Revert "SDIO updates"

This reverts commit 7dce451ebc.
This commit is contained in:
victorpv 2018-03-28 22:27:39 -05:00
parent 58ccf76c2a
commit e3510b76eb
3 changed files with 144 additions and 482 deletions

View File

@ -32,8 +32,8 @@
sdio_dev * SDIO = SDIO_BASE; sdio_dev * SDIO = SDIO_BASE;
#define DELAY_LONG 20 #define DELAY_LONG 10
#define DELAY_SHORT 2 #define DELAY_SHORT 1
uint8_t dly = DELAY_LONG; // microseconds delay after accessing registers uint8_t dly = DELAY_LONG; // microseconds delay after accessing registers
@ -43,13 +43,9 @@ uint8_t dly = DELAY_LONG; // microseconds delay after accessing registers
void sdio_gpios_init(void) void sdio_gpios_init(void)
{ {
gpio_set_mode(PIN_MAP[BOARD_SDIO_D0].gpio_device, PIN_MAP[BOARD_SDIO_D0].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_D0].gpio_device, PIN_MAP[BOARD_SDIO_D0].gpio_bit, GPIO_AF_OUTPUT_PP);
/* gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_AF_OUTPUT_PP);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_AF_OUTPUT_PP);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_AF_OUTPUT_PP);
*/
gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_INPUT_PU);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_INPUT_PU);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_INPUT_PU);
gpio_set_mode(PIN_MAP[BOARD_SDIO_CLK].gpio_device, PIN_MAP[BOARD_SDIO_CLK].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_CLK].gpio_device, PIN_MAP[BOARD_SDIO_CLK].gpio_bit, GPIO_AF_OUTPUT_PP);
gpio_set_mode(PIN_MAP[BOARD_SDIO_CMD].gpio_device, PIN_MAP[BOARD_SDIO_CMD].gpio_bit, GPIO_AF_OUTPUT_PP); gpio_set_mode(PIN_MAP[BOARD_SDIO_CMD].gpio_device, PIN_MAP[BOARD_SDIO_CMD].gpio_bit, GPIO_AF_OUTPUT_PP);
/* /*
@ -67,12 +63,12 @@ void sdio_gpios_init(void)
void sdio_gpios_deinit(void) void sdio_gpios_deinit(void)
{ {
gpio_set_mode(PIN_MAP[BOARD_SDIO_D0].gpio_device, PIN_MAP[BOARD_SDIO_D0].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_D0].gpio_device, PIN_MAP[BOARD_SDIO_D0].gpio_bit, GPIO_INPUT_FLOATING);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_INPUT_FLOATING);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_INPUT_FLOATING);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_INPUT_FLOATING);
gpio_set_mode(PIN_MAP[BOARD_SDIO_CLK].gpio_device, PIN_MAP[BOARD_SDIO_CLK].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_CLK].gpio_device, PIN_MAP[BOARD_SDIO_CLK].gpio_bit, GPIO_INPUT_FLOATING);
gpio_set_mode(PIN_MAP[BOARD_SDIO_CMD].gpio_device, PIN_MAP[BOARD_SDIO_CMD].gpio_bit, GPIO_INPUT_PU); gpio_set_mode(PIN_MAP[BOARD_SDIO_CMD].gpio_device, PIN_MAP[BOARD_SDIO_CMD].gpio_bit, GPIO_INPUT_FLOATING);
/* /*
* Todo just remove it, not needed for F1. * Todo just remove it, not needed for F1.
@ -114,35 +110,19 @@ void sdio_power_off(void)
void sdio_set_clock(uint32_t clk) void sdio_set_clock(uint32_t clk)
{ {
/* if (clk>24000000UL) clk = 24000000UL; // limit the SDIO master clock to 24MHz
* limit the SDIO master clock to 8/3 of PCLK2.See RM 22.3
* Also limited to no more than 48Mhz
*/
clk = min(clk,(SDIOCLK/3)*8);
clk = min(clk,36000000);
if (clk<1000000) dly = DELAY_LONG; if (clk<1000000) dly = DELAY_LONG;
else dly = DELAY_SHORT; else dly = DELAY_SHORT;
/*
* round up divider, so we don't run the card over the speed supported.
*/
uint32 div = SDIOCLK/clk + (SDIOCLK % clk != 0) - 2;
sdio_disable(); sdio_disable();
//Serial.println(div,DEC); SDIO->CLKCR = (SDIO->CLKCR & (~(SDIO_CLKCR_CLKDIV|SDIO_CLKCR_BYPASS))) | SDIO_CLKCR_CLKEN | (((SDIOCLK/clk)-2)&SDIO_CLKCR_CLKDIV);
SDIO->CLKCR = (SDIO->CLKCR & (~(SDIO_CLKCR_CLKDIV|SDIO_CLKCR_BYPASS))) | SDIO_CLKCR_PWRSAV | SDIO_CLKCR_HWFC_EN | SDIO_CLKCR_CLKEN | (div & SDIO_CLKCR_CLKDIV);
delay_us(dly); delay_us(dly);
} }
void sdio_set_dbus_width(uint16_t bus_w) void sdio_set_dbus_width(uint16_t bus_w)
{ {
SDIO->CLKCR = (SDIO->CLKCR & (~SDIO_CLKCR_WIDBUS)) | bus_w; SDIO->CLKCR = (SDIO->CLKCR & (~SDIO_CLKCR_WIDBUS)) | bus_w;
gpio_set_mode(PIN_MAP[BOARD_SDIO_D1].gpio_device, PIN_MAP[BOARD_SDIO_D1].gpio_bit, GPIO_AF_OUTPUT_PP);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D2].gpio_device, PIN_MAP[BOARD_SDIO_D2].gpio_bit, GPIO_AF_OUTPUT_PP);
gpio_set_mode(PIN_MAP[BOARD_SDIO_D3].gpio_device, PIN_MAP[BOARD_SDIO_D3].gpio_bit, GPIO_AF_OUTPUT_PP);
delay_us(dly); delay_us(dly);
} }
@ -169,10 +149,9 @@ void sdio_disable(void)
*/ */
void sdio_begin(void) void sdio_begin(void)
{ {
sdio_gpios_init();
sdio_init(); sdio_init();
sdio_power_on(); sdio_power_on();
sdio_gpios_init();
// Set initial SCK rate. // Set initial SCK rate.
sdio_set_clock(400000); sdio_set_clock(400000);
delay_us(200); // generate 80 pulses at 400kHz delay_us(200); // generate 80 pulses at 400kHz
@ -183,12 +162,11 @@ void sdio_begin(void)
*/ */
void sdio_end(void) void sdio_end(void)
{ {
while ( sdio_cmd_xfer_ongoing() );
sdio_disable(); sdio_disable();
sdio_gpios_deinit(); while ( sdio_cmd_xfer_ongoing() );
sdio_power_off(); sdio_power_off();
rcc_clk_disable(RCC_SDIO); rcc_clk_disable(RCC_SDIO);
sdio_gpios_deinit();
} }
/** /**
@ -209,7 +187,6 @@ uint8_t sdio_cmd_send(uint16_t cmd_index_resp_type, uint32_t arg)
while ( !(SDIO->STA&(SDIO_STA_CMDREND|SDIO_STA_CMD_ERROR_FLAGS)) ) ; while ( !(SDIO->STA&(SDIO_STA_CMDREND|SDIO_STA_CMD_ERROR_FLAGS)) ) ;
} else break; // no response required } else break; // no response required
if ( SDIO->STA&(SDIO_STA_CMDREND|SDIO_STA_CTIMEOUT) ) if ( SDIO->STA&(SDIO_STA_CMDREND|SDIO_STA_CTIMEOUT) )
//if ( SDIO->STA&(SDIO_STA_CMDREND) )
break; // response received or timeout break; // response received or timeout
// ignore CRC error for CMD5 and ACMD41 // ignore CRC error for CMD5 and ACMD41
if ( ((cmd_index_resp_type&SDIO_CMD_CMDINDEX)==5) || ((cmd_index_resp_type&SDIO_CMD_CMDINDEX)==41) ) if ( ((cmd_index_resp_type&SDIO_CMD_CMDINDEX)==5) || ((cmd_index_resp_type&SDIO_CMD_CMDINDEX)==41) )

View File

@ -61,12 +61,6 @@
#define CMD38_XFERTYP (uint16_t)( CMD38 | CMD_RESP_R1b ) #define CMD38_XFERTYP (uint16_t)( CMD38 | CMD_RESP_R1b )
#define ACMD41_XFERTYP (uint16_t)( ACMD41 | CMD_RESP_R3 ) #define ACMD41_XFERTYP (uint16_t)( ACMD41 | CMD_RESP_R3 )
/*
* AMD42 to enable disable CD/D3 pull up. Needed for 4bit mode.
*/
const uint8_t ACMD42 = 0X2A;
#define ACMD42_XFERTYP (uint16_t)( ACMD41 | CMD_RESP_R1 )
#define CMD55_XFERTYP (uint16_t)( CMD55 | CMD_RESP_R1 ) #define CMD55_XFERTYP (uint16_t)( CMD55 | CMD_RESP_R1 )
//============================================================================= //=============================================================================
@ -75,27 +69,14 @@ const uint8_t ACMD42 = 0X2A;
static void initSDHC(void); static void initSDHC(void);
static bool isBusyCMD13(void); static bool isBusyCMD13(void);
static bool isBusyTransferComplete(void); static bool isBusyTransferComplete(void);
static bool isBusyTransferCRC(void);
//static bool isBusyCommandComplete(); //static bool isBusyCommandComplete();
//static bool isBusyCommandInhibit(); //static bool isBusyCommandInhibit();
static bool readReg16(uint32_t xfertyp, void* data); static bool readReg16(uint32_t xfertyp, void* data);
//static void setSdclk(uint32_t kHzMax); //static void setSdclk(uint32_t kHzMax);
static bool yieldTimeout(bool (*fcn)(void)); static bool yieldTimeout(bool (*fcn)(void));
static bool yieldDmaStatus(void);
static bool waitDmaStatus(void); static bool waitDmaStatus(void);
static bool waitTimeout(bool (*fcn)(void)); static bool waitTimeout(bool (*fcn)(void));
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
static const uint32_t IDLE_STATE = 0;
static const uint32_t READ_STATE = 1;
static const uint32_t WRITE_STATE = 2;
volatile uint32_t m_curLba;
volatile uint32_t m_limitLba;
volatile uint8_t m_curState;
volatile uint64_t m_totalReadLbas = 0;
volatile uint64_t m_readErrors = 0;
volatile uint64_t m_writeErrors = 0;
volatile uint64_t m_totalWriteLbas = 0;
#define TRX_RD 0 #define TRX_RD 0
#define TRX_WR 1 #define TRX_WR 1
static uint8_t m_dir = TRX_RD; static uint8_t m_dir = TRX_RD;
@ -116,26 +97,27 @@ static cid_t m_cid;
static csd_t m_csd; static csd_t m_csd;
static uint32_t t = 0; static uint32_t t = 0;
//============================================================================= //=============================================================================
/*
* Todo Remove this or change it, but rather remove since this can be checked with debugger.
*/
#if USE_DEBUG_MODE #if USE_DEBUG_MODE
#define DBG_PRINT() { \ #define DBG_PRINT() { \
Serial.write('_'); Serial.print(__FUNCTION__); Serial.write('_'); Serial.print(__LINE__); Serial.print(": "); \ Serial.write('_'); Serial.print(__FUNCTION__); Serial.write('_'); Serial.print(__LINE__); Serial.print(": "); \
Serial.print("DMA->ISR: 0x"); Serial.print(SDIO_DMA_DEV->regs->ISR, HEX); \ Serial.print("DMA->LISR: "); Serial.print(SDIO_DMA_DEV->regs->LISR, HEX); \
/*Serial.print("DMA->HISR: "); Serial.println(SDIO_DMA_DEV->regs->HISR, HEX);*/ \ /*Serial.print("DMA->HISR: "); Serial.println(SDIO_DMA_DEV->regs->HISR, HEX);*/ \
Serial.print(", DMA->CCR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CCR4, HEX); \ Serial.print(", DMA->CR: "); Serial.print(SDIO_DMA_DEV->regs->STREAM[SDIO_DMA_CHANNEL].CR, HEX); \
Serial.print(", DMA->CNDTR: "); Serial.print(SDIO_DMA_DEV->regs->CNDTR4,DEC); \ Serial.print(", DMA->NDTR: "); Serial.print(SDIO_DMA_DEV->regs->STREAM[SDIO_DMA_CHANNEL].NDTR, HEX); \
/**/Serial.print(", DMA->CPAR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CPAR4, HEX); \ /**/Serial.print(", DMA->PAR: "); Serial.print(SDIO_DMA_DEV->regs->STREAM[SDIO_DMA_CHANNEL].PAR, HEX); \
/**/Serial.print(", DMA->CMAR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CMAR4, HEX); \ /**/Serial.print(", DMA->M0AR: "); Serial.print(SDIO_DMA_DEV->regs->STREAM[SDIO_DMA_CHANNEL].M0AR, HEX); \
Serial.print(", DMA->IFCR: 0x"); Serial.print(SDIO_DMA_DEV->regs->IFCR, HEX); \ Serial.print(", DMA->FCR: "); Serial.print(SDIO_DMA_DEV->regs->STREAM[SDIO_DMA_CHANNEL].FCR, HEX); \
\ \
/*Serial.print(" SDIO->POWER: "); Serial.println(SDIO->POWER, HEX);*/ \ /*Serial.print(" SDIO->POWER: "); Serial.println(SDIO->POWER, HEX);*/ \
Serial.print(", SDIO->CLKCR: 0x"); Serial.print(SDIO->CLKCR, HEX); \ Serial.print(", SDIO->CLKCR: "); Serial.print(SDIO->CLKCR, HEX); \
Serial.print(", SDIO->DTIMER: 0x"); Serial.print(SDIO->DTIMER, HEX); \ Serial.print(", SDIO->DTIMER: "); Serial.print(SDIO->DTIMER, HEX); \
Serial.print(", SDIO->DCTRL: 0x"); Serial.print(SDIO->DCTRL, HEX); \ Serial.print(", SDIO->DCTRL: "); Serial.print(SDIO->DCTRL, HEX); \
/**/Serial.print(", SDIO->DLEN: "); Serial.print(SDIO->DLEN); \ /**/Serial.print(", SDIO->DLEN: "); Serial.print(SDIO->DLEN); \
Serial.print(", SDIO->DCOUNT: "); Serial.print(SDIO->DCOUNT); \ Serial.print(", SDIO->DCOUNT: "); Serial.print(SDIO->DCOUNT); \
Serial.print(", SDIO->STA: 0x"); Serial.println(SDIO->STA, HEX); \ Serial.print(", SDIO->STA: "); Serial.println(SDIO->STA, HEX); \
Serial.print(", SDIO->FIFOCNT: "); Serial.println(SDIO->FIFOCNT); \
/*delay(1);*/ \ /*delay(1);*/ \
} }
#define DBG_PIN PD0 #define DBG_PIN PD0
@ -149,7 +131,7 @@ static void _panic(const char *message, uint32_t code)
{ {
Serial.print(message); Serial.println(code, HEX); Serial.print(message); Serial.println(code, HEX);
//Block the execution with blinky leds //Block the execution with blinky leds
while (1) {delay (1);}; while (1);
/* /*
pinMode(BOARD_LED_PIN, OUTPUT); pinMode(BOARD_LED_PIN, OUTPUT);
//pinMode(BOARD_LED2_PIN, OUTPUT); //pinMode(BOARD_LED2_PIN, OUTPUT);
@ -189,14 +171,13 @@ void yield(void)
} }
val = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); val = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
/* if ( val & DMA_ISR_FEIF ) { if ( val & DMA_ISR_FEIF ) {
val ^= DMA_ISR_FEIF; val ^= DMA_ISR_FEIF;
dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
} }
*/
if ( val ) { if ( val ) {
if (val & DMA_ISR_TEIF) Serial.print(" TEIF"); if (val & DMA_ISR_TEIF) Serial.print(" TEIF");
//if (val & DMA_ISR_DMEIF) Serial.print(" DMEIF"); if (val & DMA_ISR_DMEIF) Serial.print(" DMEIF");
//if (val & DMA_ISR_FEIF) Serial.print(" FEIF"); //if (val & DMA_ISR_FEIF) Serial.print(" FEIF");
_panic(" - DMA: Data Transmission Error ", val); _panic(" - DMA: Data Transmission Error ", val);
} }
@ -227,7 +208,7 @@ static bool cardCommand(uint16_t xfertyp, uint32_t arg)
#if USE_DEBUG_MODE==2 #if USE_DEBUG_MODE==2
Serial.print("cardCommand: "); Serial.print(xfertyp&SDIO_CMD_CMDINDEX); Serial.print(", arg: "); Serial.print(arg, HEX); Serial.print("cardCommand: "); Serial.print(xfertyp&SDIO_CMD_CMDINDEX); Serial.print(", arg: "); Serial.print(arg, HEX);
#endif #endif
uint8_t resp = sdio_cmd_send(xfertyp, arg); // returns non-zero if OK, zero if it fails uint8_t resp = sdio_cmd_send(xfertyp, arg); // returns non-zero if fails, zero if OK
#if USE_DEBUG_MODE==2 #if USE_DEBUG_MODE==2
Serial.print(", resp: "); Serial.print(resp, HEX); Serial.print(", resp: "); Serial.print(resp, HEX);
Serial.print(", SDIO->STA: "); Serial.print(SDIO->STA, HEX); Serial.print(", cmd_resp: "); Serial.print(SDIO->RESP[0], HEX); Serial.print(", SDIO->STA: "); Serial.print(SDIO->STA, HEX); Serial.print(", cmd_resp: "); Serial.print(SDIO->RESP[0], HEX);
@ -283,38 +264,19 @@ static bool isBusyCMD13(void) {
} }
return !(SDIO->RESP[0] & CARD_STATUS_READY_FOR_DATA); return !(SDIO->RESP[0] & CARD_STATUS_READY_FOR_DATA);
} }
/*---------------------------------------------------------------------------*/
/*
* Returns False if DMA transfer disabled.
* True otherwise
*/
static bool inline isEnabledDMA(void)
{
return dma_is_enabled(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
}
/*
* Returns False if DMA transfer is completed or in error.
* True otherwise
*/
static bool isBusyDMA(void) static bool isBusyDMA(void)
{ {
if (!isEnabledDMA()) return false;
uint8_t isr = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); uint8_t isr = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
isr &= DMA_ISR_TCIF | DMA_ISR_TEIF; isr &= DMA_ISR_TCIF | DMA_ISR_TEIF;
//if (isr&DMA_ISR_TCIF) dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); //if (isr&DMA_ISR_TCIF) dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return !(isr); // ignore transfer error flag return !(isr); // ignore transfer error flag
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
/*
* Returns true while the transfer has not completed
* False when it has completed.
*/
static bool isBusyTransferComplete(void) static bool isBusyTransferComplete(void)
{ {
uint32_t mask = SDIO->STA &(SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS); uint32_t mask = SDIO->STA &(SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS);
//#if USE_DEBUG_MODE #if USE_DEBUG_MODE
if ( mask & SDIO_STA_TRX_ERROR_FLAGS ) { if ( mask & SDIO_STA_TRX_ERROR_FLAGS ) {
Serial.print("XFER ERROR: SDIO->STA: "); Serial.print(SDIO->STA, HEX); Serial.print("XFER ERROR: SDIO->STA: "); Serial.print(SDIO->STA, HEX);
if (mask & SDIO_STA_STBITERR) Serial.print(" STBITERR"); if (mask & SDIO_STA_STBITERR) Serial.print(" STBITERR");
@ -324,43 +286,13 @@ static bool isBusyTransferComplete(void)
if (mask & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL"); if (mask & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL");
Serial.println(); Serial.println();
} }
//#endif #endif
if (mask) { if (mask) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false; return false;
} }
return true; return true;
} }
/*
* New function, to follow Reference Manual sequence.
* Returns true if still not confirmed DBCKEND: Data block sent/received (CRC check passed)
* False when it has completed the transfer with CRC check.
*/
static bool isBusyTransferCRC(void)
{
uint32_t mask = SDIO->STA &(SDIO_STA_DBCKEND | SDIO_STA_TRX_ERROR_FLAGS);
#if USE_DEBUG_MODE
if ( mask & SDIO_STA_TRX_ERROR_FLAGS ) {
Serial.print("XFER ERROR: SDIO->STA: "); Serial.print(SDIO->STA, HEX);
if (mask & SDIO_STA_STBITERR) Serial.print(" STBITERR");
if (mask & SDIO_STA_RXOVERR) Serial.print(" RXOVERR");
if (mask & SDIO_STA_TXUNDERR) Serial.print(" TXUNDERR");
if (mask & SDIO_STA_DTIMEOUT) Serial.print(" DTIMEOUT");
if (mask & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL");
Serial.println();
}
#endif
if (mask) {
//dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
//Serial.print("SDIO->STA SDIO_STA_DBCKEND"); Serial.println(SDIO->STA && SDIO_STA_DBCKEND, HEX);
return false;
}
return true;
}
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static void trxStart(uint8_t* buf, uint32_t n, uint8_t dir) static void trxStart(uint8_t* buf, uint32_t n, uint8_t dir)
{ {
@ -376,12 +308,6 @@ static bool trxStop()
if (!cardCommand(CMD12_XFERTYP, 0)) { if (!cardCommand(CMD12_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD12); return sdError(SD_CARD_ERROR_CMD12);
} }
/*
* Added this to wait to complete on sync.
*/
if (waitTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
if ( t ) { if ( t ) {
Serial.print(", in "); Serial.println(millis()-t); Serial.print(", in "); Serial.println(millis()-t);
t = 0; t = 0;
@ -389,70 +315,52 @@ static bool trxStop()
return true; return true;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static bool dmaTrxStart(uint32_t n, uint8_t dir) static bool dmaTrxStart(uint8_t* buf, uint32_t n, uint8_t dir)
{ {
uint32_t flags = (SDIO_BLOCKSIZE_512 | SDIO_DCTRL_DMAEN | SDIO_DCTRL_DTEN); m_dir = dir;
if ((3 & (uint32_t)buf) || n == 0) { // check alignment
_panic("- transferStart: unaligned buffer address ", (uint32_t)buf);
return sdError(SD_CARD_ERROR_DMA);
}
if (dir==TRX_RD && yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
uint32_t flags = (SDIO_BLOCKSIZE_512 | SDIO_DCTRL_DMAEN | SDIO_DCTRL_DTEN);
if (dir==TRX_RD) flags |= SDIO_DIR_RX; if (dir==TRX_RD) flags |= SDIO_DIR_RX;
// setup SDIO to transfer n blocks of 512 bytes // setup SDIO to transfer n blocks of 512 bytes
sdio_setup_transfer(0x00FFFFFF, n, flags); sdio_setup_transfer(0x00FFFFFF, n, flags);
// setup SDIO_DMA_DEV stream 3 channel 4
/*
* Moved to begin.
*/
//dma_init(SDIO_DMA_DEV);
/*
* Todo. Check this, channel must be disabled to change DMA priority, and seems like channel is not completing transfers
*/
//dma_set_priority(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, DMA_PRIORITY_VERY_HIGH);
flags = (DMA_MINC_MODE);
// not extra flag if read
if (dir!=TRX_RD) flags |= DMA_FROM_MEM;// write
dma_setup_transfer(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, &SDIO->FIFO, DMA_SIZE_32BITS, buf, DMA_SIZE_32BITS, flags);
dma_set_num_transfers(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, n>>2); // F1 DMA controller counts each word as 1 data item.
//dma_set_fifo_flags(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, (DMA_FCR_DMDIS | DMA_FCR_FTH_FULL)); // disable direct mode | threshold FULL
dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
dma_enable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true; return true;
} }
/*
* This one replaces dmaTrxStart, and will just prepare the DMA part, then a new
* one will enable the DMA reception as per the RM.
*/
static bool dmaTrxPrepare(uint8_t* buf, uint32_t n, uint8_t dir)
{
uint32_t flags;
m_dir = dir;
if ((3 & (uint32_t)buf) || n == 0) { // check alignment
_panic("- transferStart: unaligned buffer address ", (uint32_t)buf);
return sdError(SD_CARD_ERROR_DMA);
}
/*
* No point to wait here again if we always wait before calling this.
if (dir==TRX_RD && yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
*/
/*
* Following RM 22.3.2. Setup DMA first, SDIO peripheral next
*
*/
flags = (DMA_MINC_MODE);
// not extra flag if read
if (dir!=TRX_RD) flags |= DMA_FROM_MEM;// write
dma_setup_transfer(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, &SDIO->FIFO, DMA_SIZE_32BITS, buf, DMA_SIZE_32BITS, flags);
dma_set_num_transfers(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, n>>2); // F1 DMA controller counts each word as 1 data item.
//dma_set_fifo_flags(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, (DMA_FCR_DMDIS | DMA_FCR_FTH_FULL)); // disable direct mode | threshold FULL
dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
dma_enable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true;
}
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static bool dmaTrxEnd(bool multi_block) static bool dmaTrxEnd(bool multi_block)
{ {
if(m_curState != READ_STATE){ if ( !waitDmaStatus() ) {
if ( yieldTimeout(isBusyTransferComplete) ) {
DBG_PRINT();
if (m_dir==TRX_RD)
return sdError(SD_CARD_ERROR_READ_CRC);
else
return sdError(SD_CARD_ERROR_WRITE);
}
}
if ( !yieldDmaStatus() ) {
DBG_PRINT(); DBG_PRINT();
return sdError(SD_CARD_ERROR_DMA); return sdError(SD_CARD_ERROR_DMA);
} }
if ( waitTimeout(isBusyTransferComplete) ) {
if (m_dir==TRX_RD)
return sdError(SD_CARD_ERROR_READ_TIMEOUT);
else
return sdError(SD_CARD_ERROR_WRITE_TIMEOUT);
}
if (multi_block) { if (multi_block) {
return trxStop(); return trxStop();
} else { } else {
@ -481,38 +389,21 @@ static bool readReg16(uint32_t xfertyp, void* data)
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
// Return true if timeout occurs. // Return true if timeout occurs.
static bool yieldTimeout(bool (*fcn)()) { static bool yieldTimeout(bool (*fcn)()) {
m_busyFcn = fcn;
uint32_t m = millis(); uint32_t m = millis();
while (fcn()) { while (fcn()) {
if ((millis() - m) > BUSY_TIMEOUT_MILLIS) { if ((millis() - m) > BUSY_TIMEOUT_MILLIS) {
m_busyFcn = 0;
return true; return true;
} }
yield(); yield();
} }
m_busyFcn = 0;
return false; // Caller will set errorCode. return false; // Caller will set errorCode.
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static bool yieldDmaStatus(void)
{
if (yieldTimeout(isBusyDMA)) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false; // Caller will set errorCode.
}
// Did not time out. Disable it and return true.
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true;
}
/*---------------------------------------------------------------------------*/
static bool waitDmaStatus(void) static bool waitDmaStatus(void)
{ {
if (waitTimeout(isBusyDMA)) { if (yieldTimeout(isBusyDMA)) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false; // Caller will set errorCode. return false; // Caller will set errorCode.
} }
// Did not time out. Disable it and return true
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true; return true;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
@ -532,8 +423,6 @@ uint32_t aligned[128]; // temporary buffer for misaligned buffers
//============================================================================= //=============================================================================
bool SdioCard::begin(void) bool SdioCard::begin(void)
{ {
uint32_t arg;
m_initDone = false; m_initDone = false;
m_errorCode = SD_CARD_ERROR_NONE; m_errorCode = SD_CARD_ERROR_NONE;
m_highCapacity = false; m_highCapacity = false;
@ -558,7 +447,6 @@ delay(100);
if (!cardCommand(CMD0_XFERTYP, 0)) { if (!cardCommand(CMD0_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD0); return sdError(SD_CARD_ERROR_CMD0);
} }
delay(50); //small pause after reset command
// Try several times for case of reset delay. // Try several times for case of reset delay.
for (uint32_t i = 0; i < CMD8_RETRIES; i++) { for (uint32_t i = 0; i < CMD8_RETRIES; i++) {
if (cardCommand(CMD8_XFERTYP, 0X1AA)) { if (cardCommand(CMD8_XFERTYP, 0X1AA)) {
@ -569,7 +457,7 @@ delay(100);
break; break;
} }
} }
arg = m_version2 ? 0X50300000 : 0x00300000; uint32_t arg = m_version2 ? 0X40300000 : 0x00300000;
uint32_t m = millis(); uint32_t m = millis();
do { do {
if (!cardAcmd(0, ACMD41_XFERTYP, arg) || if (!cardAcmd(0, ACMD41_XFERTYP, arg) ||
@ -590,7 +478,6 @@ delay(100);
return sdError(SD_CARD_ERROR_CMD3); return sdError(SD_CARD_ERROR_CMD3);
} }
m_rca = SDIO->RESP[0] & 0xFFFF0000; m_rca = SDIO->RESP[0] & 0xFFFF0000;
if (!readReg16(CMD9_XFERTYP, &m_csd)) { if (!readReg16(CMD9_XFERTYP, &m_csd)) {
return sdError(SD_CARD_ERROR_CMD9); return sdError(SD_CARD_ERROR_CMD9);
} }
@ -600,21 +487,14 @@ delay(100);
if (!cardCommand(CMD7_XFERTYP, m_rca)) { if (!cardCommand(CMD7_XFERTYP, m_rca)) {
return sdError(SD_CARD_ERROR_CMD7); return sdError(SD_CARD_ERROR_CMD7);
} }
arg = 0x00; //bit 0, Connect[1]/Disconnect[0] the 50 KOhm pull-up resistor on CD/DAT3
if (!cardAcmd(m_rca, ACMD42_XFERTYP, arg)) {
_panic("*** ACMD42 to disconnect D3 pullup failed! ***", 0);
}
// Set card to bus width four. // Set card to bus width four.
/*
if (!cardAcmd(m_rca, ACMD6_XFERTYP, 2)) { if (!cardAcmd(m_rca, ACMD6_XFERTYP, 2)) {
return sdError(SD_CARD_ERROR_ACMD6); return sdError(SD_CARD_ERROR_ACMD6);
} }
// Set SDHC to bus width four.
sdio_set_dbus_width(SDIO_CLKCR_WIDBUS_4BIT); sdio_set_dbus_width(SDIO_CLKCR_WIDBUS_4BIT);
*/
/*
// Determine if High Speed mode is supported and set frequency. // Determine if High Speed mode is supported and set frequency.
uint8_t status[64]; uint8_t status[64];
// see "Physical Layer Simplified Specification Version 6.00", chapter 4.3.10, Table 4-13. // see "Physical Layer Simplified Specification Version 6.00", chapter 4.3.10, Table 4-13.
@ -622,16 +502,15 @@ delay(100);
// Function Selection of Function Group 1: bits 379:376, which is low nibble of byte [16] // Function Selection of Function Group 1: bits 379:376, which is low nibble of byte [16]
if (cardCMD6(0X00FFFFFF, status) && (2 & status[13]) && if (cardCMD6(0X00FFFFFF, status) && (2 & status[13]) &&
cardCMD6(0X80FFFFF1, status) && (status[16] & 0XF) == 1) { cardCMD6(0X80FFFFF1, status) && (status[16] & 0XF) == 1) {
Serial.println("\n*** 50MHz clock supported ***"); //Serial.println("\n*** 50MHz clock supported ***");
m_sdClkKhz = 24000; // set clock to 24MHz
} else { } else {
//_panic("*** Only 25MHz clock supported! ***", 0); //_panic("*** Only 25MHz clock supported! ***", 0);
m_sdClkKhz = 8000; // set clock to 24MHz
} }
// delay seems to be needed for cards that take some time to adjust
delay(1); /*
*/ * Todo Raise clock to 24Mhz once transfers work
m_sdClkKhz = 18000; // set clock to 24MHz */
m_sdClkKhz = 24000; // set clock to 24MHz
sdio_set_clock(m_sdClkKhz*1000); sdio_set_clock(m_sdClkKhz*1000);
m_initDone = true; m_initDone = true;
@ -691,160 +570,55 @@ uint32_t SdioCard::kHzSdClk() {
return m_sdClkKhz; return m_sdClkKhz;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool __attribute__((optimize("0"))) SdioCard::readBlock(uint32_t lba, uint8_t* buf) bool SdioCard::readBlock(uint32_t lba, uint8_t* buf)
{ {
#if USE_DEBUG_MODE #if USE_DEBUG_MODE
Serial.print("readBlock: "); Serial.println(lba); //Serial.print(", buf: "); Serial.println((uint32_t)buf, HEX); Serial.print("readBlock: "); Serial.println(lba); //Serial.print(", buf: "); Serial.println((uint32_t)buf, HEX);
#endif #endif
volatile bool _state = false; // prepare SDIO and DMA for data read transfer
volatile uint16_t retries = 3; dmaTrxStart((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
while ( retries-- ){ // send command to start data transfer
/*if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end if ( !cardCommand(CMD17_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD13); return sdError(SD_CARD_ERROR_CMD17);
} }
*/ if ( dmaTrxEnd(0)) {
if ( (uint32_t)buf & 3 ) {
if (m_curState != READ_STATE || m_curLba != lba) { //memcpy(buf, aligned, 512);
#if USE_DEBUG_MODE register uint8_t * dst = buf;
Serial.print("New lba, syncing :"); register uint8_t * src = (uint8_t *)aligned;
Serial.println(lba); register uint16_t i = 64;
#endif while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
_state = syncBlocks(); *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
DBG_PRINT(); *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
if (!_state) { }
return false; }
} return true;
m_limitLba = (lba + 1024); //arbitrary limit, tested with 32KB before and worked fine. }
// prepare DMA for data read transfer return false;
_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
DBG_PRINT();
// prepare SDIO data read transfer 0x8000 = 64*512
_state = dmaTrxStart(512, TRX_RD);
DBG_PRINT();
// send command to start data transfer
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
DBG_PRINT();
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curLba = lba;
m_curState = READ_STATE;
}
else {
// prepare DMA for data read transfer
_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
// prepare SDIO data read transfer
_state = dmaTrxStart(512, TRX_RD);
}
_state = dmaTrxEnd(0);
if ( _state ) {
if ( (uint32_t)buf & 3 ) {
//memcpy(buf, aligned, 512);
register uint8_t * dst = buf;
register uint8_t * src = (uint8_t *)aligned;
register uint16_t i = 64;
while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
}
}
m_totalReadLbas++;
m_curLba++;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
sdError(SD_CARD_ERROR_NONE);
return true;
}
syncBlocks();
m_readErrors++;
}
DBG_PRINT()
syncBlocks();
m_readErrors++;
return false;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool SdioCard::readBlocks(uint32_t lba, uint8_t* buf, size_t n) bool SdioCard::readBlocks(uint32_t lba, uint8_t* buf, size_t n)
{ {
#if USE_DEBUG_MODE #if USE_DEBUG_MODE
Serial.print("readBlocks: "); Serial.print(lba); Serial.print("readBlocks: "); Serial.print(lba);
//Serial.print(", buf: "); Serial.print((uint32_t)buf, HEX); //Serial.print(", buf: "); Serial.print((uint32_t)buf, HEX);
Serial.print(", "); Serial.println(n); Serial.print(", "); Serial.println(n);
#endif #endif
volatile bool _state = false; if ((uint32_t)buf & 3) {
volatile uint16_t retries = 3; for (size_t i = 0; i < n; i++, lba++, buf += 512) {
while ( retries-- ){ if (!readBlock(lba, buf)) {
return false; // readBlock will set errorCode.
if ((uint32_t)buf & 3) { }
for (size_t i = 0; i < n; i++, lba++, buf += 512) { }
if (!readBlock(lba, buf)) { return true;
return false; // readBlock will set errorCode. }
} // prepare SDIO and DMA for data read transfer
} dmaTrxStart(buf, 512*n, TRX_RD);
return true; // send command to start data transfer
} if ( !cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD18);
if (m_curState != READ_STATE || m_curLba != lba) { }
#if USE_DEBUG_MODE return dmaTrxEnd(1);
Serial.print("New lba, syncing :");
Serial.println(lba);
#endif
_state = syncBlocks();
DBG_PRINT();
if (!_state) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit
// prepare DMA for data read transfer
_state = dmaTrxPrepare(buf, 512*n, TRX_RD);
// prepare SDIO for data read transfer
_state = dmaTrxStart(512*n, TRX_RD);
// send command to start data transfer
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curLba = lba;
m_curState = READ_STATE;
}
else {
// prepare DMA for data read transfer
_state = dmaTrxPrepare(buf, 512*n, TRX_RD);
// prepare SDIO data read transfer
_state = dmaTrxStart(512*n, TRX_RD);
}
_state = dmaTrxEnd(0);
if (_state){
m_totalReadLbas += n;
m_curLba += n;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
sdError(SD_CARD_ERROR_NONE);
return true;
}
syncBlocks();
m_readErrors++;
}
DBG_PRINT()
syncBlocks();
m_readErrors++;
return false;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
bool SdioCard::readCID(void* cid) { bool SdioCard::readCID(void* cid) {
@ -925,36 +699,13 @@ bool SdioCard::readStart(uint32_t lba, uint32_t count)
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool SdioCard::readStop() bool SdioCard::readStop()
{ {
sdio_setup_transfer(0x00FFFFFF, 0, 0);
while ( SDIO->STA & SDIO_STA_RXDAVL) {
volatile uint32 _unused = SDIO->FIFO;
}
//Serial.println("readStop."); //Serial.println("readStop.");
m_lba = 0; m_lba = 0;
if (!trxStop()) { m_cnt = 0;
return false; return true;
}
return true;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
inline bool SdioCard::syncBlocks() { bool SdioCard::syncBlocks() {
if ( isEnabledDMA()){
waitDmaStatus();
}
if (m_curState == READ_STATE) {
/* if ( isEnabledDMA()){
waitDmaStatus();
}
*/
m_curState = IDLE_STATE;
if (!readStop()) {
return false;
}
} else if (m_curState == WRITE_STATE) {
m_curState = IDLE_STATE;
return writeStop();
}
return true; return true;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -982,48 +733,17 @@ bool SdioCard::writeBlock(uint32_t lba, const uint8_t* buf)
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
} }
} }
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
if (m_curState != WRITE_STATE || m_curLba != lba) {
if (!syncBlocks()) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit
// prepare DMA for data transfer
dmaTrxPrepare(ptr, 512, TRX_WR); // 1 block, write transfer
// send command to start data transfer
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curLba = lba;
m_curState = WRITE_STATE;
} }
else { // send command to start data transfer
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end if ( !cardCommand(CMD24_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD13); return sdError(SD_CARD_ERROR_CMD24);
}
// prepare DMA for data transfer
dmaTrxPrepare(ptr, 512, TRX_WR); // 1 block, write transfer
} }
// prepare SDIO and DMA for data transfer
dmaTrxStart(ptr, 512, TRX_WR); // 1 block, write transfer
// prepare SDIO for data transfer return dmaTrxEnd(0);
dmaTrxStart(512, TRX_WR); // 1 block, write transfer
if (!dmaTrxEnd(0)){
m_curState = IDLE_STATE;
m_writeErrors++;
return false;
}
m_curLba++;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
return true;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool SdioCard::writeBlocks(uint32_t lba, const uint8_t* buf, size_t n) bool SdioCard::writeBlocks(uint32_t lba, const uint8_t* buf, size_t n)
@ -1050,43 +770,14 @@ bool SdioCard::writeBlocks(uint32_t lba, const uint8_t* buf, size_t n)
return sdError(SD_CARD_ERROR_ACMD23); return sdError(SD_CARD_ERROR_ACMD23);
} }
#endif #endif
// send command to start data transfer
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
// prepare SDIO and DMA for data transfer
dmaTrxStart((uint8_t *)buf, 512*n, TRX_WR); // n blocks, write transfer
if (m_curState != WRITE_STATE || m_curLba != lba) { return dmaTrxEnd(1);
if (!syncBlocks()) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit, 512KB
// prepare DMA for data transfer
dmaTrxPrepare((uint8_t *)buf, 512*n, TRX_WR); // n blocks, write transfer
// send command to start data transfer
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curLba = lba;
m_curState = WRITE_STATE;
}
else {
// prepare DMA for data transfer
dmaTrxPrepare((uint8_t *)buf, 512*n, TRX_WR); // n blocks, write transfer
}
// prepare SDIO for data transfer
dmaTrxStart(512*n, TRX_WR); // n blocks, write transfer
if (!dmaTrxEnd(0)){
m_writeErrors++;
m_curState = IDLE_STATE;
return false;
}
m_curLba += n;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
return true;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool SdioCard::writeData(const uint8_t* src) bool SdioCard::writeData(const uint8_t* src)
@ -1154,14 +845,8 @@ bool SdioCard::writeStart(uint32_t lba, uint32_t count)
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
bool SdioCard::writeStop() bool SdioCard::writeStop()
{ {
if ( isEnabledDMA()){ //Serial.println("writeStop.");
if ( !waitDmaStatus() ) { m_lba = 0;
DBG_PRINT(); m_cnt = 0;
return sdError(SD_CARD_ERROR_DMA); return true;
}
}
m_lba = 0;
m_curState = IDLE_STATE;
return trxStop();
//Serial.println("writeStop.");
} }

View File

@ -1,6 +1,6 @@
#ifndef _SDIOF1_H_ #ifndef _SDIOF4_H_
#define _SDIOF1_H_ #define _SDIOF4_H_
#include <SdFat.h> #include <SdFat.h>