improve SPI low level functions

- optimize code and run-time
This commit is contained in:
stevstrong 2016-10-31 22:29:40 +01:00
parent 4bc4b1d6bd
commit 5db2523284
3 changed files with 75 additions and 136 deletions

View File

@ -84,7 +84,7 @@ void spi_slave_enable(spi_dev *dev, spi_mode mode, uint32 flags) {
} }
/** /**
* @brief Nonblocking SPI transmit. * @brief Blocking SPI transmit.
* @param dev SPI port to use for transmission * @param dev SPI port to use for transmission
* @param buf Buffer to transmit. The sizeof buf's elements are * @param buf Buffer to transmit. The sizeof buf's elements are
* inferred from dev's data frame format (i.e., are * inferred from dev's data frame format (i.e., are
@ -95,7 +95,8 @@ void spi_slave_enable(spi_dev *dev, spi_mode mode, uint32 flags) {
uint32 spi_tx(spi_dev *dev, const void *buf, uint32 len) { uint32 spi_tx(spi_dev *dev, const void *buf, uint32 len) {
uint32 txed = 0; uint32 txed = 0;
uint8 byte_frame = spi_dff(dev) == SPI_DFF_8_BIT; uint8 byte_frame = spi_dff(dev) == SPI_DFF_8_BIT;
while (spi_is_tx_empty(dev) && (txed < len)) { while ( txed < len ) {
while ( spi_is_tx_empty(dev)==0 ); // wait Tx to be empty
if (byte_frame) { if (byte_frame) {
dev->regs->DR = ((const uint8*)buf)[txed++]; dev->regs->DR = ((const uint8*)buf)[txed++];
} else { } else {
@ -162,5 +163,6 @@ static void spi_reconfigure(spi_dev *dev, uint32 cr1_config) {
spi_irq_disable(dev, SPI_INTERRUPTS_ALL); spi_irq_disable(dev, SPI_INTERRUPTS_ALL);
if ( (dev->regs->CR1&MASK)!=(cr1_config&MASK) ) spi_peripheral_disable(dev); if ( (dev->regs->CR1&MASK)!=(cr1_config&MASK) ) spi_peripheral_disable(dev);
dev->regs->CR1 = cr1_config; dev->regs->CR1 = cr1_config;
//spi_rx_dma_enable(dev);
spi_peripheral_enable(dev); spi_peripheral_enable(dev);
} }

View File

@ -41,6 +41,8 @@
#include "boards.h" #include "boards.h"
//#include "HardwareSerial.h" //#include "HardwareSerial.h"
/** Time in ms for DMA receive timeout */
#define DMA_TIMEOUT 100
#if CYCLES_PER_MICROSECOND != 72 #if CYCLES_PER_MICROSECOND != 72
/* TODO [0.2.0?] something smarter than this */ /* TODO [0.2.0?] something smarter than this */
@ -304,138 +306,110 @@ void SPIClass::endTransaction(void)
* I/O * I/O
*/ */
uint8 SPIClass::read(void) { uint8 SPIClass::read(void)
uint8 buf[1]; {
this->read(buf, 1); while ( spi_is_rx_nonempty(_currentSetting->spi_d)==0 ) ;
return buf[0]; return (uint8)spi_rx_reg(_currentSetting->spi_d);
} }
void SPIClass::read(uint8 *buf, uint32 len) { void SPIClass::read(uint8 *buf, uint32 len)
{
spi_reg_map * regs = _currentSetting->spi_d->regs;
uint8 b = (regs->DR); // clear the RX buffer in case a byte is waiting on it.
uint32 rxed = 0; uint32 rxed = 0;
while (rxed < len) { // start sequence
while (!spi_is_rx_nonempty(_currentSetting->spi_d)) while ( rxed < len) {
; regs->DR = 0x00FF; // " write the data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
buf[rxed++] = (uint8)spi_rx_reg(_currentSetting->spi_d); while ( (regs->SR & SPI_SR_RXNE)==0 ) ; // wait till data is available in the Rx register
buf[rxed++] = (uint8)(regs->DR); // read and store the received byte
} }
} }
void SPIClass::write(uint16 data) { void SPIClass::write(uint16 data)
// this->write(&data, 1); {
/* Added for 16bit data Victor Perez. Roger Clark /* Added for 16bit data Victor Perez. Roger Clark
* Improved speed by just directly writing the single byte to the SPI data reg and wait for completion, * by taking the Tx code from transfer(byte) * Improved speed by just directly writing the single byte to the SPI data reg and wait for completion,
* The original method, of calling write(*data, length) . * by taking the Tx code from transfer(byte)
* This almost doubles the speed of this function. * This almost doubles the speed of this function.
*/ */
spi_tx_reg(_currentSetting->spi_d, data); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)." spi_tx_reg(_currentSetting->spi_d, data); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..." while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI." while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
} }
//void SPIClass::write(uint8 byte) { void SPIClass::write(const void *data, uint32 length)
// this->write(&byte, 1); {
spi_tx(_currentSetting->spi_d, data, length); // data can be array of bytes or words
/* Roger Clark while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
* Improved speed by just directly writing the single byte to the SPI data reg and wait for completion, * by taking the Tx code from transfer(byte) while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
* The original method, of calling write(*data, length) .
* This almost doubles the speed of this function.
*/
// spi_tx_reg(_currentSetting->spi_d, byte); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
// while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
// while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
//}
void SPIClass::write(const uint8 *data, uint32 length) {
uint32 txed = 0;
while (txed < length) {
txed += spi_tx(_currentSetting->spi_d, data + txed, length - txed);
}
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "4. After writing the last data item into the SPI_DR register, wait until TXE=1 ..."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... then wait until BSY=0, this indicates that the transmission of the last data is complete."
// taken from SdSpiSTM32F1.cpp - Victor's lib, and adapted to support device selection // taken from SdSpiSTM32F1.cpp - Victor's lib, and adapted to support device selection
if (spi_is_rx_nonempty(_currentSetting->spi_d)) { uint16 b = spi_rx_reg(_currentSetting->spi_d); // dummy read, needed, don't remove!
uint8_t b = spi_rx_reg(_currentSetting->spi_d);
}
} }
uint16_t SPIClass::transfer16(uint16_t wr_data) const { uint16_t SPIClass::transfer16(uint16_t wr_data) const {
spi_tx_reg(_currentSetting->spi_d, wr_data); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)." spi_tx_reg(_currentSetting->spi_d, wr_data); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
while (spi_is_rx_nonempty(_currentSetting->spi_d) == 0); // "4. Wait until RXNE=1 ..." while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
uint16_t rd_data = spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data." while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
// while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..." return (uint16)spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data."
// while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
return rd_data;
} }
uint8 SPIClass::transfer(uint8 byte) const { uint8 SPIClass::transfer(uint8 byte) const {
spi_tx_reg(_currentSetting->spi_d, byte); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)." spi_tx_reg(_currentSetting->spi_d, byte); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
while (spi_is_rx_nonempty(_currentSetting->spi_d) == 0); // "4. Wait until RXNE=1 ..." while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
uint8 b = spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data." while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..." return (uint8)spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
return b;
} }
/* Roger Clark and Victor Perez, 2015 /* Roger Clark and Victor Perez, 2015
* Performs a DMA SPI transfer with at least a receive buffer. * Performs a DMA SPI transfer with at least a receive buffer.
* If a TX buffer is not provided, FF is sent over and over for the lenght of the transfer. * If a TX buffer is not provided, FF is sent over and over for the length of the transfer.
* On exit TX buffer is not modified, and RX buffer cotains the received data. * On exit TX buffer is not modified, and RX buffer contains the received data.
* Still in progress. * Still in progress.
*/ */
uint8 SPIClass::dmaTransfer(uint8 *transmitBuf, uint8 *receiveBuf, uint16 length) { uint8 SPIClass::dmaTransfer(void * transmitBuf, void * receiveBuf, uint16 length)
{
if (length == 0) return 0; if (length == 0) return 0;
uint8 b = 0; uint8 b = 0;
if (spi_is_rx_nonempty(_currentSetting->spi_d) == 1) b = spi_rx_reg(_currentSetting->spi_d); //Clear the RX buffer in case a byte is waiting on it. spi_rx_reg(_currentSetting->spi_d); //Clear the RX buffer in case a byte is waiting on it.
// dma1_ch3_Active=true; // dma1_ch3_Active=true;
dma_init(_currentSetting->spiDmaDev); dma_init(_currentSetting->spiDmaDev);
// dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event); // dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event);
// RX // RX
spi_rx_dma_enable(_currentSetting->spi_d); spi_rx_dma_enable(_currentSetting->spi_d);
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &_currentSetting->spi_d->regs->DR, DMA_SIZE_8BITS, dma_xfer_size dma_bit_size = (_currentSetting->dataSize==DATA_SIZE_8BIT) ? DMA_SIZE_8BITS : DMA_SIZE_16BITS;
receiveBuf, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_TRNS_CMPLT));// receive buffer DMA dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, &_currentSetting->spi_d->regs->DR, dma_bit_size,
receiveBuf, dma_bit_size, (DMA_MINC_MODE | DMA_TRNS_CMPLT));// receive buffer DMA
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, length); dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel, length);
// TX // TX
uint32 flags = (DMA_MINC_MODE | DMA_FROM_MEM | DMA_TRNS_CMPLT);
spi_tx_dma_enable(_currentSetting->spi_d); spi_tx_dma_enable(_currentSetting->spi_d);
if (!transmitBuf) { if ( transmitBuf==0 ) {
static uint8_t ff = 0XFF; static uint8_t ff = 0XFF;
transmitBuf = &ff; transmitBuf = &ff;
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, DMA_SIZE_8BITS, flags ^= DMA_MINC_MODE; // remove increment mode
transmitBuf, DMA_SIZE_8BITS, (DMA_FROM_MEM | DMA_TRNS_CMPLT));// Transmit FF repeatedly
}
else {
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, DMA_SIZE_8BITS,
transmitBuf, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_FROM_MEM | DMA_TRNS_CMPLT));// Transmit buffer DMA
} }
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, dma_bit_size,
transmitBuf, dma_bit_size, flags);// Transmit buffer DMA
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length); dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);// enable receive dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);// enable receive
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit
// while (dma1_ch3_Active);
// if (receiveBuf) {
uint32_t m = millis(); uint32_t m = millis();
while ((dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & 0x2)==0) {//Avoid interrupts and just loop waiting for the flag to be set. while ((dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & 0x2)==0) {//Avoid interrupts and just loop waiting for the flag to be set.
if ((millis() - m) > 100) { if ((millis() - m) > DMA_TIMEOUT) { b = 2; break; }
// dma1_ch3_Active = 0;
b = 2;
break;
}
} }
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel); dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
// }
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..." while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI." while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel); dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel); dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiRxDmaChannel);
spi_rx_dma_disable(_currentSetting->spi_d); // And disable generation of DMA request from the SPI port so other peripherals can use the channels spi_rx_dma_disable(_currentSetting->spi_d); // And disable generation of DMA request from the SPI port so other peripherals can use the channels
spi_tx_dma_disable(_currentSetting->spi_d); spi_tx_dma_disable(_currentSetting->spi_d);
if (spi_is_rx_nonempty(_currentSetting->spi_d) != 0){; // "4. Wait until RXNE=1 ..." uint16 x = spi_rx_reg(_currentSetting->spi_d); // dummy read, needed, don't remove!
uint8 x = spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data."
}
return b; return b;
} }
@ -443,10 +417,12 @@ uint8 SPIClass::dmaTransfer(uint8 *transmitBuf, uint8 *receiveBuf, uint16 length
* Performs a DMA SPI send using a TX buffer. * Performs a DMA SPI send using a TX buffer.
* On exit TX buffer is not modified. * On exit TX buffer is not modified.
* Still in progress. * Still in progress.
* 2016 - stevstrong - reworked to automatically detect bit size from SPI setting
*/ */
uint8 SPIClass::dmaSend(uint8 *transmitBuf, uint16 length, bool minc) { uint8 SPIClass::dmaSend(void * transmitBuf, uint16 length)
{
if (length == 0) return 0; if (length == 0) return 0;
uint32 flags = ((DMA_MINC_MODE * minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT); uint32 flags = (DMA_MINC_MODE | DMA_FROM_MEM | DMA_TRNS_CMPLT);
uint8 b = 0; uint8 b = 0;
// dma1_ch3_Active=true; // dma1_ch3_Active=true;
dma_init(_currentSetting->spiDmaDev); dma_init(_currentSetting->spiDmaDev);
@ -454,55 +430,27 @@ uint8 SPIClass::dmaSend(uint8 *transmitBuf, uint16 length, bool minc) {
// TX // TX
spi_tx_dma_enable(_currentSetting->spi_d); spi_tx_dma_enable(_currentSetting->spi_d);
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, DMA_SIZE_8BITS, dma_xfer_size dma_bit_size = (_currentSetting->dataSize==DATA_SIZE_8BIT) ? DMA_SIZE_8BITS : DMA_SIZE_16BITS;
transmitBuf, DMA_SIZE_8BITS, flags);// Transmit buffer DMA dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, dma_bit_size,
transmitBuf, dma_bit_size, flags);// Transmit buffer DMA
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length); dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit
// while (dma1_ch3_Active); // while (dma1_ch3_Active);
while ((dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & 0x2)==0); //Avoid interrupts and just loop waiting for the flag to be set. uint32_t m = millis();
while ((dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & 0x2)==0) {//Avoid interrupts and just loop waiting for the flag to be set.
if ((millis() - m) > DMA_TIMEOUT) { b = 2; break; }
}
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel); dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..." while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI." while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel); dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
spi_tx_dma_disable(_currentSetting->spi_d); spi_tx_dma_disable(_currentSetting->spi_d);
if (spi_is_rx_nonempty(_currentSetting->spi_d) != 0){; // "4. Wait until RXNE=1 ..." uint16 x = spi_rx_reg(_currentSetting->spi_d); // dummy read, needed, don't remove!
uint8 x = spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data."
}
return b; return b;
} }
uint8 SPIClass::dmaSend(uint16 *transmitBuf, uint16 length, bool minc) {
if (length == 0) return 0;
uint32 flags = ((DMA_MINC_MODE * minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT);
uint8 b;
dma1_ch3_Active=true;
dma_init(_currentSetting->spiDmaDev);
// dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event);
// TX
spi_tx_dma_enable(_currentSetting->spi_d);
dma_setup_transfer(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, &_currentSetting->spi_d->regs->DR, DMA_SIZE_16BITS,
transmitBuf, DMA_SIZE_16BITS, flags);// Transmit buffer DMA
dma_set_num_transfers(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel, length);
dma_enable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);// enable transmit
// while (dma1_ch3_Active);
while ((dma_get_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel) & 0x2)==0); //Avoid interrupts and just loop waiting for the flag to be set.
dma_clear_isr_bits(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
while (spi_is_tx_empty(_currentSetting->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(_currentSetting->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(_currentSetting->spiDmaDev, _currentSetting->spiTxDmaChannel);
spi_tx_dma_disable(_currentSetting->spi_d);
if (spi_is_rx_nonempty(_currentSetting->spi_d) != 0){; // "4. Wait until RXNE=1 ..."
b = spi_rx_reg(_currentSetting->spi_d); // "... and read the last received data."
}
return b;
}
void SPIClass::attachInterrupt(void) { void SPIClass::attachInterrupt(void) {
// Should be enableInterrupt() // Should be enableInterrupt()
} }

View File

@ -249,7 +249,7 @@ public:
* @param buffer Bytes to transmit. * @param buffer Bytes to transmit.
* @param length Number of bytes in buffer to transmit. * @param length Number of bytes in buffer to transmit.
*/ */
void write(const uint8 *buffer, uint32 length); void write(const void * buffer, uint32 length);
/** /**
* @brief Transmit a byte, then return the next unread byte. * @brief Transmit a byte, then return the next unread byte.
@ -264,6 +264,7 @@ public:
/** /**
* @brief Sets up a DMA Transfer for "length" bytes. * @brief Sets up a DMA Transfer for "length" bytes.
* The transfer mode (8 or 16 bit mode) is evaluated from the SPI peripheral setting.
* *
* This function transmits and receives to buffers. * This function transmits and receives to buffers.
* *
@ -271,30 +272,18 @@ public:
* @param receiveBuf buffer Bytes to save received data. * @param receiveBuf buffer Bytes to save received data.
* @param length Number of bytes in buffer to transmit. * @param length Number of bytes in buffer to transmit.
*/ */
uint8 dmaTransfer(uint8 *transmitBuf, uint8 *receiveBuf, uint16 length); uint8 dmaTransfer(void * transmitBuf, void * receiveBuf, uint16 length);
/** /**
* @brief Sets up a DMA Transmit for bytes. * @brief Sets up a DMA Transmit for SPI 8 or 16 bit transfer mode.
* The transfer mode (8 or 16 bit mode) is evaluated from the SPI peripheral setting.
* *
* This function transmits and does not care about the RX fifo. * This function only transmits and does not care about the RX fifo.
*
* @param transmitBuf buffer Bytes to transmit,
* @param length Number of bytes in buffer to transmit.
* @param minc Set to use Memory Increment mode, clear to use Circular mode.
*/
uint8 dmaSend(uint8 *transmitBuf, uint16 length, bool minc = 1);
/**
* @brief Sets up a DMA Transmit for half words.
* SPI PERFIPHERAL MUST BE SET TO 16 BIT MODE BEFORE
*
* This function transmits and does not care about the RX fifo.
* *
* @param data buffer half words to transmit, * @param data buffer half words to transmit,
* @param length Number of bytes in buffer to transmit. * @param length Number of bytes in buffer to transmit.
* @param minc Set to use Memory Increment mode (default if blank), clear to use Circular mode.
*/ */
uint8 dmaSend(uint16 *transmitBuf, uint16 length, bool minc = 1); uint8 dmaSend(void * transmitBuf, uint16 length);
/* /*
* Pin accessors * Pin accessors