:103ED00090709595879595958795959587959595E6
:103EE00087958A304CF0982F995A822F8F708A309C
:103EF0004CF0182F195A08C0982F905D822F8F70A0
:103F00008A30BCF7182F105D892F0E94E41C812F86
:083F10000E94E41C1F910895BA
:023F1800800027
:0400000300003800C1
:00000001FF

View File

@ -0,0 +1,117 @@
:103800000C94341C0C944F1C0C944F1C0C944F1CA7
:103810000C944F1C0C944F1C0C944F1C0C944F1C7C
:103820000C944F1C0C944F1C0C944F1C0C944F1C6C
:103830000C944F1C0C944F1C0C944F1C0C944F1C5C
:103840000C944F1C0C944F1C0C944F1C0C944F1C4C
:103850000C944F1C0C944F1C0C944F1C0C944F1C3C
:103860000C944F1C0C944F1C11241FBECFEFD4E0BE
:10387000DEBFCDBF11E0A0E0B1E0E8E1FFE302C0B0
:1038800005900D92A230B107D9F712E0A2E0B1E0A5
:1038900001C01D92AD30B107E1F70C94311D0C94BD
:1038A000001CCF93DF93CDB7DEB724970FB6F89403
:1038B000DEBF0FBECDBF382F882309F433E010924E
:1038C0000A02332309F44BC020E02D9A19821A8290
:1038D0001B821C8289819A81AB81BC8180589E4366
:1038E000A040B040A0F489819A81AB81BC8101964F
:1038F000A11DB11D89839A83AB83BC8389819A8181
:10390000AB81BC8180589E43A040B04060F32D98AD
:1039100019821A821B821C8289819A81AB81BC81A7
:1039200080589E43A040B040A0F489819A81AB8129
:10393000BC810196A11DB11D89839A83AB83BC8391
:1039400089819A81AB81BC8180589E43A040B04060
:1039500060F32F5F231708F4B8CF20930A02249650
:103960000FB6F894DEBF0FBECDBFDF91CF910895A3
:10397000EF92FF920F931F93EE24FF248701809113
:10398000C00087FD17C00894E11CF11C011D111D2A
:1039900081E0E81682E1F8068AE7080780E0180768
:1039A00070F3E0910201F091030109958091C0004C
:1039B00087FFE9CF8091C600992787FD90951F91D9
:1039C0000F91FF90EF900895982F8091C00085FF90
:1039D000FCCF9093C60008950E94B81C803271F00D
:1039E000809104018F5F80930401853009F0089570
:1039F000E0910201F09103010995089584E10E948C
:103A0000E41C80E10E94E41C08951F93182F0E947B
:103A1000B81C803269F0809104018F5F80930401AB
:103A2000853079F4E0910201F0910301099509C014
:103A300084E10E94E41C812F0E94E41C80E10E942A
:103A4000E41C1F910895282F882351F090E0809165
:103A5000C00087FFFCCF8091C6009F5F2917B9F790
:103A60000895CFEFD4E0DEBFCDBF000083E38093A5
:103A7000C4001092C50088E18093C10086E0809365
:103A8000C2005098589A259A83E00E94511C0E94C7
:103A9000B81C8033B1F18133B9F1803409F454C0DA
:103AA000813409F45AC0823409F469C0853409F4B8
:103AB0006CC0803531F1813521F1823511F18535C8
:103AC00009F4B2C0863509F4BAC0843609F463C07B
:103AD000843709F4BBC0853709F40EC1863709F471
:103AE0004AC0809104018F5F80930401853079F68C
:103AF000E0910201F091030109950E94B81C803306
:103B000051F60E94EC1CC3CF0E94B81C803249F7CA
:103B100084E10E94E41C81E40E94E41C86E50E948A
:103B2000E41C82E50E94E41C80E20E94E41C89E41B
:103B30000E94E41C83E50E94E41C80E50E94E41CD2
:103B400080E10E94E41CA3CF0E94B81C8638C8F212
:103B50000E94B81C0E94EC1C9ACF0E94B81C8038AE
:103B600009F4F7C0813809F4F8C0823809F4F9C0C3
:103B7000883909F4BDC080E00E94051D88CF84E12A
:103B80000E94231D0E94EC1C82CF85E00E94231D11
:103B90000E94EC1C7CCF0E94B81C809309020E94FA
:103BA000B81C8093080280910C028E7F80930C02D7
:103BB0000E94B81C853409F4C6C080910802909117
:103BC0000902892B09F0ADC00E94B81C803209F0AF
:103BD00088CF80910C0280FFC8C08091080290912C
:103BE00009020097D1F02091060130910701E8E029
:103BF000F1E0AC014E0F5F1FF999FECF32BD21BD40
:103C0000819180BDFA9AF99A2F5F3F4F4E175F0757
:103C100099F7309307012093060184E10E94E41C88
:103C200080E10E94E41C33CF0E94B81C80930601FF
:103C30000E94B81C809307010E94EC1C28CF84E0EE
:103C40000E94231D80E00E94051D21CF0E94B81C08
:103C5000809309020E94B81C809308020E94B81C3D
:103C6000853409F4F4C080910C028E7F80930C029D
:103C70008091060190910701880F991F9093070189
:103C8000809306010E94B81C803209F000CF84E1C5
:103C90000E94E41C2091080230910902211531058F
:103CA00019F1C0E0D0E0E0910601F09107018091A8
:103CB0000C0280FFC4C0F999FECFF2BDE1BDF89AB5
:103CC00080B50E94E41CE0910601F0910701319655
:103CD000F0930701E0930601209108023091090258
:103CE0002196C217D30718F380E10E94E41CCFCEBF
:103CF00083E00E94051DCBCE0E94B81C803209F0E3
:103D0000F0CE84E10E94E41C8EE10E94E41C84E970
:103D10000E94E41C86E00E94E41C80E10E94E41CF6
:103D2000B6CEC0E0D0E008E011E00E94B81CF80177
:103D300081938F0121968091080290910902C81702
:103D4000D90798F341CF80910C02816080930C02D7
:103D500034CF82E00E94051D9ACE81E00E94051DAD
:103D600096CE80E10E94051D92CE8091070187FDCD
:103D700080C010920B028091060190910701880F7C
:103D8000991F90930701809306018091080280FF9C
:103D900009C080910802909109020196909309024E
:103DA00080930802F894F999FECF1127E09106015B
:103DB000F0910701C8E0D1E08091080290910902DA
:103DC000103091F40091570001700130D9F303E0F5
:103DD00000935700E8950091570001700130D9F326
:103DE00001E100935700E895099019900091570060
:103DF00001700130D9F301E000935700E895139565
:103E0000103498F011270091570001700130D9F358
:103E100005E000935700E8950091570001700130CC
:103E2000D9F301E100935700E8953296029709F023
:103E3000C7CF103011F00296E5CF1124EECE81FFEE
:103E40000CC03196F0930701E093060149CF8091B1
:103E50000C02816080930C0215CF84910E94E41CB7
:103E60002091080230910902E0910601F0910701CA
:103E7000E8CF81E080930B027ECF0F931F930E94C7
:103E8000B81C182F0E94E41C0E94B81C082F0E9426
:103E9000E41C11362CF0175501363CF0075508C0CC
:103EA0001033D4F310530136CCF700330CF0005329
:103EB0001295107F100F812F992787FD90951F91E4
:103EC0000F9108951F93282F992787FD9095807F44
:103ED00090709595879595958795959587959595E6
:103EE00087958A304CF0982F995A822F8F708A309C
:103EF0004CF0182F195A08C0982F905D822F8F70A0
:103F00008A30BCF7182F105D892F0E94E41C812F86
:083F10000E94E41C1F910895BA
:023F1800800027
:0400000300003800C1
:00000001FF

92
bootloaders/atmega168/Makefile Executable file
View File

@ -0,0 +1,92 @@
# Makefile for ATmegaBOOT
# E.Lins, 18.7.2005
# $Id$
# Instructions
#
# To build the bootloader for the Diecimila:
# make diecimila
#
# To build the bootloader for the NG/Mini:
# make ng
#
# To burn the bootloader:
# make TARGET=diecimila isp
# make TARGET=ng isp
# program name should not be changed...
PROGRAM = ATmegaBOOT_168
# enter the target CPU frequency
AVR_FREQ = 16000000L
# enter the parameters for the avrdude isp tool
ISPTOOL = stk500v2
ISPPORT = usb
ISPSPEED = -b 115200
MCU_TARGET = atmega168
LDSECTION = --section-start=.text=0x3800
# the efuse should really be 0xf8; since, however, only the lower
# three bits of that byte are used on the atmega168, avrdude gets
# confused if you specify 1's for the higher bits, see:
# http://tinker.it/now/2007/02/24/the-tale-of-avrdude-atmega168-and-extended-bits-fuses/
#
# similarly, the lock bits should be 0xff instead of 0x3f (to
# unlock the bootloader section) and 0xcf instead of 0x0f (to
# lock it), but since the high two bits of the lock byte are
# unused, avrdude would get confused.
ISPFUSES = avrdude -c $(ISPTOOL) -p m168 -P $(ISPPORT) $(ISPSPEED) -e -u -U lock:w:0x3f:m -U efuse:w:0x00:m -U hfuse:w:0xdd:m -U lfuse:w:0xff:m
ISPFLASH = avrdude -c $(ISPTOOL) -p m168 -P $(ISPPORT) $(ISPSPEED) -U flash:w:$(PROGRAM)_$(TARGET).hex -U lock:w:0x0f:m
OBJ = $(PROGRAM).o
OPTIMIZE = -O2
DEFS =
LIBS =
CC = avr-gcc
# Override is only needed by avr-lib build system.
override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) -DF_CPU=$(AVR_FREQ) $(DEFS)
override LDFLAGS = -Wl,$(LDSECTION)
#override LDFLAGS = -Wl,-Map,$(PROGRAM).map,$(LDSECTION)
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
all:
diecimila: TARGET = diecimila
diecimila: CFLAGS += '-DMAX_TIME_COUNT=F_CPU>>4' '-DNUM_LED_FLASHES=1'
diecimila: $(PROGRAM)_diecimila.hex
ng: TARGET = ng
ng: CFLAGS += '-DMAX_TIME_COUNT=F_CPU>>1' '-DNUM_LED_FLASHES=3'
ng: $(PROGRAM)_ng.hex
isp: $(PROGRAM)_$(TARGET).hex
$(ISPFUSES)
$(ISPFLASH)
%.elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)
clean:
rm -rf *.o *.elf *.lst *.map *.sym *.lss *.eep *.srec *.bin *.hex
%.lst: %.elf
$(OBJDUMP) -h -S $< > $@
%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@
%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

507
bootloaders/atmega8/ATmegaBOOT.c Executable file
View File

@ -0,0 +1,507 @@
/**********************************************************/
/* Serial Bootloader for Atmel mega8 AVR Controller */
/* */
/* ATmegaBOOT.c */
/* */
/* Copyright (c) 2003, Jason P. Kyle */
/* */
/* Hacked by DojoCorp - ZGZ - MMX - IVR */
/* Hacked by David A. Mellis */
/* */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General */
/* Public License as published by the Free Software */
/* Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will */
/* be useful, but WITHOUT ANY WARRANTY; without even the */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A */
/* PARTICULAR PURPOSE. See the GNU General Public */
/* License for more details. */
/* */
/* You should have received a copy of the GNU General */
/* Public License along with this program; if not, write */
/* to the Free Software Foundation, Inc., */
/* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* */
/* Licence can be viewed at */
/* http://www.fsf.org/licenses/gpl.txt */
/* */
/* Target = Atmel AVR m8 */
/**********************************************************/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <avr/delay.h>
//#define F_CPU 16000000
/* We, Malmoitians, like slow interaction
* therefore the slow baud rate ;-)
*/
//#define BAUD_RATE 9600
/* 6.000.000 is more or less 8 seconds at the
* speed configured here
*/
//#define MAX_TIME_COUNT 6000000
#define MAX_TIME_COUNT (F_CPU>>1)
///#define MAX_TIME_COUNT_MORATORY 1600000
/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x12
// AVR-GCC compiler compatibility
// avr-gcc compiler v3.1.x and older doesn't support outb() and inb()
// if necessary, convert outb and inb to outp and inp
#ifndef outb
#define outb(sfr,val) (_SFR_BYTE(sfr) = (val))
#endif
#ifndef inb
#define inb(sfr) _SFR_BYTE(sfr)
#endif
/* defines for future compatibility */
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
#define eeprom_rb(addr) eeprom_read_byte ((uint8_t *)(addr))
#define eeprom_rw(addr) eeprom_read_word ((uint16_t *)(addr))
#define eeprom_wb(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val))
/* Onboard LED is connected to pin PB5 */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB5
#define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :(
#define SIG2 0x93
#define SIG3 0x07
#define PAGE_SIZE 0x20U //32 words
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
union address_union {
uint16_t word;
uint8_t byte[2];
} address;
union length_union {
uint16_t word;
uint8_t byte[2];
} length;
struct flags_struct {
unsigned eeprom : 1;
unsigned rampz : 1;
} flags;
uint8_t buff[256];
//uint8_t address_high;
uint8_t pagesz=0x80;
uint8_t i;
//uint8_t bootuart0=0,bootuart1=0;
void (*app_start)(void) = 0x0000;
int main(void)
{
uint8_t ch,ch2;
uint16_t w;
//cbi(BL_DDR,BL);
//sbi(BL_PORT,BL);
asm volatile("nop\n\t");
/* check if flash is programmed already, if not start bootloader anyway */
//if(pgm_read_byte_near(0x0000) != 0xFF) {
/* check if bootloader pin is set low */
//if(bit_is_set(BL_PIN,BL)) app_start();
//}
/* initialize UART(s) depending on CPU defined */
/* m8 */
UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate
UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
UCSRB = (1<<RXEN)|(1<<TXEN); // enable Rx & Tx
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // config USART; 8N1
//UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
//UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
//UCSRA = 0x00;
//UCSRC = 0x86;
//UCSRB = _BV(TXEN)|_BV(RXEN);
/* this was giving uisp problems, so I removed it; without it, the boot
works on with uisp and avrdude on the mac (at least). */
//putch('\0');
//uint32_t l;
//uint32_t time_count;
//time_count=0;
/* set LED pin as output */
sbi(LED_DDR,LED);
for (i = 0; i < 16; i++) {
outb(LED_PORT, inb(LED_PORT) ^ _BV(LED));
_delay_loop_2(0);
}
//for (l=0; l<40000000; l++)
//outb(LED_PORT, inb(LED_PORT) ^= _BV(LED));
/* flash onboard LED three times to signal entering of bootloader */
//for(i=0; i<3; ++i) {
//for(l=0; l<40000000; ++l);
//sbi(LED_PORT,LED);
//for(l=0; l<40000000; ++l);
//cbi(LED_PORT,LED);
//}
/* see comment at previous call to putch() */
//putch('\0'); // this line is needed for the synchronization of the programmer
/* forever */
for (;;) {
//if((inb(UCSRA) & _BV(RXC))){
/* get character from UART */
ch = getch();
/* A bunch of if...else if... gives smaller code than switch...case ! */
/* Hello is anyone home ? */
if(ch=='0') {
nothing_response();
}
/* Request programmer ID */
/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry */
/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares. */
else if(ch=='1') {
if (getch() == ' ') {
putch(0x14);
putch('A');
putch('V');
putch('R');
putch(' ');
putch('I');
putch('S');
putch('P');
putch(0x10);
}
}
/* AVR ISP/STK500 board commands DON'T CARE so default nothing_response */
else if(ch=='@') {
ch2 = getch();
if (ch2>0x85) getch();
nothing_response();
}
/* AVR ISP/STK500 board requests */
else if(ch=='A') {
ch2 = getch();
if(ch2==0x80) byte_response(HW_VER); // Hardware version
else if(ch2==0x81) byte_response(SW_MAJOR); // Software major version
else if(ch2==0x82) byte_response(SW_MINOR); // Software minor version
//else if(ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56
else byte_response(0x00); // Covers various unnecessary responses we don't care about
}
/* Device Parameters DON'T CARE, DEVICE IS FIXED */
else if(ch=='B') {
getNch(20);
nothing_response();
}
/* Parallel programming stuff DON'T CARE */
else if(ch=='E') {
getNch(5);
nothing_response();
}
/* Enter programming mode */
else if(ch=='P') {
nothing_response();
// FIXME: modified only here by DojoCorp, Mumbai, India, 20050626
//time_count=0; // exted the delay once entered prog.mode
}
/* Leave programming mode */
else if(ch=='Q') {
nothing_response();
//time_count=MAX_TIME_COUNT_MORATORY; // once the programming is done,
// we should start the application
// but uisp has problems with this,
// therefore we just change the times
// and give the programmer 1 sec to react
}
/* Erase device, don't care as we will erase one page at a time anyway. */
else if(ch=='R') {
nothing_response();
}
/* Set address, little endian. EEPROM in bytes, FLASH in words */
/* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */
/* This might explain why little endian was used here, big endian used everywhere else. */
else if(ch=='U') {
address.byte[0] = getch();
address.byte[1] = getch();
nothing_response();
}
/* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */
else if(ch=='V') {
getNch(4);
byte_response(0x00);
}
/* Write memory, length is big endian and is in bytes */
else if(ch=='d') {
length.byte[1] = getch();
length.byte[0] = getch();
flags.eeprom = 0;
if (getch() == 'E') flags.eeprom = 1;
for (w=0;w<length.word;w++) {
buff[w] = getch(); // Store data in buffer, can't keep up with serial data stream whilst programming pages
}
if (getch() == ' ') {
if (flags.eeprom) { //Write to EEPROM one byte at a time
for(w=0;w<length.word;w++) {
eeprom_wb(address.word,buff[w]);
address.word++;
}
} else { //Write to FLASH one page at a time
//if (address.byte[1]>127) address_high = 0x01; //Only possible with m128, m256 will need 3rd address byte. FIXME
//else address_high = 0x00;
//address.word = address.word << 1; //address * 2 -> byte location
//if ((length.byte[0] & 0x01)) length.word++; //Even up an odd number of bytes
cli(); //Disable interrupts, just to be sure
while(bit_is_set(EECR,EEWE)); //Wait for previous EEPROM writes to complete
asm volatile(
"clr r17 \n\t" //page_word_count
"lds r30,address \n\t" //Address of FLASH location (in words)
"lds r31,address+1 \n\t"
"lsl r30 \n\t" //address * 2 -> byte location
"rol r31 \n\t"
"ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM
"ldi r29,hi8(buff) \n\t"
"lds r24,length \n\t" //Length of data to be written (in bytes)
"lds r25,length+1 \n\t"
"sbrs r24,0 \n\t" //Even up an odd number of bytes
"rjmp length_loop \n\t"
"adiw r24,1 \n\t"
"length_loop: \n\t" //Main loop, repeat for number of words in block
"cpi r17,0x00 \n\t" //If page_word_count=0 then erase page
"brne no_page_erase \n\t"
"rcall wait_spm \n\t"
// "wait_spm1: \n\t"
// "lds r16,%0 \n\t" //Wait for previous spm to complete
// "andi r16,1 \n\t"
// "cpi r16,1 \n\t"
// "breq wait_spm1 \n\t"
"ldi r16,0x03 \n\t" //Erase page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
"rcall wait_spm \n\t"
// "wait_spm2: \n\t"
// "lds r16,%0 \n\t" //Wait for previous spm to complete
// "andi r16,1 \n\t"
// "cpi r16,1 \n\t"
// "breq wait_spm2 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
"no_page_erase: \n\t"
"ld r0,Y+ \n\t" //Write 2 bytes into page buffer
"ld r1,Y+ \n\t"
"rcall wait_spm \n\t"
// "wait_spm3: \n\t"
// "lds r16,%0 \n\t" //Wait for previous spm to complete
// "andi r16,1 \n\t"
// "cpi r16,1 \n\t"
// "breq wait_spm3 \n\t"
"ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer
"sts %0,r16 \n\t"
"spm \n\t"
"inc r17 \n\t" //page_word_count++
"cpi r17,%1 \n\t"
"brlo same_page \n\t" //Still same page in FLASH
"write_page: \n\t"
"clr r17 \n\t" //New page, write current one first
"rcall wait_spm \n\t"
// "wait_spm4: \n\t"
// "lds r16,%0 \n\t" //Wait for previous spm to complete
// "andi r16,1 \n\t"
// "cpi r16,1 \n\t"
// "breq wait_spm4 \n\t"
"ldi r16,0x05 \n\t" //Write page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
"rcall wait_spm \n\t"
// "wait_spm5: \n\t"
// "lds r16,%0 \n\t" //Wait for previous spm to complete
// "andi r16,1 \n\t"
// "cpi r16,1 \n\t"
// "breq wait_spm5 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
"same_page: \n\t"
"adiw r30,2 \n\t" //Next word in FLASH
"sbiw r24,2 \n\t" //length-2
"breq final_write \n\t" //Finished
"rjmp length_loop \n\t"
"wait_spm: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm \n\t"
"ret \n\t"
"final_write: \n\t"
"cpi r17,0 \n\t"
"breq block_done \n\t"
"adiw r24,2 \n\t" //length+2, fool above check on length after short page write
"rjmp write_page \n\t"
"block_done: \n\t"
"clr __zero_reg__ \n\t" //restore zero register
: "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31");
/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
/* exit the bootloader without a power cycle anyhow */
}
putch(0x14);
putch(0x10);
}
}
/* Read memory block mode, length is big endian. */
else if(ch=='t') {
length.byte[1] = getch();
length.byte[0] = getch();
if (getch() == 'E') flags.eeprom = 1;
else {
flags.eeprom = 0;
address.word = address.word << 1; // address * 2 -> byte location
}
if (getch() == ' ') { // Command terminator
putch(0x14);
for (w=0;w < length.word;w++) { // Can handle odd and even lengths okay
if (flags.eeprom) { // Byte access EEPROM read
putch(eeprom_rb(address.word));
address.word++;
} else {
if (!flags.rampz) putch(pgm_read_byte_near(address.word));
address.word++;
}
}
putch(0x10);
}
}
/* Get device signature bytes */
else if(ch=='u') {
if (getch() == ' ') {
putch(0x14);
putch(SIG1);
putch(SIG2);
putch(SIG3);
putch(0x10);
}
}
/* Read oscillator calibration byte */
else if(ch=='v') {
byte_response(0x00);
}
// } else {
// time_count++;
// if (time_count>=MAX_TIME_COUNT) {
// app_start();
// }
// }
} /* end of forever loop */
}
void putch(char ch)
{
/* m8 */
while (!(inb(UCSRA) & _BV(UDRE)));
outb(UDR,ch);
}
char getch(void)
{
/* m8 */
uint32_t count = 0;
while(!(inb(UCSRA) & _BV(RXC))) {
/* HACKME:: here is a good place to count times*/
count++;
if (count > MAX_TIME_COUNT)
app_start();
}
return (inb(UDR));
}
void getNch(uint8_t count)
{
uint8_t i;
for(i=0;i<count;i++) {
/* m8 */
//while(!(inb(UCSRA) & _BV(RXC)));
//inb(UDR);
getch(); // need to handle time out
}
}
void byte_response(uint8_t val)
{
if (getch() == ' ') {
putch(0x14);
putch(val);
putch(0x10);
}
}
void nothing_response(void)
{
if (getch() == ' ') {
putch(0x14);
putch(0x10);
}
}
/* end of file ATmegaBOOT.c */

View File

@ -0,0 +1,66 @@
:101C000012C02BC02AC029C028C027C026C025C0AA
:101C100024C023C022C021C020C01FC01EC01DC0C0
:101C20001CC01BC01AC011241FBECFE5D4E0DEBF0C
:101C3000CDBF10E0A0E6B0E0E8EEFFE102C0059005
:101C40000D92A236B107D9F711E0A2E6B0E001C0CB
:101C50001D92AA36B107E1F74FC0D2CFEF92FF92A3
:101C60000F931F93EE24FF24870113C00894E11CF7
:101C7000F11C011D111D81E0E81682E1F8068AE7DA
:101C8000080780E0180728F0E0916200F0916300F7
:101C900009955F9BEBCF8CB1992787FD90951F919C
:101CA0000F91FF90EF9008955D9BFECF8CB9089542
:101CB000D5DF803221F484E1F7DF80E1F5DF08959C
:101CC0001F93182FCBDF803231F484E1EDDF812FB9
:101CD000EBDF80E1E9DF1F9108951F93CF93DF933E
:101CE000182FC0E0D0E002C0B9DF2196C117E0F3A1
:101CF000DF91CF911F910895CFE5D4E0DEBFCDBF36
:101D0000000010BC83E389B988E18AB986E880BD08
:101D1000BD9A1092680130E2E0E0F0E02FE088B375
:101D2000832788BBCF010197F1F7215027FFF7CF19
:101D300020E12093680192DF803381F1813399F4AF
:101D40008DDF8032C1F784E1AFDF81E4ADDF86E56E
:101D5000ABDF82E5A9DF80E2A7DF89E4A5DF83E5C9
:101D6000A3DF80E5C7C0803429F478DF8638B0F07F
:101D700075DF14C0813471F471DF803811F482E0B2
:101D80001DC1813811F481E019C1823809F015C1F3
:101D900082E114C1823421F484E19FDF89DFCBCF5B
:101DA000853411F485E0F9CF8035C1F38135B1F385
:101DB0008235A1F3853539F451DF809364004EDF1D
:101DC00080936500EBCF863519F484E086DFF5C09B
:101DD000843609F093C042DF809367013FDF809330
:101DE0006601809169018E7F8093690137DF8534B8
:101DF00029F480916901816080936901C0E0D0E09D
:101E000006E610E005C02ADFF80181938F012196D4
:101E10008091660190916701C817D907A0F31EDF72
:101E2000803209F088CF8091690180FF1FC020E0D7
:101E300030E0E6E6F0E012C0A0916400B0916500E9
:101E40008191082EC5D08091640090916500019623
:101E500090936500809364002F5F3F4F80916601EF
:101E6000909167012817390738F343C0F894E19936
:101E7000FECF1127E0916400F0916500EE0FFF1F87
:101E8000C6E6D0E0809166019091670180FF01C0B5
:101E90000196103051F422D003E000935700E895EA
:101EA0001DD001E100935700E8950990199016D0D4
:101EB00001E000935700E8951395103258F0112770
:101EC0000DD005E000935700E89508D001E100939C
:101ED0005700E8953296029739F0DBCF0091570012
:101EE00001700130D9F30895103011F00296E7CF58
:101EF000112484E1D9DE80E1D7DE1DCF843709F0DB
:101F00004BC0ACDE80936701A9DE80936601A6DE3C
:101F100090916901853421F49160909369010DC01D
:101F20009E7F909369018091640090916500880F75
:101F3000991F909365008093640090DE803209F0D1
:101F4000FACE84E1B1DEC0E0D0E01EC0809169012C
:101F500080FF07C0A0916400B091650031D0802D52
:101F600008C081FD07C0E0916400F0916500E49134
:101F70008E2F9ADE80916400909165000196909377
:101F800065008093640021968091660190916701BD
:101F9000C817D907D8F2AFCF853761F45FDE80323A
:101FA00009F0C9CE84E180DE8EE17EDE83E97CDE4D
:101FB00087E0A0CF863709F0BECE80E081DEBBCEC1
:101FC000E199FECFBFBBAEBBE09A11960DB208956A
:101FD000E199FECFBFBBAEBB0DBA11960FB6F89418
:081FE000E29AE19A0FBE089598
:021FE800800077
:0400000300001C00DD
:00000001FF

View File

@ -0,0 +1,88 @@
# Makefile for ATmegaBOOT
# E.Lins, 2004-10-14
# program name should not be changed...
PROGRAM = ATmegaBOOT
PRODUCT=atmega8
# enter the parameters for the UISP isp tool
ISPPARAMS = -dprog=stk500 -dserial=$(SERIAL) -dspeed=115200
#DIRAVR = /usr/local/avr
DIRAVRBIN = $(DIRAVR)/bin
DIRAVRUTILS = $(DIRAVR)/utils/bin
DIRINC = $(DIRAVR)/include
DIRLIB = $(DIRAVR)/avr/lib
MCU_TARGET = atmega8
LDSECTION = --section-start=.text=0x1c00
FUSE_L = 0xdf
FUSE_H = 0xca
ISPFUSES = $(DIRAVRBIN)/uisp -dpart=ATmega8 $(ISPPARAMS) --wr_fuse_l=$(FUSE_L) --wr_fuse_h=$(FUSE_H)
ISPFLASH = $(DIRAVRBIN)/uisp -dpart=ATmega8 $(ISPPARAMS) --erase --upload if=$(PROGRAM).hex -v
OBJ = $(PROGRAM).o
OPTIMIZE = -Os
DEFS = -DF_CPU=16000000 -DBAUD_RATE=19200
LIBS =
CC = $(DIRAVRBIN)/avr-gcc
# Override is only needed by avr-lib build system.
override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) -D$(PRODUCT) $(DEFS) -I$(DIRINC)
override LDFLAGS = -Wl,-Map,$(PROGRAM).map,$(LDSECTION)
OBJCOPY = $(DIRAVRBIN)/avr-objcopy
OBJDUMP = $(DIRAVRBIN)/avr-objdump
SIZE = $(DIRAVRBIN)/avr-size
all: $(PROGRAM).elf lst text asm size
isp: $(PROGRAM).hex
$(ISPFUSES)
$(ISPFLASH)
$(PROGRAM).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)
clean:
rm -rf *.s
rm -rf *.o *.elf
rm -rf *.lst *.map
asm: $(PROGRAM).s
%.s: %.c
$(CC) -S $(CFLAGS) -g1 $^
lst: $(PROGRAM).lst
%.lst: %.elf
$(OBJDUMP) -h -S $< > $@
size: $(PROGRAM).hex
$(SIZE) $^
# Rules for building the .text rom images
text: hex bin srec
hex: $(PROGRAM).hex
bin: $(PROGRAM).bin
srec: $(PROGRAM).srec
%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@
%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,121 @@
:103800000C94341C0C944F1C0C944F1C0C944F1CA7
:103810000C944F1C0C944F1C0C944F1C0C944F1C7C
:103820000C944F1C0C944F1C0C944F1C0C944F1C6C
:103830000C944F1C0C944F1C0C944F1C0C944F1C5C
:103840000C944F1C0C944F1C0C944F1C0C944F1C4C
:103850000C944F1C0C944F1C0C944F1C0C944F1C3C
:103860000C944F1C0C944F1C11241FBECFEFD4E0BE
:10387000DEBFCDBF11E0A0E0B1E0E0E6FFE302C0B3
:1038800005900D92A230B107D9F712E0A2E0B1E0A5
:1038900001C01D92AC30B107E1F70C94D61C0C941A
:1038A000001C882309F483E01092090290E0981725
:1038B000F0F4692F2D9A2FEF37E448EE51E02253B0
:1038C00030404040504057FFFACF2D982FEF33ED56
:1038D00040E350E0225330404040504057FFFACF81
:1038E000962F9F5F692F981728F3909309020895E8
:1038F000982F8091C00085FFFCCF9093C60008955B
:10390000EF92FF920F931F93EE24FF248701809183
:10391000C00087FD17C00894E11CF11C011D111D9A
:1039200081E0E81682E1F8068AE7080780E01807D8
:1039300070F3E0910201F091030109958091C000BC
:1039400087FFE9CF8091C600992787FD90951F9149
:103950000F91FF90EF9008950E94801C803209F033
:10396000089584E10E94781C80E10E94781C0895EB
:10397000CF93C82F0E94801C803249F484E10E94BA
:10398000781C8C2F0E94781C80E10E94781CCF91BB
:103990000895282F90E007C08091C0008823E4F7A5
:1039A0008091C6009F5F9217B8F30895CFEFD4E0DF
:1039B000DEBFCDBF000056985E9A1092C50088E029
:1039C0008093C40088E18093C10086E08093C200A8
:1039D000259A579A5F9A109209022FE080E090E0B2
:1039E0000197F1F7215027FFF9CF20E12093090239
:1039F0005F9883E00E94511C83E50E94781C85E457
:103A00000E94781C84E50E94781C80E20E94781C49
:103A100082E40E94781C84E50E94781C80E20E9467
:103A2000781C80E50E94781C81E40E94781C87E461
:103A30000E94781C85E40E94781C8DE40E94781C0A
:103A40008FE40E94781C84E40E94781C85E40E9424
:103A5000781C80E20E94781C83E30E94781C80E23C
:103A60000E94781C82E30E94781C80E30E94781CEC
:103A700080E30E94781C80E30E94781C80E20E9410
:103A8000781C81E30E94781C8DE00E94781C83E5FD
:103A90000E94781C85E40E94781C84E50E94781CB2
:103AA00080E20E94781C82E40E94781C84E50E94D7
:103AB000781C80E20E94781C82E50E94781C8FE4CA
:103AC0000E94781C8CE40E94781C85E40E94781C7B
:103AD00080E20E94781C80E30E94781C80E20E94B1
:103AE000781C86E60E94781C80E20E94781C87E39E
:103AF0000E94781C84E60E94781C80E30E94781C57
:103B000080E30E94781C8DE00E94781C0E94801C3B
:103B1000803361F1813369F1803409F449C0813423
:103B200009F44FC0823409F45DC0853409F460C0E3
:103B30008035E1F08135D1F08235C1F0853509F469
:103B40005BC0863509F463C0843609F465C08437E8
:103B500009F4B9C0853709F414C18637B9F680E095
:103B60000E94B81C0E94801C8033A1F60E94AC1CED
:103B7000CDCF0E94801CC82F803241F684E10E9484
:103B8000781C81E40E94781C86E50E94781C82E5FE
:103B90000E94781C8C2F0E94781C89E40E94781C5B
:103BA00083E50E94781C80E50E94781C80E1ACCF00
:103BB0000E94801C8638D0F20E94801C0E94AC1C9F
:103BC000A5CF0E94801C803809F4EDC0813809F42B
:103BD000EEC0823809F4EFC0883909F683E00E940C
:103BE000B81CC0CF84E10E94C91C0E94AC1C8ECFBF
:103BF00085E00E94C91CF9CF0E94801C80930501BA
:103C00000E94801C809306010E94AC1C7FCF84E040
:103C10000E94C91C80E0A4CF0E94801C80930802EF
:103C20000E94801C8093070280910B028E7F8093FC
:103C30000B020E94801C853409F4C1C000E010E032
:103C400080910702909108021816190670F4C7E0D7
:103C5000D1E00E94801C89930F5F1F4F8091070263
:103C60009091080208171907A0F30E94801C803267
:103C700009F04CCF80910B0280FFADC000E010E056
:103C8000209107023091080212161306C0F4E09149
:103C90000501F0910601A7E0B1E0F999FECFF2BD70
:103CA000E1BD8D9180BDFA9AF99A31960F5F1F4F51
:103CB0000217130790F3F0930601E093050184E1E6
:103CC0000E94781C73CF0E94801C809308020E947F
:103CD000801C809307020E94801C853409F475C003
:103CE00080910B028E7F80930B0280910501909151
:103CF0000601880F991F90930601809305010E9489
:103D0000801C803209F002CF84E10E94781C00E020
:103D100010E020910702309108021216130608F0F5
:103D200045CFE0910501F091060180910B0280FFE3
:103D30001FC0F999FECFF2BDE1BDF89A80B50E948F
:103D4000781CE0910501F09106013196F09306018F
:103D5000E093050120910702309108020F5F1F4F89
:103D60000217130708F022CF80910B0280FDE1CFEC
:103D7000869580FF9BC03196F0930601E093050184
:103D8000EDCF0E94801C803209F0C0CE84E10E94F9
:103D9000781C8EE10E94781C84E90E94781C86E0E1
:103DA0000E94781C03CF82E00E94B81CDBCE81E029
:103DB0000E94B81CD7CE8FE00E94B81CD3CE809151
:103DC0000B02816080930B0239CF80910B028160DE
:103DD00080930B0294CF8091060187FD73C01092EF
:103DE0000A028091050190910601880F991F909316
:103DF0000601809305018091070280FF09C0809130
:103E0000070290910802019690930802809307029E
:103E1000F894F999FECF1127E0910501F091060180
:103E2000C7E0D1E08091070290910802103091F430
:103E30000091570001700130D9F303E0009357005F
:103E4000E8950091570001700130D9F301E100932A
:103E50005700E895099019900091570001700130C2
:103E6000D9F301E000935700E8951395103498F0CA
:103E700011270091570001700130D9F305E000933C
:103E80005700E8950091570001700130D9F301E126
:103E900000935700E8953296029709F0C7CF10308B
:103EA00011F00296E5CF112484E10ACF84910E949B
:103EB000781C2091070230910802E0910501F091F1
:103EC000060159CF81E080930A028BCF1F93CF93D5
:103ED0000E94801CC82F0E94781C0E94801C182FF2
:103EE0000E94781CC1362CF0C75511363CF017558E
:103EF00008C0C033D4F3C0531136CCF710330CF0E4
:103F00001053C295C07FC10F8C2F992787FD9095C4
:103F1000CF911F910895CF93282F992787FD9095D2
:103F2000807F9070959587959595879595958795C0
:103F3000959587958A303CF0895AC22FCF70CA3048
:103F40003CF0C95A06C0805DC22FCF70CA30CCF792
:103F5000C05D0E94781C8C2F0E94781CCF91089520
:023F60008000DF
:0400000300003800C1
:00000001FF