Arduino_STM32/STM32F1/libraries/Adafruit_ILI9341_STM/Adafruit_ILI9341_STM.cpp

723 lines
17 KiB
C++
Raw Normal View History

/*
See rights and use declaration in License.h
This library has been modified for the Maple Mini
*/
#include <Adafruit_ILI9341_STM.h>
#include <avr/pgmspace.h>
#include <limits.h>
#include <libmaple/dma.h>
#include "pins_arduino.h"
#include "wiring_private.h"
#include <SPI.h> // Using library SPI in folder: D:\Documents\Arduino\hardware\STM32\STM32F1XX\libraries\SPI
//Used for DMA transfers in STM32F1XX
#if defined (__STM32F1__)
volatile bool dma1_ch3_Active = false;
#endif
// Constructor when using software SPI. All output pins are configurable.
Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t mosi,
int8_t sclk, int8_t rst, int8_t miso) : Adafruit_GFX(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT) {
_cs = cs;
_dc = dc;
_mosi = mosi;
_miso = miso;
_sclk = sclk;
_rst = rst;
hwSPI = false;
}
// Constructor when using hardware SPI. Faster, but must use SPI pins
// specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.)
Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t rst) : Adafruit_GFX(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT) {
_cs = cs;
_dc = dc;
_rst = rst;
hwSPI = true;
_mosi = _sclk = 0;
}
inline void DMA1_CH3_Event() {
dma1_ch3_Active = 0;
dma_disable(DMA1, DMA_CH3);
}
void Adafruit_ILI9341_STM::spiwrite(uint8_t c) {
//Serial.print("0x"); Serial.print(c, HEX); Serial.print(", ");
if (hwSPI)
{
#if defined (__AVR__)
uint8_t backupSPCR = SPCR;
SPCR = mySPCR;
SPDR = c;
while (!(SPSR & _BV(SPIF)));
SPCR = backupSPCR;
#elif defined(TEENSYDUINO)
SPI.transfer(c);
#elif defined (__STM32F1__)
SPI.transfer(c);
#elif defined (__arm__)
SPI.setClockDivider(11); // 8-ish MHz (full! speed!)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.transfer(c);
#endif
} else {
// Fast SPI bitbang swiped from LPD8806 library
for (uint8_t bit = 0x80; bit; bit >>= 1) {
if (c & bit) {
//digitalWrite(_mosi, HIGH);
*mosiport |= mosipinmask;
} else {
//digitalWrite(_mosi, LOW);
*mosiport &= ~mosipinmask;
}
//digitalWrite(_sclk, HIGH);
*clkport |= clkpinmask;
//digitalWrite(_sclk, LOW);
*clkport &= ~clkpinmask;
}
}
}
void Adafruit_ILI9341_STM::writecommand(uint8_t c) {
*dcport &= ~dcpinmask;
//digitalWrite(_dc, LOW);
//*clkport &= ~clkpinmask; // clkport is a NULL pointer when hwSPI==true
//digitalWrite(_sclk, LOW);
*csport &= ~cspinmask;
//digitalWrite(_cs, LOW);
spiwrite(c);
*csport |= cspinmask;
//digitalWrite(_cs, HIGH);
}
void Adafruit_ILI9341_STM::writedata(uint8_t c) {
*dcport |= dcpinmask;
//digitalWrite(_dc, HIGH);
//*clkport &= ~clkpinmask; // clkport is a NULL pointer when hwSPI==true
//digitalWrite(_sclk, LOW);
*csport &= ~cspinmask;
//digitalWrite(_cs, LOW);
spiwrite(c);
//digitalWrite(_cs, HIGH);
*csport |= cspinmask;
}
// If the SPI library has transaction support, these functions
// establish settings and protect from interference from other
// libraries. Otherwise, they simply do nothing.
#ifdef SPI_HAS_TRANSACTION
static inline void spi_begin(void) __attribute__((always_inline));
static inline void spi_begin(void) {
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0));
}
static inline void spi_end(void) __attribute__((always_inline));
static inline void spi_end(void) {
SPI.endTransaction();
}
#else
#define spi_begin()
#define spi_end()
#endif
// Rather than a bazillion writecommand() and writedata() calls, screen
// initialization commands and arguments are organized in these tables
// stored in PROGMEM. The table may look bulky, but that's mostly the
// formatting -- storage-wise this is hundreds of bytes more compact
// than the equivalent code. Companion function follows.
#define DELAY 0x80
// Companion code to the above tables. Reads and issues
// a series of LCD commands stored in PROGMEM byte array.
void Adafruit_ILI9341_STM::commandList(uint8_t *addr) {
uint8_t numCommands, numArgs;
uint16_t ms;
numCommands = pgm_read_byte(addr++); // Number of commands to follow
while (numCommands--) { // For each command...
writecommand(pgm_read_byte(addr++)); // Read, issue command
numArgs = pgm_read_byte(addr++); // Number of args to follow
ms = numArgs & DELAY; // If hibit set, delay follows args
numArgs &= ~DELAY; // Mask out delay bit
while (numArgs--) { // For each argument...
writedata(pgm_read_byte(addr++)); // Read, issue argument
}
if (ms) {
ms = pgm_read_byte(addr++); // Read post-command delay time (ms)
if (ms == 255) ms = 500; // If 255, delay for 500 ms
delay(ms);
}
}
}
void Adafruit_ILI9341_STM::begin(void) {
if (_rst > 0) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, LOW);
}
pinMode(_dc, OUTPUT);
pinMode(_cs, OUTPUT);
csport = portOutputRegister(digitalPinToPort(_cs));
cspinmask = digitalPinToBitMask(_cs);
dcport = portOutputRegister(digitalPinToPort(_dc));
dcpinmask = digitalPinToBitMask(_dc);
if (hwSPI) { // Using hardware SPI
#if defined (__AVR__)
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (full! speed!)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
mySPCR = SPCR;
#elif defined(TEENSYDUINO)
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (full! speed!)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
#elif defined (__STM32F1__)
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV2);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
// DMA setup stuff. We use a line buffer and usa DMA for filling lines and blocks.
spi_tx_dma_enable(SPI1);
dma_init(DMA1);
dma_attach_interrupt(DMA1, DMA_CH3, DMA1_CH3_Event);
dma_setup_transfer(DMA1, DMA_CH3, &SPI1->regs->DR, DMA_SIZE_8BITS,
lineBuffer, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_FROM_MEM | DMA_TRNS_CMPLT));
#elif defined (__arm__)
SPI.begin();
SPI.setClockDivider(11); // 8-ish MHz (full! speed!)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
#endif
} else {
pinMode(_sclk, OUTPUT);
pinMode(_mosi, OUTPUT);
pinMode(_miso, INPUT);
clkport = portOutputRegister(digitalPinToPort(_sclk));
clkpinmask = digitalPinToBitMask(_sclk);
mosiport = portOutputRegister(digitalPinToPort(_mosi));
mosipinmask = digitalPinToBitMask(_mosi);
*clkport &= ~clkpinmask;
*mosiport &= ~mosipinmask;
}
// toggle RST low to reset
if (_rst > 0) {
digitalWrite(_rst, HIGH);
delay(5);
digitalWrite(_rst, LOW);
delay(20);
digitalWrite(_rst, HIGH);
delay(150);
}
/*
uint8_t x = readcommand8(ILI9341_RDMODE);
Serial.print("\nDisplay Power Mode: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDMADCTL);
Serial.print("\nMADCTL Mode: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDPIXFMT);
Serial.print("\nPixel Format: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDIMGFMT);
Serial.print("\nImage Format: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDSELFDIAG);
Serial.print("\nSelf Diagnostic: 0x"); Serial.println(x, HEX);
*/
//if(cmdList) commandList(cmdList);
if (hwSPI) spi_begin();
writecommand(0xEF);
writedata(0x03);
writedata(0x80);
writedata(0x02);
writecommand(0xCF);
writedata(0x00);
writedata(0XC1);
writedata(0X30);
writecommand(0xED);
writedata(0x64);
writedata(0x03);
writedata(0X12);
writedata(0X81);
writecommand(0xE8);
writedata(0x85);
writedata(0x00);
writedata(0x78);
writecommand(0xCB);
writedata(0x39);
writedata(0x2C);
writedata(0x00);
writedata(0x34);
writedata(0x02);
writecommand(0xF7);
writedata(0x20);
writecommand(0xEA);
writedata(0x00);
writedata(0x00);
writecommand(ILI9341_PWCTR1); //Power control
writedata(0x23); //VRH[5:0]
writecommand(ILI9341_PWCTR2); //Power control
writedata(0x10); //SAP[2:0];BT[3:0]
writecommand(ILI9341_VMCTR1); //VCM control
writedata(0x3e); //<2F>Աȶȵ<C8B6><C8B5><EFBFBD>
writedata(0x28);
writecommand(ILI9341_VMCTR2); //VCM control2
writedata(0x86); //--
writecommand(ILI9341_MADCTL); // Memory Access Control
writedata(0x48);
writecommand(ILI9341_PIXFMT);
writedata(0x55);
writecommand(ILI9341_FRMCTR1);
writedata(0x00);
writedata(0x18);
writecommand(ILI9341_DFUNCTR); // Display Function Control
writedata(0x08);
writedata(0x82);
writedata(0x27);
writecommand(0xF2); // 3Gamma Function Disable
writedata(0x00);
writecommand(ILI9341_GAMMASET); //Gamma curve selected
writedata(0x01);
writecommand(ILI9341_GMCTRP1); //Set Gamma
writedata(0x0F);
writedata(0x31);
writedata(0x2B);
writedata(0x0C);
writedata(0x0E);
writedata(0x08);
writedata(0x4E);
writedata(0xF1);
writedata(0x37);
writedata(0x07);
writedata(0x10);
writedata(0x03);
writedata(0x0E);
writedata(0x09);
writedata(0x00);
writecommand(ILI9341_GMCTRN1); //Set Gamma
writedata(0x00);
writedata(0x0E);
writedata(0x14);
writedata(0x03);
writedata(0x11);
writedata(0x07);
writedata(0x31);
writedata(0xC1);
writedata(0x48);
writedata(0x08);
writedata(0x0F);
writedata(0x0C);
writedata(0x31);
writedata(0x36);
writedata(0x0F);
writecommand(ILI9341_SLPOUT); //Exit Sleep
if (hwSPI) spi_end();
delay(120);
if (hwSPI) spi_begin();
writecommand(ILI9341_DISPON); //Display on
if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1,
uint16_t y1) {
writecommand(ILI9341_CASET); // Column addr set
writedata(x0 >> 8);
writedata(x0 & 0xFF); // XSTART
writedata(x1 >> 8);
writedata(x1 & 0xFF); // XEND
writecommand(ILI9341_PASET); // Row addr set
writedata(y0 >> 8);
writedata(y0); // YSTART
writedata(y1 >> 8);
writedata(y1); // YEND
writecommand(ILI9341_RAMWR); // write to RAM
}
void Adafruit_ILI9341_STM::pushColor(uint16_t color) {
if (hwSPI) spi_begin();
//digitalWrite(_dc, HIGH);
*dcport |= dcpinmask;
//digitalWrite(_cs, LOW);
*csport &= ~cspinmask;
spiwrite(color >> 8);
spiwrite(color);
*csport |= cspinmask;
//digitalWrite(_cs, HIGH);
if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::drawPixel(int16_t x, int16_t y, uint16_t color) {
if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return;
if (hwSPI) spi_begin();
setAddrWindow(x, y, x + 1, y + 1);
//digitalWrite(_dc, HIGH);
*dcport |= dcpinmask;
//digitalWrite(_cs, LOW);
*csport &= ~cspinmask;
spiwrite(color >> 8);
spiwrite(color);
*csport |= cspinmask;
//digitalWrite(_cs, HIGH);
if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::drawFastVLine(int16_t x, int16_t y, int16_t h,
uint16_t color) {
// Rudimentary clipping
if ((x >= _width) || (y >= _height || h < 1)) return;
if ((y + h - 1) >= _height)
h = _height - y;
// if (hwSPI) spi_begin();
setAddrWindow(x, y, x, y + h - 1);
uint8_t hi = color >> 8, lo = color;
*dcport |= dcpinmask;
//digitalWrite(_dc, HIGH);
*csport &= ~cspinmask;
//digitalWrite(_cs, LOW);
#if defined (__STM32F1__)
for (int i = 0; i < (h * 2) - 1 ; i = i + 2)
{
lineBuffer[i] = hi;
lineBuffer[i + 1] = lo;
}
dma_set_num_transfers(DMA1, DMA_CH3, h * 2); // 2 bytes per pixel
dma1_ch3_Active = true;
dma_enable(DMA1, DMA_CH3);
while (dma1_ch3_Active);
#else
while (h--) {
spiwrite(hi);
spiwrite(lo);
}
#endif
*csport |= cspinmask;
//digitalWrite(_cs, HIGH);
// if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::drawFastHLine(int16_t x, int16_t y, int16_t w,
uint16_t color) {
// Rudimentary clipping
if ((x >= _width) || (y >= _height || w < 1)) return;
if ((x + w - 1) >= _width) w = _width - x;
if (hwSPI) spi_begin();
setAddrWindow(x, y, x + w - 1, y);
uint8_t hi = color >> 8, lo = color;
*dcport |= dcpinmask;
*csport &= ~cspinmask;
//digitalWrite(_dc, HIGH);
//digitalWrite(_cs, LOW);
#if defined (__STM32F1__)
for (int i = 0; i < (w * 2) - 1 ; i = i + 2)
{
lineBuffer[i] = hi;
lineBuffer[i + 1] = lo;
}
dma_set_num_transfers(DMA1, DMA_CH3, w * 2); // 2 bytes per pixel
dma1_ch3_Active = true;
dma_enable(DMA1, DMA_CH3);
while (dma1_ch3_Active) delayMicroseconds(1);
#else
while (w--) {
spiwrite(hi);
spiwrite(lo);
}
#endif
*csport |= cspinmask;
//digitalWrite(_cs, HIGH);
if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::fillScreen(uint16_t color) {
fillRect(0, 0, _width, _height, color);
}
// fill a rectangle
void Adafruit_ILI9341_STM::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// rudimentary clipping (drawChar w/big text requires this)
if ((x >= _width) || (y >= _height || h < 1 || w < 1)) return;
if ((x + w - 1) >= _width) w = _width - x;
if ((y + h - 1) >= _height) h = _height - y;
if (hwSPI) spi_begin();
setAddrWindow(x, y, x + w - 1, y + h - 1);
uint8_t hi = color >> 8, lo = color;
*dcport |= dcpinmask;
//digitalWrite(_dc, HIGH);
*csport &= ~cspinmask;
//digitalWrite(_cs, LOW);
#if defined (__STM32F1__)
//moved this loop outside as we can fill the buffer once and send it multiple times.
for (int i = 0; i < (w * 2) - 1 ; i = i + 2)
{
lineBuffer[i] = hi;
lineBuffer[i + 1] = lo;
}
for (y = h; y > 0; y--) {
// for(x=w; x>0; x--) {
// spiwrite(hi);
// spiwrite(lo);
// }
dma_set_num_transfers(DMA1, DMA_CH3, w * 2); // 2 bytes per pixel
dma1_ch3_Active = true;
dma_enable(DMA1, DMA_CH3);
while (dma1_ch3_Active) delayMicroseconds(1);
}
#else
for(y=h; y>0; y--)
{
for(x=w; x>0; x--)
{
SPI.write(hi);
SPI.write(lo);
}
}
#endif
//digitalWrite(_cs, HIGH);
*csport |= cspinmask;
if (hwSPI) spi_end();
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Adafruit_ILI9341_STM::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
#define MADCTL_MY 0x80
#define MADCTL_MX 0x40
#define MADCTL_MV 0x20
#define MADCTL_ML 0x10
#define MADCTL_RGB 0x00
#define MADCTL_BGR 0x08
#define MADCTL_MH 0x04
void Adafruit_ILI9341_STM::setRotation(uint8_t m) {
if (hwSPI) spi_begin();
writecommand(ILI9341_MADCTL);
rotation = m % 4; // can't be higher than 3
switch (rotation) {
case 0:
writedata(MADCTL_MX | MADCTL_BGR);
_width = ILI9341_TFTWIDTH;
_height = ILI9341_TFTHEIGHT;
break;
case 1:
writedata(MADCTL_MV | MADCTL_BGR);
_width = ILI9341_TFTHEIGHT;
_height = ILI9341_TFTWIDTH;
break;
case 2:
writedata(MADCTL_MY | MADCTL_BGR);
_width = ILI9341_TFTWIDTH;
_height = ILI9341_TFTHEIGHT;
break;
case 3:
writedata(MADCTL_MX | MADCTL_MY | MADCTL_MV | MADCTL_BGR);
_width = ILI9341_TFTHEIGHT;
_height = ILI9341_TFTWIDTH;
break;
}
if (hwSPI) spi_end();
}
void Adafruit_ILI9341_STM::invertDisplay(boolean i) {
if (hwSPI) spi_begin();
writecommand(i ? ILI9341_INVON : ILI9341_INVOFF);
if (hwSPI) spi_end();
}
////////// stuff not actively being used, but kept for posterity
uint8_t Adafruit_ILI9341_STM::spiread(void) {
uint8_t r = 0;
if (hwSPI) {
#if defined (__AVR__)
uint8_t backupSPCR = SPCR;
SPCR = mySPCR;
SPDR = 0x00;
while (!(SPSR & _BV(SPIF)));
r = SPDR;
SPCR = backupSPCR;
#elif defined(TEENSYDUINO)
r = SPI.transfer(0x00);
#elif defined (__STM32F1__)
r = SPI.transfer(0x00);
#elif defined (__arm__)
SPI.setClockDivider(11); // 8-ish MHz (full! speed!)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
r = SPI.transfer(0x00);
#endif
} else {
for (uint8_t i = 0; i < 8; i++) {
digitalWrite(_sclk, LOW);
digitalWrite(_sclk, HIGH);
r <<= 1;
if (digitalRead(_miso))
r |= 0x1;
}
}
//Serial.print("read: 0x"); Serial.print(r, HEX);
return r;
}
uint8_t Adafruit_ILI9341_STM::readdata(void) {
digitalWrite(_dc, HIGH);
digitalWrite(_cs, LOW);
uint8_t r = spiread();
digitalWrite(_cs, HIGH);
return r;
}
uint8_t Adafruit_ILI9341_STM::readcommand8(uint8_t c, uint8_t index) {
if (hwSPI) spi_begin();
digitalWrite(_dc, LOW); // command
digitalWrite(_cs, LOW);
spiwrite(0xD9); // woo sekret command?
digitalWrite(_dc, HIGH); // data
spiwrite(0x10 + index);
digitalWrite(_cs, HIGH);
digitalWrite(_dc, LOW);
digitalWrite(_sclk, LOW);
digitalWrite(_cs, LOW);
spiwrite(c);
digitalWrite(_dc, HIGH);
uint8_t r = spiread();
digitalWrite(_cs, HIGH);
if (hwSPI) spi_end();
return r;
}
/*
uint16_t Adafruit_ILI9341_STM::readcommand16(uint8_t c) {
digitalWrite(_dc, LOW);
if (_cs)
digitalWrite(_cs, LOW);
spiwrite(c);
pinMode(_sid, INPUT); // input!
uint16_t r = spiread();
r <<= 8;
r |= spiread();
if (_cs)
digitalWrite(_cs, HIGH);
pinMode(_sid, OUTPUT); // back to output
return r;
}
uint32_t Adafruit_ILI9341_STM::readcommand32(uint8_t c) {
digitalWrite(_dc, LOW);
if (_cs)
digitalWrite(_cs, LOW);
spiwrite(c);
pinMode(_sid, INPUT); // input!
dummyclock();
dummyclock();
uint32_t r = spiread();
r <<= 8;
r |= spiread();
r <<= 8;
r |= spiread();
r <<= 8;
r |= spiread();
if (_cs)
digitalWrite(_cs, HIGH);
pinMode(_sid, OUTPUT); // back to output
return r;
}
*/