optiboot_luminet.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .version 00000002 00001efe 00001efe 000002c8 2**0 CONTENTS, READONLY 1 .text 00000274 00000000 00000000 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 2 .debug_aranges 00000028 00000000 00000000 000002ca 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_pubnames 00000078 00000000 00000000 000002f2 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_info 000002a5 00000000 00000000 0000036a 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_abbrev 0000019d 00000000 00000000 0000060f 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_line 000004ac 00000000 00000000 000007ac 2**0 CONTENTS, READONLY, DEBUGGING 7 .debug_frame 000000a0 00000000 00000000 00000c58 2**2 CONTENTS, READONLY, DEBUGGING 8 .debug_str 00000150 00000000 00000000 00000cf8 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_loc 00000194 00000000 00000000 00000e48 2**0 CONTENTS, READONLY, DEBUGGING 10 .debug_ranges 00000088 00000000 00000000 00000fdc 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00000000
: #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 0: 11 24 eor r1, r1 #ifdef __AVR_ATmega8__ SP=RAMEND; // This is done by hardware reset #endif // Adaboot no-wait mod ch = MCUSR; 2: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 4: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 6: 81 ff sbrs r24, 1 8: 22 d1 rcall .+580 ; 0x24e #if LED_START_FLASHES > 0 // Set up Timer 1 for timeout counter TCCR1B = _BV(CS12) | _BV(CS10); // div 1024 a: 85 e0 ldi r24, 0x05 ; 5 c: 8e bd out 0x2e, r24 ; 46 UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #endif #endif // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_1S); e: 8e e0 ldi r24, 0x0E ; 14 10: 1a d1 rcall .+564 ; 0x246 /* Set LED pin as output */ LED_DDR |= _BV(LED); 12: d4 9a sbi 0x1a, 4 ; 26 #ifdef SOFT_UART /* Set TX pin as output */ UART_DDR |= _BV(UART_TX_BIT); 14: d2 9a sbi 0x1a, 2 ; 26 16: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 18: 23 ec ldi r18, 0xC3 ; 195 1a: 3f ef ldi r19, 0xFF ; 255 TIFR1 = _BV(TOV1); 1c: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 1e: 3d bd out 0x2d, r19 ; 45 20: 2c bd out 0x2c, r18 ; 44 TIFR1 = _BV(TOV1); 22: 9b b9 out 0x0b, r25 ; 11 while(!(TIFR1 & _BV(TOV1))); 24: 58 9b sbis 0x0b, 0 ; 11 26: fe cf rjmp .-4 ; 0x24 <__zero_reg__+0x23> #ifdef __AVR_ATmega8__ LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); 28: cc 9a sbi 0x19, 4 ; 25 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 2a: a8 95 wdr LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); #endif watchdogReset(); } while (--count); 2c: 81 50 subi r24, 0x01 ; 1 2e: b9 f7 brne .-18 ; 0x1e <__zero_reg__+0x1d> /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 30: dd 24 eor r13, r13 32: d3 94 inc r13 __boot_page_fill_short((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 34: 85 e0 ldi r24, 0x05 ; 5 36: c8 2e mov r12, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. buff[8] = vect & 0xff; buff[9] = vect >> 8; // Add jump to bootloader at RESET vector buff[0] = 0x7f; 38: 0f e7 ldi r16, 0x7F ; 127 3a: f0 2e mov r15, r16 buff[1] = 0xce; // rjmp 0x1d00 instruction 3c: 1e ec ldi r17, 0xCE ; 206 3e: e1 2e mov r14, r17 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 40: e9 d0 rcall .+466 ; 0x214 if(ch == STK_GET_PARAMETER) { 42: 81 34 cpi r24, 0x41 ; 65 44: 21 f4 brne .+8 ; 0x4e <__SREG__+0xf> // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 46: 81 e0 ldi r24, 0x01 ; 1 48: 0d d1 rcall .+538 ; 0x264 putch(0x03); 4a: 83 e0 ldi r24, 0x03 ; 3 4c: 20 c0 rjmp .+64 ; 0x8e <__SREG__+0x4f> } else if(ch == STK_SET_DEVICE) { 4e: 82 34 cpi r24, 0x42 ; 66 50: 11 f4 brne .+4 ; 0x56 <__SREG__+0x17> // SET DEVICE is ignored getNch(20); 52: 84 e1 ldi r24, 0x14 ; 20 54: 03 c0 rjmp .+6 ; 0x5c <__SREG__+0x1d> } else if(ch == STK_SET_DEVICE_EXT) { 56: 85 34 cpi r24, 0x45 ; 69 58: 19 f4 brne .+6 ; 0x60 <__SREG__+0x21> // SET DEVICE EXT is ignored getNch(5); 5a: 85 e0 ldi r24, 0x05 ; 5 5c: 03 d1 rcall .+518 ; 0x264 5e: c8 c0 rjmp .+400 ; 0x1f0 <__SREG__+0x1b1> } else if(ch == STK_LOAD_ADDRESS) { 60: 85 35 cpi r24, 0x55 ; 85 62: 81 f4 brne .+32 ; 0x84 <__SREG__+0x45> // LOAD ADDRESS uint16_t newAddress; newAddress = getch(); 64: d7 d0 rcall .+430 ; 0x214 newAddress = (newAddress & 0xff) | (getch() << 8); 66: 08 2f mov r16, r24 68: 10 e0 ldi r17, 0x00 ; 0 6a: d4 d0 rcall .+424 ; 0x214 6c: 90 e0 ldi r25, 0x00 ; 0 6e: 98 2f mov r25, r24 70: 88 27 eor r24, r24 72: 80 2b or r24, r16 74: 91 2b or r25, r17 #ifdef RAMPZ // Transfer top bit to RAMPZ RAMPZ = (newAddress & 0x8000) ? 1 : 0; #endif newAddress += newAddress; // Convert from word address to byte address 76: 88 0f add r24, r24 78: 99 1f adc r25, r25 address = newAddress; 7a: 90 93 81 01 sts 0x0181, r25 7e: 80 93 80 01 sts 0x0180, r24 82: b5 c0 rjmp .+362 ; 0x1ee <__SREG__+0x1af> verifySpace(); } else if(ch == STK_UNIVERSAL) { 84: 86 35 cpi r24, 0x56 ; 86 86: 29 f4 brne .+10 ; 0x92 <__SREG__+0x53> // UNIVERSAL command is ignored getNch(4); 88: 84 e0 ldi r24, 0x04 ; 4 8a: ec d0 rcall .+472 ; 0x264 putch(0x00); 8c: 80 e0 ldi r24, 0x00 ; 0 8e: b3 d0 rcall .+358 ; 0x1f6 90: af c0 rjmp .+350 ; 0x1f0 <__SREG__+0x1b1> } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { 92: 84 36 cpi r24, 0x64 ; 100 94: 09 f0 breq .+2 ; 0x98 <__SREG__+0x59> 96: 6b c0 rjmp .+214 ; 0x16e <__SREG__+0x12f> // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); 98: d1 d0 rcall .+418 ; 0x23c 9a: c0 e0 ldi r28, 0x00 ; 0 9c: d1 e0 ldi r29, 0x01 ; 1 // If we are in RWW section, immediately start page erase if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); 9e: ba d0 rcall .+372 ; 0x214 a0: 89 93 st Y+, r24 while (--length); a2: 80 91 82 01 lds r24, 0x0182 a6: 81 50 subi r24, 0x01 ; 1 a8: 80 93 82 01 sts 0x0182, r24 ac: 88 23 and r24, r24 ae: b9 f7 brne .-18 ; 0x9e <__SREG__+0x5f> // If we are in NRWW section, page erase has to be delayed until now. // Todo: Take RAMPZ into account if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); b0: e0 91 80 01 lds r30, 0x0180 b4: f0 91 81 01 lds r31, 0x0181 b8: 83 e0 ldi r24, 0x03 ; 3 ba: 87 bf out 0x37, r24 ; 55 bc: e8 95 spm // Read command terminator, start reply verifySpace(); be: cc d0 rcall .+408 ; 0x258 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); c0: 07 b6 in r0, 0x37 ; 55 c2: 00 fc sbrc r0, 0 c4: fd cf rjmp .-6 ; 0xc0 <__SREG__+0x81> #ifdef VIRTUAL_BOOT_PARTITION if ((uint16_t)(void*)address == 0) { c6: 80 91 80 01 lds r24, 0x0180 ca: 90 91 81 01 lds r25, 0x0181 ce: 89 2b or r24, r25 d0: 41 f5 brne .+80 ; 0x122 <__SREG__+0xe3> // This is the reset vector page. We need to live-patch the code so the // bootloader runs. // // Move RESET vector to WDT vector uint16_t vect = buff[0] | (buff[1]<<8); d2: 80 91 00 01 lds r24, 0x0100 d6: 20 91 01 01 lds r18, 0x0101 da: 30 e0 ldi r19, 0x00 ; 0 dc: 32 2f mov r19, r18 de: 22 27 eor r18, r18 e0: 90 e0 ldi r25, 0x00 ; 0 e2: 28 2b or r18, r24 e4: 39 2b or r19, r25 rstVect = vect; e6: 30 93 85 01 sts 0x0185, r19 ea: 20 93 84 01 sts 0x0184, r18 wdtVect = buff[8] | (buff[9]<<8); ee: 40 91 08 01 lds r20, 0x0108 f2: 80 91 09 01 lds r24, 0x0109 f6: 90 e0 ldi r25, 0x00 ; 0 f8: 98 2f mov r25, r24 fa: 88 27 eor r24, r24 fc: 50 e0 ldi r21, 0x00 ; 0 fe: 84 2b or r24, r20 100: 95 2b or r25, r21 102: 90 93 87 01 sts 0x0187, r25 106: 80 93 86 01 sts 0x0186, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. 10a: 24 50 subi r18, 0x04 ; 4 10c: 30 40 sbci r19, 0x00 ; 0 buff[8] = vect & 0xff; 10e: 20 93 08 01 sts 0x0108, r18 buff[9] = vect >> 8; 112: 23 2f mov r18, r19 114: 33 27 eor r19, r19 116: 20 93 09 01 sts 0x0109, r18 // Add jump to bootloader at RESET vector buff[0] = 0x7f; 11a: f0 92 00 01 sts 0x0100, r15 buff[1] = 0xce; // rjmp 0x1d00 instruction 11e: e0 92 01 01 sts 0x0101, r14 } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; 122: 40 91 80 01 lds r20, 0x0180 126: 50 91 81 01 lds r21, 0x0181 12a: a0 e0 ldi r26, 0x00 ; 0 12c: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 12e: 2c 91 ld r18, X 130: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 132: 11 96 adiw r26, 0x01 ; 1 134: 8c 91 ld r24, X 136: 11 97 sbiw r26, 0x01 ; 1 138: 90 e0 ldi r25, 0x00 ; 0 13a: 98 2f mov r25, r24 13c: 88 27 eor r24, r24 13e: 82 2b or r24, r18 140: 93 2b or r25, r19 #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 142: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; __boot_page_fill_short((uint16_t)(void*)addrPtr,a); 144: fa 01 movw r30, r20 146: 0c 01 movw r0, r24 148: d7 be out 0x37, r13 ; 55 14a: e8 95 spm 14c: 11 24 eor r1, r1 addrPtr += 2; 14e: 4e 5f subi r20, 0xFE ; 254 150: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 152: f1 e0 ldi r31, 0x01 ; 1 154: a0 34 cpi r26, 0x40 ; 64 156: bf 07 cpc r27, r31 158: 51 f7 brne .-44 ; 0x12e <__SREG__+0xef> // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 15a: e0 91 80 01 lds r30, 0x0180 15e: f0 91 81 01 lds r31, 0x0181 162: c7 be out 0x37, r12 ; 55 164: e8 95 spm boot_spm_busy_wait(); 166: 07 b6 in r0, 0x37 ; 55 168: 00 fc sbrc r0, 0 16a: fd cf rjmp .-6 ; 0x166 <__SREG__+0x127> 16c: 41 c0 rjmp .+130 ; 0x1f0 <__SREG__+0x1b1> boot_rww_enable(); #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 16e: 84 37 cpi r24, 0x74 ; 116 170: 89 f5 brne .+98 ; 0x1d4 <__SREG__+0x195> // READ PAGE - we only read flash getLen(); 172: 64 d0 rcall .+200 ; 0x23c verifySpace(); 174: 71 d0 rcall .+226 ; 0x258 #ifdef VIRTUAL_BOOT_PARTITION do { // Undo vector patch in bottom page so verify passes if (address == 0) ch=rstVect & 0xff; 176: e0 91 80 01 lds r30, 0x0180 17a: f0 91 81 01 lds r31, 0x0181 17e: 30 97 sbiw r30, 0x00 ; 0 180: 19 f4 brne .+6 ; 0x188 <__SREG__+0x149> 182: 20 91 84 01 lds r18, 0x0184 186: 13 c0 rjmp .+38 ; 0x1ae <__SREG__+0x16f> else if (address == 1) ch=rstVect >> 8; 188: e1 30 cpi r30, 0x01 ; 1 18a: f1 05 cpc r31, r1 18c: 19 f4 brne .+6 ; 0x194 <__SREG__+0x155> 18e: 20 91 85 01 lds r18, 0x0185 192: 0d c0 rjmp .+26 ; 0x1ae <__SREG__+0x16f> else if (address == 8) ch=wdtVect & 0xff; 194: e8 30 cpi r30, 0x08 ; 8 196: f1 05 cpc r31, r1 198: 19 f4 brne .+6 ; 0x1a0 <__SREG__+0x161> 19a: 20 91 86 01 lds r18, 0x0186 19e: 07 c0 rjmp .+14 ; 0x1ae <__SREG__+0x16f> else if (address == 9) ch=wdtVect >> 8; 1a0: e9 30 cpi r30, 0x09 ; 9 1a2: f1 05 cpc r31, r1 1a4: 19 f4 brne .+6 ; 0x1ac <__SREG__+0x16d> 1a6: 20 91 87 01 lds r18, 0x0187 1aa: 01 c0 rjmp .+2 ; 0x1ae <__SREG__+0x16f> else ch = pgm_read_byte_near(address); 1ac: 24 91 lpm r18, Z+ address++; 1ae: 80 91 80 01 lds r24, 0x0180 1b2: 90 91 81 01 lds r25, 0x0181 1b6: 01 96 adiw r24, 0x01 ; 1 1b8: 90 93 81 01 sts 0x0181, r25 1bc: 80 93 80 01 sts 0x0180, r24 putch(ch); 1c0: 82 2f mov r24, r18 1c2: 19 d0 rcall .+50 ; 0x1f6 } while (--length); 1c4: 80 91 82 01 lds r24, 0x0182 1c8: 81 50 subi r24, 0x01 ; 1 1ca: 80 93 82 01 sts 0x0182, r24 1ce: 88 23 and r24, r24 1d0: 91 f6 brne .-92 ; 0x176 <__SREG__+0x137> 1d2: 0e c0 rjmp .+28 ; 0x1f0 <__SREG__+0x1b1> #endif #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 1d4: 85 37 cpi r24, 0x75 ; 117 1d6: 39 f4 brne .+14 ; 0x1e6 <__SREG__+0x1a7> // READ SIGN - return what Avrdude wants to hear verifySpace(); 1d8: 3f d0 rcall .+126 ; 0x258 putch(SIGNATURE_0); 1da: 8e e1 ldi r24, 0x1E ; 30 1dc: 0c d0 rcall .+24 ; 0x1f6 putch(SIGNATURE_1); 1de: 83 e9 ldi r24, 0x93 ; 147 1e0: 0a d0 rcall .+20 ; 0x1f6 putch(SIGNATURE_2); 1e2: 8c e0 ldi r24, 0x0C ; 12 1e4: 54 cf rjmp .-344 ; 0x8e <__SREG__+0x4f> } else if (ch == 'Q') { 1e6: 81 35 cpi r24, 0x51 ; 81 1e8: 11 f4 brne .+4 ; 0x1ee <__SREG__+0x1af> // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 1ea: 88 e0 ldi r24, 0x08 ; 8 1ec: 2c d0 rcall .+88 ; 0x246 verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 1ee: 34 d0 rcall .+104 ; 0x258 } putch(STK_OK); 1f0: 80 e1 ldi r24, 0x10 ; 16 1f2: 01 d0 rcall .+2 ; 0x1f6 1f4: 25 cf rjmp .-438 ; 0x40 <__SREG__+0x1> 000001f6 : void putch(char ch) { #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); UDR0 = ch; #else __asm__ __volatile__ ( 1f6: 2a e0 ldi r18, 0x0A ; 10 1f8: 30 e0 ldi r19, 0x00 ; 0 1fa: 80 95 com r24 1fc: 08 94 sec 1fe: 10 f4 brcc .+4 ; 0x204 200: da 98 cbi 0x1b, 2 ; 27 202: 02 c0 rjmp .+4 ; 0x208 204: da 9a sbi 0x1b, 2 ; 27 206: 00 00 nop 208: 15 d0 rcall .+42 ; 0x234 20a: 14 d0 rcall .+40 ; 0x234 20c: 86 95 lsr r24 20e: 2a 95 dec r18 210: b1 f7 brne .-20 ; 0x1fe [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 212: 08 95 ret 00000214 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 214: a8 95 wdr LED_PIN |= _BV(LED); #endif #endif return ch; } 216: 29 e0 ldi r18, 0x09 ; 9 218: 30 e0 ldi r19, 0x00 ; 0 21a: cb 99 sbic 0x19, 3 ; 25 21c: fe cf rjmp .-4 ; 0x21a 21e: 0a d0 rcall .+20 ; 0x234 220: 09 d0 rcall .+18 ; 0x234 222: 08 d0 rcall .+16 ; 0x234 224: 88 94 clc 226: cb 99 sbic 0x19, 3 ; 25 228: 08 94 sec 22a: 2a 95 dec r18 22c: 11 f0 breq .+4 ; 0x232 22e: 87 95 ror r24 230: f7 cf rjmp .-18 ; 0x220 232: 08 95 ret 00000234 : #if UART_B_VALUE > 255 #error Baud rate too slow for soft UART #endif void uartDelay() { __asm__ __volatile__ ( 234: 9e e0 ldi r25, 0x0E ; 14 236: 9a 95 dec r25 238: f1 f7 brne .-4 ; 0x236 23a: 08 95 ret 0000023c : } while (--count); } #endif uint8_t getLen() { getch(); 23c: eb df rcall .-42 ; 0x214 length = getch(); 23e: ea df rcall .-44 ; 0x214 240: 80 93 82 01 sts 0x0182, r24 return getch(); } 244: e7 cf rjmp .-50 ; 0x214 00000246 : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 246: 98 e1 ldi r25, 0x18 ; 24 248: 91 bd out 0x21, r25 ; 33 WDTCSR = x; 24a: 81 bd out 0x21, r24 ; 33 } 24c: 08 95 ret 0000024e : void appStart() { watchdogConfig(WATCHDOG_OFF); 24e: 80 e0 ldi r24, 0x00 ; 0 250: fa df rcall .-12 ; 0x246 __asm__ __volatile__ ( 252: e4 e0 ldi r30, 0x04 ; 4 254: ff 27 eor r31, r31 256: 09 94 ijmp 00000258 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 258: dd df rcall .-70 ; 0x214 25a: 80 32 cpi r24, 0x20 ; 32 25c: 09 f0 breq .+2 ; 0x260 25e: f7 df rcall .-18 ; 0x24e putch(STK_INSYNC); 260: 84 e1 ldi r24, 0x14 ; 20 } 262: c9 cf rjmp .-110 ; 0x1f6 00000264 : ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 264: 1f 93 push r17 266: 18 2f mov r17, r24 do getch(); while (--count); 268: d5 df rcall .-86 ; 0x214 26a: 11 50 subi r17, 0x01 ; 1 26c: e9 f7 brne .-6 ; 0x268 verifySpace(); 26e: f4 df rcall .-24 ; 0x258 } 270: 1f 91 pop r17 272: 08 95 ret