395 lines
11 KiB
C++
395 lines
11 KiB
C++
/*
|
|
HardwareSerial.cpp - Hardware serial library for Wiring
|
|
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
Modified 23 November 2006 by David A. Mellis
|
|
Modified 28 September 2010 by Mark Sproul
|
|
Modified 14 August 2012 by Alarus
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
#include "Arduino.h"
|
|
#include "wiring_private.h"
|
|
|
|
// this next line disables the entire HardwareSerial.cpp,
|
|
// this is so I can support Attiny series and any other chip without a uart
|
|
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
|
|
|
|
#include "HardwareSerial.h"
|
|
|
|
// Ensure that the various bit positions we use are available with a 0
|
|
// postfix, so we can always use the values for UART0 for all UARTs. The
|
|
// alternative, passing the various values for each UART to the
|
|
// HardwareSerial constructor also works, but makes the code bigger and
|
|
// slower.
|
|
#if !defined(TXC0)
|
|
#if defined(TXC)
|
|
// On ATmega8, the uart and its bits are not numbered, so there is no TXC0 etc.
|
|
#define TXC0 TXC
|
|
#define RXEN0 RXEN
|
|
#define TXEN0 TXEN
|
|
#define RXCIE0 RXCIE
|
|
#define UDRIE0 UDRIE
|
|
#define U2X0 U2X
|
|
#define UPE0 UPE
|
|
#define UDRE0 UDRE
|
|
#elif defined(TXC1)
|
|
// Some devices have uart1 but no uart0
|
|
#define TXC0 TXC1
|
|
#define RXEN0 RXEN1
|
|
#define TXEN0 TXEN1
|
|
#define RXCIE0 RXCIE1
|
|
#define UDRIE0 UDRIE1
|
|
#define U2X0 U2X1
|
|
#define UPE0 UPE1
|
|
#define UDRE0 UDRE1
|
|
#else
|
|
#error No UART found in HardwareSerial.cpp
|
|
#endif
|
|
#endif // !defined TXC0
|
|
|
|
// Check at compiletime that it is really ok to use the bit positions of
|
|
// UART0 for the other UARTs as well, in case these values ever get
|
|
// changed for future hardware.
|
|
#if defined(TXC1) && (TXC1 != TXC0 || RXEN1 != RXEN0 || RXCIE1 != RXCIE0 || \
|
|
UDRIE1 != UDRIE0 || U2X1 != U2X0 || UPE1 != UPE0 || \
|
|
UDRE1 != UDRE0)
|
|
#error "Not all bit positions for UART1 are the same as for UART0"
|
|
#endif
|
|
#if defined(TXC2) && (TXC2 != TXC0 || RXEN2 != RXEN0 || RXCIE2 != RXCIE0 || \
|
|
UDRIE2 != UDRIE0 || U2X2 != U2X0 || UPE2 != UPE0 || \
|
|
UDRE2 != UDRE0)
|
|
#error "Not all bit positions for UART2 are the same as for UART0"
|
|
#endif
|
|
#if defined(TXC3) && (TXC3 != TXC0 || RXEN3 != RXEN0 || RXCIE3 != RXCIE0 || \
|
|
UDRIE3 != UDRIE0 || U3X3 != U3X0 || UPE3 != UPE0 || \
|
|
UDRE3 != UDRE0)
|
|
#error "Not all bit positions for UART3 are the same as for UART0"
|
|
#endif
|
|
|
|
#if !defined(USART0_RX_vect) && defined(USART1_RX_vect)
|
|
// do nothing - on the 32u4 the first USART is USART1
|
|
#else
|
|
#if !defined(USART_RX_vect) && !defined(USART0_RX_vect) && \
|
|
!defined(USART_RXC_vect)
|
|
#error "Don't know what the Data Received vector is called for the first UART"
|
|
#else
|
|
void serialEvent() __attribute__((weak));
|
|
void serialEvent() {}
|
|
#define serialEvent_implemented
|
|
#if defined(USART_RX_vect)
|
|
ISR(USART_RX_vect)
|
|
#elif defined(USART0_RX_vect)
|
|
ISR(USART0_RX_vect)
|
|
#elif defined(USART_RXC_vect)
|
|
ISR(USART_RXC_vect) // ATmega8
|
|
#endif
|
|
{
|
|
Serial._rx_complete_irq();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(USART1_RX_vect)
|
|
void serialEvent1() __attribute__((weak));
|
|
void serialEvent1() {}
|
|
#define serialEvent1_implemented
|
|
ISR(USART1_RX_vect)
|
|
{
|
|
Serial1._rx_complete_irq();
|
|
}
|
|
#endif
|
|
|
|
#if defined(USART2_RX_vect) && defined(UDR2)
|
|
void serialEvent2() __attribute__((weak));
|
|
void serialEvent2() {}
|
|
#define serialEvent2_implemented
|
|
ISR(USART2_RX_vect)
|
|
{
|
|
Serial2._rx_complete_irq();
|
|
}
|
|
#endif
|
|
|
|
#if defined(USART3_RX_vect) && defined(UDR3)
|
|
void serialEvent3() __attribute__((weak));
|
|
void serialEvent3() {}
|
|
#define serialEvent3_implemented
|
|
ISR(USART3_RX_vect)
|
|
{
|
|
Serial3._rx_complete_irq();
|
|
}
|
|
#endif
|
|
|
|
void serialEventRun(void)
|
|
{
|
|
#ifdef serialEvent_implemented
|
|
if (Serial.available()) serialEvent();
|
|
#endif
|
|
#ifdef serialEvent1_implemented
|
|
if (Serial1.available()) serialEvent1();
|
|
#endif
|
|
#ifdef serialEvent2_implemented
|
|
if (Serial2.available()) serialEvent2();
|
|
#endif
|
|
#ifdef serialEvent3_implemented
|
|
if (Serial3.available()) serialEvent3();
|
|
#endif
|
|
}
|
|
|
|
|
|
#if !defined(USART0_UDRE_vect) && defined(USART1_UDRE_vect)
|
|
// do nothing - on the 32u4 the first USART is USART1
|
|
#else
|
|
#if !defined(UART0_UDRE_vect) && !defined(UART_UDRE_vect) && !defined(USART0_UDRE_vect) && !defined(USART_UDRE_vect)
|
|
#error "Don't know what the Data Register Empty vector is called for the first UART"
|
|
#else
|
|
#if defined(UART0_UDRE_vect)
|
|
ISR(UART0_UDRE_vect)
|
|
#elif defined(UART_UDRE_vect)
|
|
ISR(UART_UDRE_vect)
|
|
#elif defined(USART0_UDRE_vect)
|
|
ISR(USART0_UDRE_vect)
|
|
#elif defined(USART_UDRE_vect)
|
|
ISR(USART_UDRE_vect)
|
|
#endif
|
|
{
|
|
Serial._tx_udr_empty_irq();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USART1_UDRE_vect
|
|
ISR(USART1_UDRE_vect)
|
|
{
|
|
Serial1._tx_udr_empty_irq();
|
|
}
|
|
#endif
|
|
|
|
#ifdef USART2_UDRE_vect
|
|
ISR(USART2_UDRE_vect)
|
|
{
|
|
Serial2._tx_udr_empty_irq();
|
|
}
|
|
#endif
|
|
|
|
#ifdef USART3_UDRE_vect
|
|
ISR(USART3_UDRE_vect)
|
|
{
|
|
Serial3._tx_udr_empty_irq();
|
|
}
|
|
#endif
|
|
|
|
|
|
// Actual interrupt handlers //////////////////////////////////////////////////////////////
|
|
|
|
void HardwareSerial::_rx_complete_irq(void)
|
|
{
|
|
if (bit_is_clear(*_ucsra, UPE0)) {
|
|
// No Parity error, read byte and store it in the buffer if there is
|
|
// room
|
|
unsigned char c = *_udr;
|
|
int i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_BUFFER_SIZE;
|
|
|
|
// if we should be storing the received character into the location
|
|
// just before the tail (meaning that the head would advance to the
|
|
// current location of the tail), we're about to overflow the buffer
|
|
// and so we don't write the character or advance the head.
|
|
if (i != _rx_buffer_tail) {
|
|
_rx_buffer[_rx_buffer_head] = c;
|
|
_rx_buffer_head = i;
|
|
}
|
|
} else {
|
|
// Parity error, read byte but discard it
|
|
unsigned char c = *_udr;
|
|
};
|
|
}
|
|
|
|
void HardwareSerial::_tx_udr_empty_irq(void)
|
|
{
|
|
if (_tx_buffer_head == _tx_buffer_tail) {
|
|
// Buffer empty, so disable interrupts
|
|
cbi(*_ucsrb, UDRIE0);
|
|
}
|
|
else {
|
|
// There is more data in the output buffer. Send the next byte
|
|
unsigned char c = _tx_buffer[_tx_buffer_tail];
|
|
_tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_BUFFER_SIZE;
|
|
|
|
*_udr = c;
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
// location". This makes sure flush() won't return until the bytes
|
|
// actually got written
|
|
sbi(*_ucsra, TXC0);
|
|
}
|
|
}
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
HardwareSerial::HardwareSerial(
|
|
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
|
|
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
|
|
volatile uint8_t *ucsrc, volatile uint8_t *udr)
|
|
{
|
|
_tx_buffer_head = _tx_buffer_tail = 0;
|
|
_rx_buffer_head = _rx_buffer_tail = 0;
|
|
_ubrrh = ubrrh;
|
|
_ubrrl = ubrrl;
|
|
_ucsra = ucsra;
|
|
_ucsrb = ucsrb;
|
|
_ucsrc = ucsrc;
|
|
_udr = udr;
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
|
|
void HardwareSerial::begin(unsigned long baud, byte config)
|
|
{
|
|
// Try u2x mode first
|
|
uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
|
*_ucsra = 1 << U2X0;
|
|
|
|
// hardcoded exception for 57600 for compatibility with the bootloader
|
|
// shipped with the Duemilanove and previous boards and the firmware
|
|
// on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot
|
|
// be > 4095, so switch back to non-u2x mode if the baud rate is too
|
|
// low.
|
|
if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095))
|
|
{
|
|
*_ucsra = 0;
|
|
baud_setting = (F_CPU / 8 / baud - 1) / 2;
|
|
}
|
|
|
|
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
|
*_ubrrh = baud_setting >> 8;
|
|
*_ubrrl = baud_setting;
|
|
|
|
_written = false;
|
|
|
|
//set the data bits, parity, and stop bits
|
|
#if defined(__AVR_ATmega8__)
|
|
config |= 0x80; // select UCSRC register (shared with UBRRH)
|
|
#endif
|
|
*_ucsrc = config;
|
|
|
|
sbi(*_ucsrb, RXEN0);
|
|
sbi(*_ucsrb, TXEN0);
|
|
sbi(*_ucsrb, RXCIE0);
|
|
cbi(*_ucsrb, UDRIE0);
|
|
}
|
|
|
|
void HardwareSerial::end()
|
|
{
|
|
// wait for transmission of outgoing data
|
|
while (_tx_buffer_head != _tx_buffer_tail)
|
|
;
|
|
|
|
cbi(*_ucsrb, RXEN0);
|
|
cbi(*_ucsrb, TXEN0);
|
|
cbi(*_ucsrb, RXCIE0);
|
|
cbi(*_ucsrb, UDRIE0);
|
|
|
|
// clear any received data
|
|
_rx_buffer_head = _rx_buffer_tail;
|
|
}
|
|
|
|
int HardwareSerial::available(void)
|
|
{
|
|
return (unsigned int)(SERIAL_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail) % SERIAL_BUFFER_SIZE;
|
|
}
|
|
|
|
int HardwareSerial::peek(void)
|
|
{
|
|
if (_rx_buffer_head == _rx_buffer_tail) {
|
|
return -1;
|
|
} else {
|
|
return _rx_buffer[_rx_buffer_tail];
|
|
}
|
|
}
|
|
|
|
int HardwareSerial::read(void)
|
|
{
|
|
// if the head isn't ahead of the tail, we don't have any characters
|
|
if (_rx_buffer_head == _rx_buffer_tail) {
|
|
return -1;
|
|
} else {
|
|
unsigned char c = _rx_buffer[_rx_buffer_tail];
|
|
_rx_buffer_tail = (unsigned int)(_rx_buffer_tail + 1) % SERIAL_BUFFER_SIZE;
|
|
return c;
|
|
}
|
|
}
|
|
|
|
void HardwareSerial::flush()
|
|
{
|
|
// If we have never written a byte, no need to flush. This special
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
// complete) bit to 1 during initialization
|
|
if (!_written)
|
|
return;
|
|
|
|
while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0));
|
|
// If we get here, nothing is queued anymore (DRIE is disabled) and
|
|
// the hardware finished tranmission (TXC is set).
|
|
}
|
|
|
|
size_t HardwareSerial::write(uint8_t c)
|
|
{
|
|
int i = (_tx_buffer_head + 1) % SERIAL_BUFFER_SIZE;
|
|
|
|
// If the output buffer is full, there's nothing for it other than to
|
|
// wait for the interrupt handler to empty it a bit
|
|
// ???: return 0 here instead?
|
|
while (i == _tx_buffer_tail)
|
|
;
|
|
|
|
_tx_buffer[_tx_buffer_head] = c;
|
|
_tx_buffer_head = i;
|
|
|
|
sbi(*_ucsrb, UDRIE0);
|
|
_written = true;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Preinstantiate Objects //////////////////////////////////////////////////////
|
|
|
|
#if defined(UBRRH) && defined(UBRRL)
|
|
HardwareSerial Serial(&UBRRH, &UBRRL, &UCSRA, &UCSRB, &UCSRC, &UDR);
|
|
#elif defined(UBRR0H) && defined(UBRR0L)
|
|
HardwareSerial Serial(&UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UCSR0C, &UDR0);
|
|
#elif defined(USBCON)
|
|
// do nothing - Serial object and buffers are initialized in CDC code
|
|
#else
|
|
#error no serial port defined (port 0)
|
|
#endif
|
|
|
|
#if defined(UBRR1H)
|
|
HardwareSerial Serial1(&UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UCSR1C, &UDR1);
|
|
#endif
|
|
#if defined(UBRR2H)
|
|
HardwareSerial Serial2(&UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UCSR2C, &UDR2);
|
|
#endif
|
|
#if defined(UBRR3H)
|
|
HardwareSerial Serial3(&UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3);
|
|
#endif
|
|
|
|
#endif // whole file
|
|
|