This commit is contained in:
Vassilis Serasidis 2015-06-17 11:08:37 +03:00
parent d7a5c52867
commit e5b864cff3
31 changed files with 0 additions and 4526 deletions

View File

@ -1,20 +0,0 @@
W5100 ethernet library for STM32F103 micro-controllers
----
That library has been ported from the stock Arduino **Ethernet** library, to STM32F103 microcontrollers.
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
PIN Connections
----
|W5100|STM32F103|
|:------:|:-----:|
|SS|PA4|
|SCK|PA5|
|MISO|PA6|
|MOSI|PA7|
**DO NOT FORGET TO ADD A RESISTOR 4k7 BETWEEN RESET AND 3.3V (OR RESET AND 5V) PINS ON ETHERNET SHIELD**
![alt tag](http://www.serasidis.gr/images/w5100_shield.jpg)

View File

@ -1,127 +0,0 @@
/*
Advanced Chat Server
A more advanced server that distributes any incoming messages
to all connected clients but the client the message comes from.
To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
redesigned to make use of operator== 25 Nov 2013
by Norbert Truchsess
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
#define PORT 23 // telnet defaults to port 23
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192,168,1, 177);
IPAddress gateway(192,168,1, 1);
IPAddress subnet(255, 255, 255, 0);
EthernetServer server(PORT);
EthernetClient clients[4];
void setup() {
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
// start listening for clients
server.begin();
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Chat server address: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(Ethernet.localIP()[thisByte], DEC);
Serial.print(".");
}
Serial.print("\nPort: ");
Serial.print(PORT);
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
boolean newClient = true;
for (byte i=0;i<4;i++) {
//check whether this client refers to the same socket as one of the existing instances:
if (clients[i]==client) {
newClient = false;
break;
}
}
if (newClient) {
//check which of the existing clients can be overridden:
for (byte i=0;i<4;i++) {
if (!clients[i] && clients[i]!=client) {
clients[i] = client;
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.print("Hello, client number: ");
client.print(i);
client.println();
break;
}
}
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to all other connected clients:
for (byte i=0;i<4;i++) {
if (clients[i] && (clients[i]!=client)) {
clients[i].write(thisChar);
}
}
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
for (byte i=0;i<4;i++) {
if (!(clients[i].connected())) {
// client.stop() invalidates the internal socket-descriptor, so next use of == will allways return false;
clients[i].stop();
}
}
}

View File

@ -1,238 +0,0 @@
/*
SCP1000 Barometric Pressure Sensor Display
Serves the output of a Barometric Pressure Sensor as a web page.
Uses the SPI library. For details on the sensor, see:
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
http://www.vti.fi/en/support/obsolete_products/pressure_sensors/
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
Circuit:
SCP1000 sensor attached to pins 6,7, and 11 - 13:
DRDY: pin 6
CSB: pin 7
MOSI: pin 11
MISO: pin 12
SCK: pin 13
created 31 July 2010
by Tom Igoe
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
###### THIS EXAMPLE HAS NOT BEEN TESTED YET ######
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <Ethernet_STM.h>
// the sensor communicates using SPI, so include the library:
#include <SPI.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// assign an IP address for the controller:
IPAddress ip(192, 168, 1, 20);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 255, 0);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
//Sensor's memory register addresses:
const int PRESSURE = 0x1F; //3 most significant bits of pressure
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
const int TEMPERATURE = 0x21; //16 bit temperature reading
// pins used for the connection with the sensor
// the others you need are controlled by the SPI library):
const int dataReadyPin = 6;
const int chipSelectPin = PA4;
float temperature = 0.0;
long pressure = 0;
long lastReadingTime = 0;
void setup() {
// start the SPI library:
SPI.begin();
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
// initalize the data ready and chip select pins:
pinMode(dataReadyPin, INPUT);
pinMode(chipSelectPin, OUTPUT);
Serial.begin(9600);
//Configure SCP1000 for low noise configuration:
writeRegister(0x02, 0x2D);
writeRegister(0x01, 0x03);
writeRegister(0x03, 0x02);
// give the sensor and Ethernet shield time to set up:
delay(1000);
//Set the sensor to high resolution mode tp start readings:
writeRegister(0x03, 0x0A);
}
void loop() {
// check for a reading no more than once a second.
if (millis() - lastReadingTime > 1000) {
// if there's a reading ready, read it:
// don't do anything until the data ready pin is high:
if (digitalRead(dataReadyPin) == HIGH) {
getData();
// timestamp the last time you got a reading:
lastReadingTime = millis();
}
}
// listen for incoming Ethernet connections:
listenForEthernetClients();
}
void getData() {
Serial.println("Getting reading");
//Read the temperature data
int tempData = readRegister(0x21, 2);
// convert the temperature to celsius and display it:
temperature = (float)tempData / 20.0;
//Read the pressure data highest 3 bits:
byte pressureDataHigh = readRegister(0x1F, 1);
pressureDataHigh &= 0b00000111; //you only needs bits 2 to 0
//Read the pressure data lower 16 bits:
unsigned int pressureDataLow = readRegister(0x20, 2);
//combine the two parts into one 19-bit number:
pressure = ((pressureDataHigh << 16) | pressureDataLow) / 4;
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.println(" degrees C");
Serial.print("Pressure: " + String(pressure));
Serial.println(" Pa");
}
void listenForEthernetClients() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("Got a client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
// print the current readings, in HTML format:
client.print("Temperature: ");
client.print(temperature);
client.print(" degrees C");
client.println("<br />");
client.print("Pressure: " + String(pressure));
client.print(" Pa");
client.println("<br />");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
}
}
//Send a write command to SCP1000
void writeRegister(byte registerName, byte registerValue) {
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName |= 0b00000010; //Write command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
SPI.transfer(registerName); //Send register location
SPI.transfer(registerValue); //Send value to record into register
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
}
//Read register from the SCP1000:
unsigned int readRegister(byte registerName, int numBytes) {
byte inByte = 0; // incoming from the SPI read
unsigned int result = 0; // result to return
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName &= 0b11111100; //Read command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
// send the device the register you want to read:
int command = SPI.transfer(registerName);
// send a value of 0 to read the first byte returned:
inByte = SPI.transfer(0x00);
result = inByte;
// if there's more than one byte returned,
// shift the first byte then get the second byte:
if (numBytes > 1) {
result = inByte << 8;
inByte = SPI.transfer(0x00);
result = result | inByte;
}
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
// return the result:
return(result);
}

View File

@ -1,91 +0,0 @@
/*
Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean alreadyConnected = false; // whether or not the client was connected previously
void setup() {
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
// start listening for clients
server.begin();
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!alreadyConnected) {
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.println("Hello, client!");
alreadyConnected = true;
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
}

View File

@ -1,71 +0,0 @@
/*
DHCP-based IP printer
This sketch uses the DHCP extensions to the Ethernet library
to get an IP address via DHCP and print the address obtained.
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 12 April 2011
modified 9 Apr 2012
by Tom Igoe
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
for (;;)
;
}
// print your local IP address:
Serial.print("My IP address: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(Ethernet.localIP()[thisByte], DEC);
Serial.print(".");
}
Serial.println();
}
void loop() {
}

View File

@ -1,98 +0,0 @@
/*
DHCP Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
THis version attempts to get an IP address using DHCP
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 21 May 2011
modified 9 Apr 2012
by Tom Igoe
Based on ChatServer example by David A. Mellis
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
IPAddress ip(192, 168, 1, 177);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean gotAMessage = false; // whether or not you got a message from the client yet
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
Serial.println("Trying to get an IP address using DHCP");
//if (Ethernet.begin(mac) == 0) {
// Serial.println("Failed to configure Ethernet using DHCP");
// initialize the ethernet device not using DHCP:
Ethernet.begin(mac, ip, gateway, subnet);
//}
// print your local IP address:
Serial.print("My IP address: ");
ip = Ethernet.localIP();
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(ip[thisByte], DEC);
Serial.print(".");
}
Serial.println();
// start listening for clients
server.begin();
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!gotAMessage) {
Serial.println("We have a new client");
client.println("Hello, client!");
gotAMessage = true;
}
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.print(thisChar);
}
}

View File

@ -1,104 +0,0 @@
/*
Telnet client
This sketch connects to a a telnet server (http://www.google.com)
using an Arduino Wiznet Ethernet shield. You'll need a telnet server
to test this with.
Processing's ChatServer example (part of the network library) works well,
running on port 10002. It can be found as part of the examples
in the Processing application, available at
http://processing.org/
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 14 Sep 2010
modified 9 Apr 2012
by Tom Igoe
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Enter the IP address of the server you're connecting to:
IPAddress server(192, 168, 1, 4);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 23 is default for telnet;
// if you're using Processing's ChatServer, use port 10002):
EthernetClient client;
void setup() {
// start the Ethernet connection:
Ethernet.begin(mac, ip);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");
// if you get a connection, report back via serial:
if (client.connect(server, 10002)) {
Serial.println("connected");
}
else {
// if you didn't get a connection to the server:
Serial.println("connection failed");
}
}
void loop()
{
// if there are incoming bytes available
// from the server, read them and print them:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// as long as there are bytes in the serial queue,
// read them and send them out the socket if it's open:
while (Serial.available() > 0) {
char inChar = Serial.read();
if (client.connected()) {
client.print(inChar);
}
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
// do nothing:
while (true);
}
}

View File

@ -1,131 +0,0 @@
/*
UDPSendReceive.pde:
This sketch receives UDP message strings, prints them to the serial port
and sends an "acknowledge" string back to the sender
A Processing sketch is included at the end of file that can be used to send
and received messages for testing with a computer.
created 21 Aug 2010
by Michael Margolis
This code is in the public domain.
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h> // needed for Arduino versions later than 0018
#include <Ethernet_STM.h>
#include <EthernetUdp.h> // UDP library from: bjoern@cs.stanford.edu 12/30/2008
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
unsigned int localPort = 8888; // local port to listen on
// buffers for receiving and sending data
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //buffer to hold incoming packet,
char ReplyBuffer[] = "acknowledged"; // a string to send back
// An EthernetUDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup() {
// start the Ethernet and UDP:
Ethernet.begin(mac, ip);
Udp.begin(localPort);
Serial.begin(9600);
}
void loop() {
// if there's data available, read a packet
int packetSize = Udp.parsePacket();
if (packetSize)
{
Serial.print("Received packet of size ");
Serial.println(packetSize);
Serial.print("From ");
IPAddress remote = Udp.remoteIP();
for (int i = 0; i < 4; i++)
{
Serial.print(remote[i], DEC);
if (i < 3)
{
Serial.print(".");
}
}
Serial.print(", port ");
Serial.println(Udp.remotePort());
// read the packet into packetBufffer
Udp.read(packetBuffer, UDP_TX_PACKET_MAX_SIZE);
Serial.println("Contents:");
Serial.println(packetBuffer);
// send a reply, to the IP address and port that sent us the packet we received
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(ReplyBuffer);
Udp.endPacket();
}
delay(10);
}
/*
Processing sketch to run with this example
=====================================================
// Processing UDP example to send and receive string data from Arduino
// press any key to send the "Hello Arduino" message
import hypermedia.net.*;
UDP udp; // define the UDP object
void setup() {
udp = new UDP( this, 6000 ); // create a new datagram connection on port 6000
//udp.log( true ); // <-- printout the connection activity
udp.listen( true ); // and wait for incoming message
}
void draw()
{
}
void keyPressed() {
String ip = "192.168.1.177"; // the remote IP address
int port = 8888; // the destination port
udp.send("Hello World", ip, port ); // the message to send
}
void receive( byte[] data ) { // <-- default handler
//void receive( byte[] data, String ip, int port ) { // <-- extended handler
for(int i=0; i < data.length; i++)
print(char(data[i]));
println();
}
*/

View File

@ -1,155 +0,0 @@
/*
Udp NTP Client
Get the time from a Network Time Protocol (NTP) time server
Demonstrates use of UDP sendPacket and ReceivePacket
For more on NTP time servers and the messages needed to communicate with them,
see http://en.wikipedia.org/wiki/Network_Time_Protocol
created 4 Sep 2010
by Michael Margolis
modified 9 Apr 2012
by Tom Igoe
This code is in the public domain.
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
#include <EthernetUdp.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
unsigned int localPort = 8888; // local port to listen for UDP packets
char timeServer[] = "time.nist.gov"; // time.nist.gov NTP server
const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
// A UDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
for (;;)
;
}
Udp.begin(localPort);
}
void loop()
{
sendNTPpacket(timeServer); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);
if ( Udp.parsePacket() ) {
// We've received a packet, read the data from it
Udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the buffer
//the timestamp starts at byte 40 of the received packet and is four bytes,
// or two words, long. First, esxtract the two words:
unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = " );
Serial.println(secsSince1900);
// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);
// print the hour, minute and second:
Serial.print("The UTC time is "); // UTC is the time at Greenwich Meridian (GMT)
Serial.print((epoch % 86400L) / 3600); // print the hour (86400 equals secs per day)
Serial.print(':');
if ( ((epoch % 3600) / 60) < 10 ) {
// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');
}
Serial.print((epoch % 3600) / 60); // print the minute (3600 equals secs per minute)
Serial.print(':');
if ( (epoch % 60) < 10 ) {
// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');
}
Serial.println(epoch % 60); // print the second
}
// wait ten seconds before asking for the time again
delay(10000);
}
// send an NTP request to the time server at the given address
unsigned long sendNTPpacket(char* address)
{
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET_SIZE);
Udp.endPacket();
}

View File

@ -1,93 +0,0 @@
/*
Web client
This sketch connects to a website (http://www.google.com)
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe, based on work by Adrian McEwen
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "www.google.com"; // name address for Google (using DNS)
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 1, 177);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
Ethernet.begin(mac, ip);
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");
// if you get a connection, report back via serial:
if (client.connect(server, 80)) {
Serial.println("connected");
// Make a HTTP request:
client.println("GET /search?q=arduino HTTP/1.1");
client.println("Host: www.google.com");
client.println("Connection: close");
client.println();
}
else {
// kf you didn't get a connection to the server:
Serial.println("connection failed");
}
}
void loop()
{
// if there are incoming bytes available
// from the server, read them and print them:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
// do nothing forevermore:
while (true);
}
}

View File

@ -1,122 +0,0 @@
/*
Repeating Web client
This sketch connects to a a web server and makes a request
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example uses DNS, by assigning the Ethernet client with a MAC address,
IP address, and DNS address.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 19 Apr 2012
by Tom Igoe
modified 21 Jan 2014
by Federico Vanzati
http://arduino.cc/en/Tutorial/WebClientRepeating
This code is in the public domain.
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(192, 168, 1, 177);
// fill in your Domain Name Server address here:
IPAddress myDns(192, 168, 1, 1);
// initialize the library instance:
EthernetClient client;
char server[] = "www.arduino.cc";
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
const unsigned long postingInterval = 10L * 1000L; // delay between updates, in milliseconds
// the "L" is needed to use long type numbers
void setup() {
// start serial port:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection using a fixed IP address and DNS server:
Ethernet.begin(mac, ip, myDns);
// print the Ethernet board/shield's IP address:
Serial.print("My IP address: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(Ethernet.localIP()[thisByte], DEC);
Serial.print(".");
}
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.write(c);
}
// if ten seconds have passed since your last connection,
// then connect again and send data:
if (millis() - lastConnectionTime > postingInterval) {
httpRequest();
}
}
// this method makes a HTTP connection to the server:
void httpRequest() {
// close any connection before send a new request.
// This will free the socket on the WiFi shield
client.stop();
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
}
}

View File

@ -1,115 +0,0 @@
/*
Web Server
A simple web server that shows the value of the analog input pins.
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
=========================================================
Ported to STM32F103 on 16 Jun 2015 by Vassilis Serasidis
<---- Pinout ---->
W5100 <--> STM32F103
SS <--> PA4 <--> BOARD_SPI1_NSS_PIN
SCK <--> PA5 <--> BOARD_SPI1_SCK_PIN
MISO <--> PA6 <--> BOARD_SPI1_MISO_PIN
MOSI <--> PA7 <--> BOARD_SPI1_MOSI_PIN
=========================================================
*/
#include <SPI.h>
#include <Ethernet_STM.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
Serial.print("server is at: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(Ethernet.localIP()[thisByte], DEC);
Serial.print(".");
}
}
void loop() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close"); // the connection will be closed after completion of the response
client.println("Refresh: 5"); // refresh the page automatically every 5 sec
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.println("<br />");
}
client.println("</html>");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
Serial.println("client disconnected");
}
}

View File

@ -1,37 +0,0 @@
#######################################
# Syntax Coloring Map For Ethernet
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Ethernet KEYWORD1 Ethernet
EthernetClient KEYWORD1 EthernetClient
EthernetServer KEYWORD1 EthernetServer
IPAddress KEYWORD1 EthernetIPAddress
#######################################
# Methods and Functions (KEYWORD2)
#######################################
status KEYWORD2
connect KEYWORD2
write KEYWORD2
available KEYWORD2
read KEYWORD2
peek KEYWORD2
flush KEYWORD2
stop KEYWORD2
connected KEYWORD2
begin KEYWORD2
beginPacket KEYWORD2
endPacket KEYWORD2
parsePacket KEYWORD2
remoteIP KEYWORD2
remotePort KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

View File

@ -1,9 +0,0 @@
name=Ethernet_STM
version=1.0.2
author=Arduino :: Ported to STM32 by Vassilis Serasidis.
maintainer=Arduino <info@arduino.cc>
sentence=Enables network connection (local and Internet) using the Arduino Ethernet board or shield. For all Arduino boards.
paragraph=With this library you can use the Arduino Ethernet (shield or board) to connect to Internet. The library provides both Client and server functionalities. The library permits you to connect to a local network also with DHCP and to resolve DNS.
category=Communication
url=http://arduino.cc/en/Reference/Ethernet
architectures=STM32F1

View File

@ -1,481 +0,0 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#include "utility/w5100.h"
#include <string.h>
#include <stdlib.h>
#include "Dhcp.h"
#include "Arduino.h"
#include "utility/util.h"
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
_dhcpLeaseTime=0;
_dhcpT1=0;
_dhcpT2=0;
_lastCheck=0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease(){
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease(){
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
_dhcpInitialTransactionId = _dhcpTransactionId;
_dhcpUdpSocket.stop();
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0)
{
// Couldn't get a socket
return 0;
}
presend_DHCP();
int result = 0;
unsigned long startTime = millis();
while(_dhcp_state != STATE_DHCP_LEASED)
{
if(_dhcp_state == STATE_DHCP_START)
{
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_DISCOVER;
}
else if(_dhcp_state == STATE_DHCP_REREQUEST){
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
else if(_dhcp_state == STATE_DHCP_DISCOVER)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_OFFER)
{
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
}
else if(_dhcp_state == STATE_DHCP_REQUEST)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_ACK)
{
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if(_dhcpLeaseTime == 0){
_dhcpLeaseTime = DEFAULT_LEASE;
}
//calculate T1 & T2 if we didn't get it
if(_dhcpT1 == 0){
//T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if(_dhcpT2 == 0){
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpT1 << 1;
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
}
else if(messageType == DHCP_NAK)
_dhcp_state = STATE_DHCP_START;
}
if(messageType == 255)
{
messageType = 0;
_dhcp_state = STATE_DHCP_START;
}
if(result != 1 && ((millis() - startTime) > _timeout))
break;
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
return result;
}
void DhcpClass::presend_DHCP()
{
}
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
{
uint8_t buffer[32];
memset(buffer, 0, 32);
IPAddress dest_addr( 255, 255, 255, 255 ); // Broadcast address
if (-1 == _dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT))
{
// FIXME Need to return errors
return;
}
buffer[0] = DHCP_BOOTREQUEST; // op
buffer[1] = DHCP_HTYPE10MB; // htype
buffer[2] = DHCP_HLENETHERNET; // hlen
buffer[3] = DHCP_HOPS; // hops
// xid
unsigned long xid = htonl(_dhcpTransactionId);
memcpy(buffer + 4, &(xid), 4);
// 8, 9 - seconds elapsed
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
buffer[9] = (secondsElapsed & 0x00ff);
// flags
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
memcpy(buffer + 10, &(flags), 2);
// ciaddr: already zeroed
// yiaddr: already zeroed
// siaddr: already zeroed
// giaddr: already zeroed
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 28);
memset(buffer, 0, 32); // clear local buffer
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 16);
memset(buffer, 0, 32); // clear local buffer
// leave zeroed out for sname && file
// put in W5100 transmit buffer x 6 (192 bytes)
for(int i = 0; i < 6; i++) {
_dhcpUdpSocket.write(buffer, 32);
}
// OPT - Magic Cookie
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24)& 0xFF);
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16)& 0xFF);
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8)& 0xFF);
buffer[3] = (uint8_t)(MAGIC_COOKIE& 0xFF);
// OPT - message type
buffer[4] = dhcpMessageType;
buffer[5] = 0x01;
buffer[6] = messageType; //DHCP_REQUEST;
// OPT - client identifier
buffer[7] = dhcpClientIdentifier;
buffer[8] = 0x07;
buffer[9] = 0x01;
memcpy(buffer + 10, _dhcpMacAddr, 6);
// OPT - host name
buffer[16] = hostName;
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
strcpy((char*)&(buffer[18]), HOST_NAME);
printByte((char*)&(buffer[24]), _dhcpMacAddr[3]);
printByte((char*)&(buffer[26]), _dhcpMacAddr[4]);
printByte((char*)&(buffer[28]), _dhcpMacAddr[5]);
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 30);
if(messageType == DHCP_REQUEST)
{
buffer[0] = dhcpRequestedIPaddr;
buffer[1] = 0x04;
buffer[2] = _dhcpLocalIp[0];
buffer[3] = _dhcpLocalIp[1];
buffer[4] = _dhcpLocalIp[2];
buffer[5] = _dhcpLocalIp[3];
buffer[6] = dhcpServerIdentifier;
buffer[7] = 0x04;
buffer[8] = _dhcpDhcpServerIp[0];
buffer[9] = _dhcpDhcpServerIp[1];
buffer[10] = _dhcpDhcpServerIp[2];
buffer[11] = _dhcpDhcpServerIp[3];
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 12);
}
buffer[0] = dhcpParamRequest;
buffer[1] = 0x06;
buffer[2] = subnetMask;
buffer[3] = routersOnSubnet;
buffer[4] = dns;
buffer[5] = domainName;
buffer[6] = dhcpT1value;
buffer[7] = dhcpT2value;
buffer[8] = endOption;
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 9);
_dhcpUdpSocket.endPacket();
}
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
{
uint8_t type = 0;
uint8_t opt_len = 0;
unsigned long startTime = millis();
while(_dhcpUdpSocket.parsePacket() <= 0)
{
if((millis() - startTime) > responseTimeout)
{
return 255;
}
delay(50);
}
// start reading in the packet
RIP_MSG_FIXED fixedMsg;
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
if(fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT)
{
transactionId = ntohl(fixedMsg.xid);
if(memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 || (transactionId < _dhcpInitialTransactionId) || (transactionId > _dhcpTransactionId))
{
// Need to read the rest of the packet here regardless
_dhcpUdpSocket.flush();
return 0;
}
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
// Skip to the option part
// Doing this a byte at a time so we don't have to put a big buffer
// on the stack (as we don't have lots of memory lying around)
for (int i =0; i < (240 - (int)sizeof(RIP_MSG_FIXED)); i++)
{
_dhcpUdpSocket.read(); // we don't care about the returned byte
}
while (_dhcpUdpSocket.available() > 0)
{
switch (_dhcpUdpSocket.read())
{
case endOption :
break;
case padOption :
break;
case dhcpMessageType :
opt_len = _dhcpUdpSocket.read();
type = _dhcpUdpSocket.read();
break;
case subnetMask :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
break;
case routersOnSubnet :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dns :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dhcpServerIdentifier :
opt_len = _dhcpUdpSocket.read();
if ((_dhcpDhcpServerIp[0] == 0 && _dhcpDhcpServerIp[1] == 0 &&
_dhcpDhcpServerIp[2] == 0 && _dhcpDhcpServerIp[3] == 0) ||
IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP())
{
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
}
else
{
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
break;
}
}
}
// Need to skip to end of the packet regardless here
_dhcpUdpSocket.flush();
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease(){
//this uses a signed / unsigned trick to deal with millis overflow
unsigned long now = millis();
signed long snow = (long)now;
int rc=DHCP_CHECK_NONE;
if (_lastCheck != 0){
signed long factor;
//calc how many ms past the timeout we are
factor = snow - (long)_secTimeout;
//if on or passed the timeout, reduce the counters
if ( factor >= 0 ){
//next timeout should be now plus 1000 ms minus parts of second in factor
_secTimeout = snow + 1000 - factor % 1000;
//how many seconds late are we, minimum 1
factor = factor / 1000 +1;
//reduce the counters by that mouch
//if we can assume that the cycle time (factor) is fairly constant
//and if the remainder is less than cycle time * 2
//do it early instead of late
if(_renewInSec < factor*2 )
_renewInSec = 0;
else
_renewInSec -= factor;
if(_rebindInSec < factor*2 )
_rebindInSec = 0;
else
_rebindInSec -= factor;
}
//if we have a lease but should renew, do it
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <=0){
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
//if we have a lease or is renewing but should bind, do it
if( (_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <=0){
//this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
}
else{
_secTimeout = snow + 1000;
}
_lastCheck = now;
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);
}
IPAddress DhcpClass::getSubnetMask()
{
return IPAddress(_dhcpSubnetMask);
}
IPAddress DhcpClass::getGatewayIp()
{
return IPAddress(_dhcpGatewayIp);
}
IPAddress DhcpClass::getDhcpServerIp()
{
return IPAddress(_dhcpDhcpServerIp);
}
IPAddress DhcpClass::getDnsServerIp()
{
return IPAddress(_dhcpDnsServerIp);
}
void DhcpClass::printByte(char * buf, uint8_t n ) {
char *str = &buf[1];
buf[0]='0';
do {
unsigned long m = n;
n /= 16;
char c = m - 16 * n;
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
}

View File

@ -1,178 +0,0 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#ifndef Dhcp_h
#define Dhcp_h
#include "EthernetUdp.h"
/* DHCP state machine. */
#define STATE_DHCP_START 0
#define STATE_DHCP_DISCOVER 1
#define STATE_DHCP_REQUEST 2
#define STATE_DHCP_LEASED 3
#define STATE_DHCP_REREQUEST 4
#define STATE_DHCP_RELEASE 5
#define DHCP_FLAGSBROADCAST 0x8000
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 /* from server to client */
#define DHCP_CLIENT_PORT 68 /* from client to server */
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1
#define DHCP_BOOTREPLY 2
/* DHCP message type */
#define DHCP_DISCOVER 1
#define DHCP_OFFER 2
#define DHCP_REQUEST 3
#define DHCP_DECLINE 4
#define DHCP_ACK 5
#define DHCP_NAK 6
#define DHCP_RELEASE 7
#define DHCP_INFORM 8
#define DHCP_HTYPE10MB 1
#define DHCP_HTYPE100MB 2
#define DHCP_HLENETHERNET 6
#define DHCP_HOPS 0
#define DHCP_SECS 0
#define MAGIC_COOKIE 0x63825363
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
/* timeServer = 4,
nameServer = 5,*/
dns = 6,
/*logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,*/
hostName = 12,
/*bootFileSize = 13,
meritDumpFile = 14,*/
domainName = 15,
/*swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,*/
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
/*dhcpOptionOverload = 52,*/
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
/*dhcpMsg = 56,
dhcpMaxMsgSize = 57,*/
dhcpT1value = 58,
dhcpT2value = 59,
/*dhcpClassIdentifier = 60,*/
dhcpClientIdentifier = 61,
endOption = 255
};
typedef struct __attribute__((packed)) _RIP_MSG_FIXED
{
uint8_t op;
uint8_t htype;
uint8_t hlen;
uint8_t hops;
uint32_t xid;
uint16_t secs;
uint16_t flags;
uint8_t ciaddr[4];
uint8_t yiaddr[4];
uint8_t siaddr[4];
uint8_t giaddr[4];
uint8_t chaddr[6];
}RIP_MSG_FIXED;
class DhcpClass {
private:
uint32_t _dhcpInitialTransactionId;
uint32_t _dhcpTransactionId;
uint8_t _dhcpMacAddr[6];
uint8_t _dhcpLocalIp[4];
uint8_t _dhcpSubnetMask[4];
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
signed long _renewInSec;
signed long _rebindInSec;
signed long _lastCheck;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _secTimeout;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
public:
IPAddress getLocalIp();
IPAddress getSubnetMask();
IPAddress getGatewayIp();
IPAddress getDhcpServerIp();
IPAddress getDnsServerIp();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
int checkLease();
};
#endif

View File

@ -1,423 +0,0 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#include "utility/w5100.h"
#include "EthernetUdp.h"
#include "utility/util.h"
#include "Dns.h"
#include <string.h>
//#include <stdlib.h>
#include "Arduino.h"
#define SOCKET_NONE 255
// Various flags and header field values for a DNS message
#define UDP_HEADER_SIZE 8
#define DNS_HEADER_SIZE 12
#define TTL_SIZE 4
#define QUERY_FLAG (0)
#define RESPONSE_FLAG (1<<15)
#define QUERY_RESPONSE_MASK (1<<15)
#define OPCODE_STANDARD_QUERY (0)
#define OPCODE_INVERSE_QUERY (1<<11)
#define OPCODE_STATUS_REQUEST (2<<11)
#define OPCODE_MASK (15<<11)
#define AUTHORITATIVE_FLAG (1<<10)
#define TRUNCATION_FLAG (1<<9)
#define RECURSION_DESIRED_FLAG (1<<8)
#define RECURSION_AVAILABLE_FLAG (1<<7)
#define RESP_NO_ERROR (0)
#define RESP_FORMAT_ERROR (1)
#define RESP_SERVER_FAILURE (2)
#define RESP_NAME_ERROR (3)
#define RESP_NOT_IMPLEMENTED (4)
#define RESP_REFUSED (5)
#define RESP_MASK (15)
#define TYPE_A (0x0001)
#define CLASS_IN (0x0001)
#define LABEL_COMPRESSION_MASK (0xC0)
// Port number that DNS servers listen on
#define DNS_PORT 53
// Possible return codes from ProcessResponse
#define SUCCESS 1
#define TIMED_OUT -1
#define INVALID_SERVER -2
#define TRUNCATED -3
#define INVALID_RESPONSE -4
void DNSClient::begin(const IPAddress& aDNSServer)
{
iDNSServer = aDNSServer;
iRequestId = 0;
}
int DNSClient::inet_aton(const char* aIPAddrString, IPAddress& aResult)
{
// See if we've been given a valid IP address
const char* p =aIPAddrString;
while (*p &&
( (*p == '.') || (*p >= '0') || (*p <= '9') ))
{
p++;
}
if (*p == '\0')
{
// It's looking promising, we haven't found any invalid characters
p = aIPAddrString;
int segment =0;
int segmentValue =0;
while (*p && (segment < 4))
{
if (*p == '.')
{
// We've reached the end of a segment
if (segmentValue > 255)
{
// You can't have IP address segments that don't fit in a byte
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
segment++;
segmentValue = 0;
}
}
else
{
// Next digit
segmentValue = (segmentValue*10)+(*p - '0');
}
p++;
}
// We've reached the end of address, but there'll still be the last
// segment to deal with
if ((segmentValue > 255) || (segment > 3))
{
// You can't have IP address segments that don't fit in a byte,
// or more than four segments
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
return 1;
}
}
else
{
return 0;
}
}
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
{
int ret =0;
// See if it's a numeric IP address
if (inet_aton(aHostname, aResult))
{
// It is, our work here is done
return 1;
}
// Check we've got a valid DNS server to use
if (iDNSServer == INADDR_NONE)
{
return INVALID_SERVER;
}
// Find a socket to use
if (iUdp.begin(1024+(millis() & 0xF)) == 1)
{
// Try up to three times
int retries = 0;
// while ((retries < 3) && (ret <= 0))
{
// Send DNS request
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
if (ret != 0)
{
// Now output the request data
ret = BuildRequest(aHostname);
if (ret != 0)
{
// And finally send the request
ret = iUdp.endPacket();
if (ret != 0)
{
// Now wait for a response
int wait_retries = 0;
ret = TIMED_OUT;
while ((wait_retries < 3) && (ret == TIMED_OUT))
{
ret = ProcessResponse(5000, aResult);
wait_retries++;
}
}
}
}
retries++;
}
// We're done with the socket now
iUdp.stop();
}
return ret;
}
uint16_t DNSClient::BuildRequest(const char* aName)
{
// Build header
// 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ID |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | QDCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ANCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | NSCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ARCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// As we only support one request at a time at present, we can simplify
// some of this header
iRequestId = millis(); // generate a random ID
uint16_t twoByteBuffer;
// FIXME We should also check that there's enough space available to write to, rather
// FIXME than assume there's enough space (as the code does at present)
iUdp.write((uint8_t*)&iRequestId, sizeof(iRequestId));
twoByteBuffer = htons(QUERY_FLAG | OPCODE_STANDARD_QUERY | RECURSION_DESIRED_FLAG);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(1); // One question record
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = 0; // Zero answer records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// and zero additional records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Build question
const char* start =aName;
const char* end =start;
uint8_t len;
// Run through the name being requested
while (*end)
{
// Find out how long this section of the name is
end = start;
while (*end && (*end != '.') )
{
end++;
}
if (end-start > 0)
{
// Write out the size of this section
len = end-start;
iUdp.write(&len, sizeof(len));
// And then write out the section
iUdp.write((uint8_t*)start, end-start);
}
start = end+1;
}
// We've got to the end of the question name, so
// terminate it with a zero-length section
len = 0;
iUdp.write(&len, sizeof(len));
// Finally the type and class of question
twoByteBuffer = htons(TYPE_A);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(CLASS_IN); // Internet class of question
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Success! Everything buffered okay
return 1;
}
uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
{
uint32_t startTime = millis();
// Wait for a response packet
while(iUdp.parsePacket() <= 0)
{
if((millis() - startTime) > aTimeout)
return TIMED_OUT;
delay(50);
}
// We've had a reply!
// Read the UDP header
uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
// Check that it's a response from the right server and the right port
if ( (iDNSServer != iUdp.remoteIP()) ||
(iUdp.remotePort() != DNS_PORT) )
{
// It's not from who we expected
return INVALID_SERVER;
}
// Read through the rest of the response
if (iUdp.available() < DNS_HEADER_SIZE)
{
return TRUNCATED;
}
iUdp.read(header, DNS_HEADER_SIZE);
uint16_t header_flags = htons(*((uint16_t*)&header[2]));
// Check that it's a response to this request
if ( ( iRequestId != (*((uint16_t*)&header[0])) ) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) )
{
// Mark the entire packet as read
iUdp.flush();
return INVALID_RESPONSE;
}
// Check for any errors in the response (or in our request)
// although we don't do anything to get round these
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) )
{
// Mark the entire packet as read
iUdp.flush();
return -5; //INVALID_RESPONSE;
}
// And make sure we've got (at least) one answer
uint16_t answerCount = htons(*((uint16_t*)&header[6]));
if (answerCount == 0 )
{
// Mark the entire packet as read
iUdp.flush();
return -6; //INVALID_RESPONSE;
}
// Skip over any questions
for (uint16_t i =0; i < htons(*((uint16_t*)&header[4])); i++)
{
// Skip over the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if (len > 0)
{
// Don't need to actually read the data out for the string, just
// advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
} while (len != 0);
// Now jump over the type and class
for (int i =0; i < 4; i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
// Now we're up to the bit we're interested in, the answer
// There might be more than one answer (although we'll just use the first
// type A answer) and some authority and additional resource records but
// we're going to ignore all of them.
for (uint16_t i =0; i < answerCount; i++)
{
// Skip the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if ((len & LABEL_COMPRESSION_MASK) == 0)
{
// It's just a normal label
if (len > 0)
{
// And it's got a length
// Don't need to actually read the data out for the string,
// just advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
else
{
// This is a pointer to a somewhere else in the message for the
// rest of the name. We don't care about the name, and RFC1035
// says that a name is either a sequence of labels ended with a
// 0 length octet or a pointer or a sequence of labels ending in
// a pointer. Either way, when we get here we're at the end of
// the name
// Skip over the pointer
iUdp.read(); // we don't care about the returned byte
// And set len so that we drop out of the name loop
len = 0;
}
} while (len != 0);
// Check the type and class
uint16_t answerType;
uint16_t answerClass;
iUdp.read((uint8_t*)&answerType, sizeof(answerType));
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
// Ignore the Time-To-Live as we don't do any caching
for (int i =0; i < TTL_SIZE; i++)
{
iUdp.read(); // we don't care about the returned byte
}
// And read out the length of this answer
// Don't need header_flags anymore, so we can reuse it here
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) )
{
if (htons(header_flags) != 4)
{
// It's a weird size
// Mark the entire packet as read
iUdp.flush();
return -9;//INVALID_RESPONSE;
}
iUdp.read(aAddress.raw_address(), 4);
return SUCCESS;
}
else
{
// This isn't an answer type we're after, move onto the next one
for (uint16_t i =0; i < htons(header_flags); i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
// Mark the entire packet as read
iUdp.flush();
// If we get here then we haven't found an answer
return -10;//INVALID_RESPONSE;
}

View File

@ -1,41 +0,0 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#ifndef DNSClient_h
#define DNSClient_h
#include <EthernetUdp.h>
class DNSClient
{
public:
// ctor
void begin(const IPAddress& aDNSServer);
/** Convert a numeric IP address string into a four-byte IP address.
@param aIPAddrString IP address to convert
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int inet_aton(const char *aIPAddrString, IPAddress& aResult);
/** Resolve the given hostname to an IP address.
@param aHostname Name to be resolved
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int getHostByName(const char* aHostname, IPAddress& aResult);
protected:
uint16_t BuildRequest(const char* aName);
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
IPAddress iDNSServer;
uint16_t iRequestId;
EthernetUDP iUdp;
};
#endif

View File

@ -1,168 +0,0 @@
#include "utility/w5100.h"
#include "utility/socket.h"
extern "C" {
#include "string.h"
}
#include "Arduino.h"
#include "Ethernet_STM.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dns.h"
uint16_t EthernetClient::_srcport = 49152; //Use IANA recommended ephemeral port range 49152-65535
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM) {
}
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock) {
}
int EthernetClient::connect(const char* host, uint16_t port) {
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return connect(remote_addr, port);
} else {
return ret;
}
}
int EthernetClient::connect(IPAddress ip, uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_srcport++;
if (_srcport == 0) _srcport = 49152; //Use IANA recommended ephemeral port range 49152-65535
socket(_sock, SnMR::TCP, _srcport, 0);
if (!::connect(_sock, rawIPAddress(ip), port)) {
_sock = MAX_SOCK_NUM;
return 0;
}
while (status() != SnSR::ESTABLISHED) {
delay(1);
if (status() == SnSR::CLOSED) {
_sock = MAX_SOCK_NUM;
return 0;
}
}
return 1;
}
size_t EthernetClient::write(uint8_t b) {
return write(&b, 1);
}
size_t EthernetClient::write(const uint8_t *buf, size_t size) {
if (_sock == MAX_SOCK_NUM) {
setWriteError();
return 0;
}
if (!send(_sock, buf, size)) {
setWriteError();
return 0;
}
return size;
}
int EthernetClient::available() {
if (_sock != MAX_SOCK_NUM)
return recvAvailable(_sock);
return 0;
}
int EthernetClient::read() {
uint8_t b;
if ( recv(_sock, &b, 1) > 0 )
{
// recv worked
return b;
}
else
{
// No data available
return -1;
}
}
int EthernetClient::read(uint8_t *buf, size_t size) {
return recv(_sock, buf, size);
}
int EthernetClient::peek() {
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
return -1;
::peek(_sock, &b);
return b;
}
void EthernetClient::flush() {
::flush(_sock);
}
void EthernetClient::stop() {
if (_sock == MAX_SOCK_NUM)
return;
// attempt to close the connection gracefully (send a FIN to other side)
disconnect(_sock);
unsigned long start = millis();
// wait a second for the connection to close
while (status() != SnSR::CLOSED && millis() - start < 1000)
delay(1);
// if it hasn't closed, close it forcefully
if (status() != SnSR::CLOSED)
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
uint8_t EthernetClient::connected() {
if (_sock == MAX_SOCK_NUM) return 0;
uint8_t s = status();
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
uint8_t EthernetClient::status() {
if (_sock == MAX_SOCK_NUM) return SnSR::CLOSED;
return socketStatus(_sock);
}
// the next function allows us to use the client returned by
// EthernetServer::available() as the condition in an if-statement.
EthernetClient::operator bool() {
return _sock != MAX_SOCK_NUM;
}
bool EthernetClient::operator==(const EthernetClient& rhs) {
return _sock == rhs._sock && _sock != MAX_SOCK_NUM && rhs._sock != MAX_SOCK_NUM;
}

View File

@ -1,41 +0,0 @@
#ifndef ethernetclient_h
#define ethernetclient_h
#include "Arduino.h"
#include "Print.h"
#include "Client.h"
#include "IPAddress.h"
class EthernetClient : public Client {
public:
EthernetClient();
EthernetClient(uint8_t sock);
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
virtual bool operator==(const bool value) { return bool() == value; }
virtual bool operator!=(const bool value) { return bool() != value; }
virtual bool operator==(const EthernetClient&);
virtual bool operator!=(const EthernetClient& rhs) { return !this->operator==(rhs); };
friend class EthernetServer;
using Print::write;
private:
static uint16_t _srcport;
uint8_t _sock;
};
#endif

View File

@ -1,91 +0,0 @@
#include "utility/w5100.h"
#include "utility/socket.h"
extern "C" {
#include "string.h"
}
#include "Ethernet_STM.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
EthernetServer::EthernetServer(uint16_t port)
{
_port = port;
}
void EthernetServer::begin()
{
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (client.status() == SnSR::CLOSED) {
socket(sock, SnMR::TCP, _port, 0);
listen(sock);
EthernetClass::_server_port[sock] = _port;
break;
}
}
}
void EthernetServer::accept()
{
int listening = 0;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port) {
if (client.status() == SnSR::LISTEN) {
listening = 1;
}
else if (client.status() == SnSR::CLOSE_WAIT && !client.available()) {
client.stop();
}
}
}
if (!listening) {
begin();
}
}
EthernetClient EthernetServer::available()
{
accept();
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port &&
(client.status() == SnSR::ESTABLISHED ||
client.status() == SnSR::CLOSE_WAIT)) {
if (client.available()) {
// XXX: don't always pick the lowest numbered socket.
return client;
}
}
}
return EthernetClient(MAX_SOCK_NUM);
}
size_t EthernetServer::write(uint8_t b)
{
return write(&b, 1);
}
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
accept();
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port &&
client.status() == SnSR::ESTABLISHED) {
n += client.write(buffer, size);
}
}
return n;
}

View File

@ -1,22 +0,0 @@
#ifndef ethernetserver_h
#define ethernetserver_h
#include "Server.h"
class EthernetClient;
class EthernetServer :
public Server {
private:
uint16_t _port;
void accept();
public:
EthernetServer(uint16_t);
EthernetClient available();
virtual void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
using Print::write;
};
#endif

View File

@ -1,218 +0,0 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#include "utility/w5100.h"
#include "utility/socket.h"
#include "Ethernet_STM.h"
#include "Udp.h"
#include "Dns.h"
/* Constructor */
EthernetUDP::EthernetUDP() : _sock(MAX_SOCK_NUM) {}
/* Start EthernetUDP socket, listening at local port PORT */
uint8_t EthernetUDP::begin(uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT) {
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_port = port;
_remaining = 0;
socket(_sock, SnMR::UDP, _port, 0);
return 1;
}
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available() {
return _remaining;
}
/* Release any resources being used by this EthernetUDP instance */
void EthernetUDP::stop()
{
if (_sock == MAX_SOCK_NUM)
return;
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
int EthernetUDP::beginPacket(const char *host, uint16_t port)
{
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return beginPacket(remote_addr, port);
} else {
return ret;
}
}
int EthernetUDP::beginPacket(IPAddress ip, uint16_t port)
{
_offset = 0;
return startUDP(_sock, rawIPAddress(ip), port);
}
int EthernetUDP::endPacket()
{
return sendUDP(_sock);
}
size_t EthernetUDP::write(uint8_t byte)
{
return write(&byte, 1);
}
size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
{
uint16_t bytes_written = bufferData(_sock, _offset, buffer, size);
_offset += bytes_written;
return bytes_written;
}
int EthernetUDP::parsePacket()
{
// discard any remaining bytes in the last packet
flush();
if (recvAvailable(_sock) > 0)
{
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret =0;
//read 8 header bytes and get IP and port from it
ret = recv(_sock,tmpBuf,8);
if (ret > 0)
{
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
// When we get here, any remaining bytes are the data
ret = _remaining;
}
return ret;
}
// There aren't any packets available
return 0;
}
int EthernetUDP::read()
{
uint8_t byte;
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
{
// We read things without any problems
_remaining--;
return byte;
}
// If we get here, there's no data available
return -1;
}
int EthernetUDP::read(unsigned char* buffer, size_t len)
{
if (_remaining > 0)
{
int got;
if (_remaining <= len)
{
// data should fit in the buffer
got = recv(_sock, buffer, _remaining);
}
else
{
// too much data for the buffer,
// grab as much as will fit
got = recv(_sock, buffer, len);
}
if (got > 0)
{
_remaining -= got;
return got;
}
}
// If we get here, there's no data available or recv failed
return -1;
}
int EthernetUDP::peek()
{
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (!_remaining)
return -1;
::peek(_sock, &b);
return b;
}
void EthernetUDP::flush()
{
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5100 always behaves :)
while (_remaining)
{
read();
}
}

View File

@ -1,99 +0,0 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef ethernetudp_h
#define ethernetudp_h
#include <Udp.h>
#define UDP_TX_PACKET_MAX_SIZE 24
class EthernetUDP : public UDP {
private:
uint8_t _sock; // socket ID for Wiz5100
uint16_t _port; // local port to listen on
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
public:
EthernetUDP(); // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
using Print::write;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() { return _remoteIP; };
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() { return _remotePort; };
};
#endif

View File

@ -1,136 +0,0 @@
#include "utility/w5100.h"
#include "Ethernet_STM.h"
#include "Dhcp.h"
// XXX: don't make assumptions about the value of MAX_SOCK_NUM.
uint8_t EthernetClass::_state[MAX_SOCK_NUM] = {
0, 0, 0, 0 };
uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] = {
0, 0, 0, 0 };
int EthernetClass::begin(uint8_t *mac_address)
{
static DhcpClass s_dhcp;
_dhcp = &s_dhcp;
// Initialise the basic info
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac_address);
W5100.setIPAddress(IPAddress(0,0,0,0).raw_address());
SPI.endTransaction();
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac_address);
if(ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
}
return ret;
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns_server = local_ip;
dns_server[3] = 1;
begin(mac_address, local_ip, dns_server);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = local_ip;
gateway[3] = 1;
begin(mac_address, local_ip, dns_server, gateway);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(mac_address, local_ip, dns_server, gateway, subnet);
}
void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac);
W5100.setIPAddress(local_ip.raw_address());
W5100.setGatewayIp(gateway.raw_address());
W5100.setSubnetMask(subnet.raw_address());
SPI.endTransaction();
_dnsServerAddress = dns_server;
}
int EthernetClass::maintain(){
int rc = DHCP_CHECK_NONE;
if(_dhcp != NULL){
//we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch ( rc ){
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
break;
default:
//this is actually a error, it will retry though
break;
}
}
return rc;
}
IPAddress EthernetClass::localIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getIPAddress(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::subnetMask()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getSubnetMask(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::gatewayIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getGatewayIp(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::dnsServerIP()
{
return _dnsServerAddress;
}
EthernetClass Ethernet;

View File

@ -1,41 +0,0 @@
#ifndef ethernet_h
#define ethernet_h
#include <inttypes.h>
//#include "w5100.h"
#include "IPAddress.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dhcp.h"
#define MAX_SOCK_NUM 4
class EthernetClass {
private:
IPAddress _dnsServerAddress;
DhcpClass* _dhcp;
public:
static uint8_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
// Initialise the Ethernet shield to use the provided MAC address and gain the rest of the
// configuration through DHCP.
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
int begin(uint8_t *mac_address);
void begin(uint8_t *mac_address, IPAddress local_ip);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
int maintain();
IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsServerIP();
friend class EthernetClient;
friend class EthernetServer;
};
extern EthernetClass Ethernet;
#endif

View File

@ -1,469 +0,0 @@
#include "w5100.h"
#include "socket.h"
static uint16_t local_port;
/**
* @brief This Socket function initialize the channel in perticular mode, and set the port and wait for W5100 done it.
* @return 1 for success else 0.
*/
uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag)
{
if ((protocol == SnMR::TCP) || (protocol == SnMR::UDP) || (protocol == SnMR::IPRAW) || (protocol == SnMR::MACRAW) || (protocol == SnMR::PPPOE))
{
close(s);
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnMR(s, protocol | flag);
if (port != 0) {
W5100.writeSnPORT(s, port);
}
else {
local_port++; // if don't set the source port, set local_port number.
W5100.writeSnPORT(s, local_port);
}
W5100.execCmdSn(s, Sock_OPEN);
SPI.endTransaction();
return 1;
}
return 0;
}
uint8_t socketStatus(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint8_t status = W5100.readSnSR(s);
SPI.endTransaction();
return status;
}
/**
* @brief This function close the socket and parameter is "s" which represent the socket number
*/
void close(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_CLOSE);
W5100.writeSnIR(s, 0xFF);
SPI.endTransaction();
}
/**
* @brief This function established the connection for the channel in passive (server) mode. This function waits for the request from the peer.
* @return 1 for success else 0.
*/
uint8_t listen(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (W5100.readSnSR(s) != SnSR::INIT) {
SPI.endTransaction();
return 0;
}
W5100.execCmdSn(s, Sock_LISTEN);
SPI.endTransaction();
return 1;
}
/**
* @brief This function established the connection for the channel in Active (client) mode.
* This function waits for the untill the connection is established.
*
* @return 1 for success else 0.
*/
uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port)
{
if
(
((addr[0] == 0xFF) && (addr[1] == 0xFF) && (addr[2] == 0xFF) && (addr[3] == 0xFF)) ||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
(port == 0x00)
)
return 0;
// set destination IP
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
W5100.execCmdSn(s, Sock_CONNECT);
SPI.endTransaction();
return 1;
}
/**
* @brief This function used for disconnect the socket and parameter is "s" which represent the socket number
* @return 1 for success else 0.
*/
void disconnect(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_DISCON);
SPI.endTransaction();
}
/**
* @brief This function used to send the data in TCP mode
* @return 1 for success else 0.
*/
uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint8_t status=0;
uint16_t ret=0;
uint16_t freesize=0;
if (len > W5100.SSIZE)
ret = W5100.SSIZE; // check size not to exceed MAX size.
else
ret = len;
// if freebuf is available, start.
do
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
freesize = W5100.getTXFreeSize(s);
status = W5100.readSnSR(s);
SPI.endTransaction();
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT))
{
ret = 0;
break;
}
//yield();
}
while (freesize < ret);
// copy data
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
/* m2008.01 [bj] : reduce code */
if ( W5100.readSnSR(s) == SnSR::CLOSED )
{
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
//yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in TCP mode.
* It continues to wait for data as much as the application wants to receive.
*
* @return received data size for success else -1.
*/
int16_t recv(SOCKET s, uint8_t *buf, int16_t len)
{
// Check how much data is available
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
if ( ret == 0 )
{
// No data available.
uint8_t status = W5100.readSnSR(s);
if ( status == SnSR::LISTEN || status == SnSR::CLOSED || status == SnSR::CLOSE_WAIT )
{
// The remote end has closed its side of the connection, so this is the eof state
ret = 0;
}
else
{
// The connection is still up, but there's no data waiting to be read
ret = -1;
}
}
else if (ret > len)
{
ret = len;
}
if ( ret > 0 )
{
W5100.recv_data_processing(s, buf, ret);
W5100.execCmdSn(s, Sock_RECV);
}
SPI.endTransaction();
return ret;
}
int16_t recvAvailable(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
SPI.endTransaction();
return ret;
}
/**
* @brief Returns the first byte in the receive queue (no checking)
*
* @return
*/
uint16_t peek(SOCKET s, uint8_t *buf)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.recv_data_processing(s, buf, 1, 1);
SPI.endTransaction();
return 1;
}
/**
* @brief This function is an application I/F function which is used to send the data for other then TCP mode.
* Unlike TCP transmission, The peer's destination address and the port is needed.
*
* @return This function return send data size for success else -1.
*/
uint16_t sendto(SOCKET s, const uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t port)
{
uint16_t ret=0;
if (len > W5100.SSIZE) ret = W5100.SSIZE; // check size not to exceed MAX size.
else ret = len;
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00)) ||(ret == 0)
)
{
/* +2008.01 [bj] : added return value */
ret = 0;
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
// copy data
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT)); /* clear SEND_OK & TIMEOUT */
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
//yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
}
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in other then
* TCP mode. This function is used to receive UDP, IP_RAW and MAC_RAW mode, and handle the header as well.
*
* @return This function return received data size for success else -1.
*/
uint16_t recvfrom(SOCKET s, uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t *port)
{
uint8_t head[8];
uint16_t data_len=0;
uint16_t ptr=0;
if ( len > 0 )
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
ptr = W5100.readSnRX_RD(s);
switch (W5100.readSnMR(s) & 0x07)
{
case SnMR::UDP :
W5100.read_data(s, ptr, head, 0x08);
ptr += 8;
// read peer's IP address, port number.
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
*port = head[4];
*port = (*port << 8) + head[5];
data_len = head[6];
data_len = (data_len << 8) + head[7];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::IPRAW :
W5100.read_data(s, ptr, head, 0x06);
ptr += 6;
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
data_len = head[4];
data_len = (data_len << 8) + head[5];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::MACRAW:
W5100.read_data(s, ptr, head, 2);
ptr+=2;
data_len = head[0];
data_len = (data_len<<8) + head[1] - 2;
W5100.read_data(s, ptr, buf, data_len);
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
default :
break;
}
W5100.execCmdSn(s, Sock_RECV);
SPI.endTransaction();
}
return data_len;
}
/**
* @brief Wait for buffered transmission to complete.
*/
void flush(SOCKET s) {
// TODO
}
uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint16_t ret=0;
if (len > W5100.SSIZE)
ret = W5100.SSIZE; // check size not to exceed MAX size.
else
ret = len;
if (ret == 0)
return 0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* in case of igmp, if send fails, then socket closed */
/* if you want change, remove this code. */
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
//yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len)
{
uint16_t ret =0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (len > W5100.getTXFreeSize(s))
{
ret = W5100.getTXFreeSize(s); // check size not to exceed MAX size.
}
else
{
ret = len;
}
W5100.send_data_processing_offset(s, offset, buf, ret);
SPI.endTransaction();
return ret;
}
int startUDP(SOCKET s, uint8_t* addr, uint16_t port)
{
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00))
)
{
return 0;
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
SPI.endTransaction();
return 1;
}
}
int sendUDP(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK|SnIR::TIMEOUT));
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
//yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
/* Sent ok */
return 1;
}

View File

@ -1,44 +0,0 @@
#ifndef _SOCKET_H_
#define _SOCKET_H_
#include "utility/w5100.h"
extern uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag); // Opens a socket(TCP or UDP or IP_RAW mode)
extern uint8_t socketStatus(SOCKET s);
extern void close(SOCKET s); // Close socket
extern uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port); // Establish TCP connection (Active connection)
extern void disconnect(SOCKET s); // disconnect the connection
extern uint8_t listen(SOCKET s); // Establish TCP connection (Passive connection)
extern uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len); // Send data (TCP)
extern int16_t recv(SOCKET s, uint8_t * buf, int16_t len); // Receive data (TCP)
extern int16_t recvAvailable(SOCKET s);
extern uint16_t peek(SOCKET s, uint8_t *buf);
extern uint16_t sendto(SOCKET s, const uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t port); // Send data (UDP/IP RAW)
extern uint16_t recvfrom(SOCKET s, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t *port); // Receive data (UDP/IP RAW)
extern void flush(SOCKET s); // Wait for transmission to complete
extern uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len);
// Functions to allow buffered UDP send (i.e. where the UDP datagram is built up over a
// number of calls before being sent
/*
@brief This function sets up a UDP datagram, the data for which will be provided by one
or more calls to bufferData and then finally sent with sendUDP.
@return 1 if the datagram was successfully set up, or 0 if there was an error
*/
extern int startUDP(SOCKET s, uint8_t* addr, uint16_t port);
/*
@brief This function copies up to len bytes of data from buf into a UDP datagram to be
sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
@return Number of bytes successfully buffered
*/
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len);
/*
@brief Send a UDP datagram built up from a sequence of startUDP followed by one or more
calls to bufferData.
@return 1 if the datagram was successfully sent, or 0 if there was an error
*/
int sendUDP(SOCKET s);
#endif
/* _SOCKET_H_ */

View File

@ -1,14 +0,0 @@
#ifndef UTIL_H
#define UTIL_H
#define htons(x) ( ((x)<< 8 & 0xFF00) | \
((x)>> 8 & 0x00FF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
#endif

View File

@ -1,237 +0,0 @@
/*
* Copyright (c) 2010 by Arduino LLC. All rights reserved.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include <stdio.h>
#include <string.h>
#include "w5100.h"
// W5100 controller instance
W5100Class W5100;
#define TX_RX_MAX_BUF_SIZE 2048
#define TX_BUF 0x1100
#define RX_BUF (TX_BUF + TX_RX_MAX_BUF_SIZE)
#define TXBUF_BASE 0x4000
#define RXBUF_BASE 0x6000
void W5100Class::init(void)
{
delay(300);
#if defined(ARDUINO_ARCH_AVR)
SPI.begin();
initSS();
#else
pinMode(PA4, OUTPUT);
SPI.begin();
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV8);
pinMode(PA4, OUTPUT);
#endif
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
writeMR(1<<RST);
writeTMSR(0x55);
writeRMSR(0x55);
SPI.endTransaction();
for (int i=0; i<MAX_SOCK_NUM; i++) {
SBASE[i] = TXBUF_BASE + SSIZE * i;
RBASE[i] = RXBUF_BASE + RSIZE * i;
}
}
uint16_t W5100Class::getTXFreeSize(SOCKET s)
{
uint16_t val=0, val1=0;
do {
val1 = readSnTX_FSR(s);
if (val1 != 0)
val = readSnTX_FSR(s);
}
while (val != val1);
return val;
}
uint16_t W5100Class::getRXReceivedSize(SOCKET s)
{
uint16_t val=0,val1=0;
do {
val1 = readSnRX_RSR(s);
if (val1 != 0)
val = readSnRX_RSR(s);
}
while (val != val1);
return val;
}
void W5100Class::send_data_processing(SOCKET s, const uint8_t *data, uint16_t len)
{
// This is same as having no offset in a call to send_data_processing_offset
send_data_processing_offset(s, 0, data, len);
}
void W5100Class::send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len)
{
uint16_t ptr = readSnTX_WR(s);
ptr += data_offset;
uint16_t offset = ptr & SMASK;
uint16_t dstAddr = offset + SBASE[s];
if (offset + len > SSIZE)
{
// Wrap around circular buffer
uint16_t size = SSIZE - offset;
write(dstAddr, data, size);
write(SBASE[s], data + size, len - size);
}
else {
write(dstAddr, data, len);
}
ptr += len;
writeSnTX_WR(s, ptr);
}
void W5100Class::recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek)
{
uint16_t ptr;
ptr = readSnRX_RD(s);
read_data(s, ptr, data, len);
if (!peek)
{
ptr += len;
writeSnRX_RD(s, ptr);
}
}
void W5100Class::read_data(SOCKET s, volatile uint16_t src, volatile uint8_t *dst, uint16_t len)
{
uint16_t size;
uint16_t src_mask;
uint16_t src_ptr;
src_mask = src & RMASK;
src_ptr = RBASE[s] + src_mask;
if( (src_mask + len) > RSIZE )
{
size = RSIZE - src_mask;
read(src_ptr, (uint8_t *)dst, size);
dst += size;
read(RBASE[s], (uint8_t *) dst, len - size);
}
else
read(src_ptr, (uint8_t *) dst, len);
}
uint8_t W5100Class::write(uint16_t _addr, uint8_t _data)
{
#if defined(ARDUINO_ARCH_AVR)
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_data);
resetSS();
#else
digitalWrite(PA4, LOW);
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_data);
digitalWrite(PA4, HIGH);
#endif
return 1;
}
uint16_t W5100Class::write(uint16_t _addr, const uint8_t *_buf, uint16_t _len)
{
for (uint16_t i=0; i<_len; i++)
{
#if defined(ARDUINO_ARCH_AVR)
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
SPI.transfer(_buf[i]);
resetSS();
#else
digitalWrite(PA4, LOW);
SPI.transfer( 0xF0);
SPI.transfer( _addr >> 8);
SPI.transfer( _addr & 0xFF);
_addr++;
SPI.transfer( _buf[i]);
digitalWrite(PA4, HIGH);
#endif
}
return _len;
}
uint8_t W5100Class::read(uint16_t _addr)
{
#if defined(ARDUINO_ARCH_AVR)
setSS();
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
uint8_t _data = SPI.transfer(0);
resetSS();
#else
digitalWrite(PA4, LOW);
SPI.transfer(0x0F);
SPI.transfer( _addr >> 8);
SPI.transfer(_addr & 0xFF);
uint8_t _data = SPI.transfer(0);
digitalWrite(PA4, HIGH);
#endif
return _data;
}
uint16_t W5100Class::read(uint16_t _addr, uint8_t *_buf, uint16_t _len)
{
for (uint16_t i=0; i<_len; i++)
{
#if defined(ARDUINO_ARCH_AVR)
setSS();
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
_buf[i] = SPI.transfer(0);
resetSS();
#else
digitalWrite(PA4, LOW);
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
_buf[i] = SPI.transfer(0);
digitalWrite(PA4, HIGH);
#endif
}
return _len;
}
void W5100Class::execCmdSn(SOCKET s, SockCMD _cmd) {
// Send command to socket
writeSnCR(s, _cmd);
// Wait for command to complete
while (readSnCR(s))
;
}

View File

@ -1,412 +0,0 @@
/*
* Copyright (c) 2010 by Arduino LLC. All rights reserved.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#ifndef W5100_H_INCLUDED
#define W5100_H_INCLUDED
#include <SPI.h>
#define SPI_CS 10
#if defined(ARDUINO_ARCH_AVR)
#define SPI_ETHERNET_SETTINGS SPISettings(4000000, MSBFIRST, SPI_MODE0)
#else
#define SPI_ETHERNET_SETTINGS SPI_CS,SPISettings(4000000, MSBFIRST, SPI_MODE0)
#endif
#define MAX_SOCK_NUM 4
typedef uint8_t SOCKET;
#define IDM_OR 0x8000
#define IDM_AR0 0x8001
#define IDM_AR1 0x8002
#define IDM_DR 0x8003
/*
class MR {
public:
static const uint8_t RST = 0x80;
static const uint8_t PB = 0x10;
static const uint8_t PPPOE = 0x08;
static const uint8_t LB = 0x04;
static const uint8_t AI = 0x02;
static const uint8_t IND = 0x01;
};
*/
/*
class IR {
public:
static const uint8_t CONFLICT = 0x80;
static const uint8_t UNREACH = 0x40;
static const uint8_t PPPoE = 0x20;
static const uint8_t SOCK0 = 0x01;
static const uint8_t SOCK1 = 0x02;
static const uint8_t SOCK2 = 0x04;
static const uint8_t SOCK3 = 0x08;
static inline uint8_t SOCK(SOCKET ch) { return (0x01 << ch); };
};
*/
class SnMR {
public:
static const uint8_t CLOSE = 0x00;
static const uint8_t TCP = 0x01;
static const uint8_t UDP = 0x02;
static const uint8_t IPRAW = 0x03;
static const uint8_t MACRAW = 0x04;
static const uint8_t PPPOE = 0x05;
static const uint8_t ND = 0x20;
static const uint8_t MULTI = 0x80;
};
enum SockCMD {
Sock_OPEN = 0x01,
Sock_LISTEN = 0x02,
Sock_CONNECT = 0x04,
Sock_DISCON = 0x08,
Sock_CLOSE = 0x10,
Sock_SEND = 0x20,
Sock_SEND_MAC = 0x21,
Sock_SEND_KEEP = 0x22,
Sock_RECV = 0x40
};
/*class SnCmd {
public:
static const uint8_t OPEN = 0x01;
static const uint8_t LISTEN = 0x02;
static const uint8_t CONNECT = 0x04;
static const uint8_t DISCON = 0x08;
static const uint8_t CLOSE = 0x10;
static const uint8_t SEND = 0x20;
static const uint8_t SEND_MAC = 0x21;
static const uint8_t SEND_KEEP = 0x22;
static const uint8_t RECV = 0x40;
};
*/
class SnIR {
public:
static const uint8_t SEND_OK = 0x10;
static const uint8_t TIMEOUT = 0x08;
static const uint8_t RECV = 0x04;
static const uint8_t DISCON = 0x02;
static const uint8_t CON = 0x01;
};
class SnSR {
public:
static const uint8_t CLOSED = 0x00;
static const uint8_t INIT = 0x13;
static const uint8_t LISTEN = 0x14;
static const uint8_t SYNSENT = 0x15;
static const uint8_t SYNRECV = 0x16;
static const uint8_t ESTABLISHED = 0x17;
static const uint8_t FIN_WAIT = 0x18;
static const uint8_t CLOSING = 0x1A;
static const uint8_t TIME_WAIT = 0x1B;
static const uint8_t CLOSE_WAIT = 0x1C;
static const uint8_t LAST_ACK = 0x1D;
static const uint8_t UDP = 0x22;
static const uint8_t IPRAW = 0x32;
static const uint8_t MACRAW = 0x42;
static const uint8_t PPPOE = 0x5F;
};
class IPPROTO {
public:
static const uint8_t IP = 0;
static const uint8_t ICMP = 1;
static const uint8_t IGMP = 2;
static const uint8_t GGP = 3;
static const uint8_t TCP = 6;
static const uint8_t PUP = 12;
static const uint8_t UDP = 17;
static const uint8_t IDP = 22;
static const uint8_t ND = 77;
static const uint8_t RAW = 255;
};
class W5100Class {
public:
void init();
/**
* @brief This function is being used for copy the data form Receive buffer of the chip to application buffer.
*
* It calculate the actual physical address where one has to read
* the data from Receive buffer. Here also take care of the condition while it exceed
* the Rx memory uper-bound of socket.
*/
void read_data(SOCKET s, volatile uint16_t src, volatile uint8_t * dst, uint16_t len);
/**
* @brief This function is being called by send() and sendto() function also.
*
* This function read the Tx write pointer register and after copy the data in buffer update the Tx write pointer
* register. User should read upper byte first and lower byte later to get proper value.
*/
void send_data_processing(SOCKET s, const uint8_t *data, uint16_t len);
/**
* @brief A copy of send_data_processing that uses the provided ptr for the
* write offset. Only needed for the "streaming" UDP API, where
* a single UDP packet is built up over a number of calls to
* send_data_processing_ptr, because TX_WR doesn't seem to get updated
* correctly in those scenarios
* @param ptr value to use in place of TX_WR. If 0, then the value is read
* in from TX_WR
* @return New value for ptr, to be used in the next call
*/
// FIXME Update documentation
void send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len);
/**
* @brief This function is being called by recv() also.
*
* This function read the Rx read pointer register
* and after copy the data from receive buffer update the Rx write pointer register.
* User should read upper byte first and lower byte later to get proper value.
*/
void recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek = 0);
inline void setGatewayIp(uint8_t *_addr);
inline void getGatewayIp(uint8_t *_addr);
inline void setSubnetMask(uint8_t *_addr);
inline void getSubnetMask(uint8_t *_addr);
inline void setMACAddress(uint8_t * addr);
inline void getMACAddress(uint8_t * addr);
inline void setIPAddress(uint8_t * addr);
inline void getIPAddress(uint8_t * addr);
inline void setRetransmissionTime(uint16_t timeout);
inline void setRetransmissionCount(uint8_t _retry);
void execCmdSn(SOCKET s, SockCMD _cmd);
uint16_t getTXFreeSize(SOCKET s);
uint16_t getRXReceivedSize(SOCKET s);
// W5100 Registers
// ---------------
private:
static uint8_t write(uint16_t _addr, uint8_t _data);
static uint16_t write(uint16_t addr, const uint8_t *buf, uint16_t len);
static uint8_t read(uint16_t addr);
static uint16_t read(uint16_t addr, uint8_t *buf, uint16_t len);
#define __GP_REGISTER8(name, address) \
static inline void write##name(uint8_t _data) { \
write(address, _data); \
} \
static inline uint8_t read##name() { \
return read(address); \
}
#define __GP_REGISTER16(name, address) \
static void write##name(uint16_t _data) { \
write(address, _data >> 8); \
write(address+1, _data & 0xFF); \
} \
static uint16_t read##name() { \
uint16_t res = read(address); \
res = (res << 8) + read(address + 1); \
return res; \
}
#define __GP_REGISTER_N(name, address, size) \
static uint16_t write##name(uint8_t *_buff) { \
return write(address, _buff, size); \
} \
static uint16_t read##name(uint8_t *_buff) { \
return read(address, _buff, size); \
}
public:
__GP_REGISTER8 (MR, 0x0000); // Mode
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
__GP_REGISTER8 (IR, 0x0015); // Interrupt
__GP_REGISTER8 (IMR, 0x0016); // Interrupt Mask
__GP_REGISTER16(RTR, 0x0017); // Timeout address
__GP_REGISTER8 (RCR, 0x0019); // Retry count
__GP_REGISTER8 (RMSR, 0x001A); // Receive memory size
__GP_REGISTER8 (TMSR, 0x001B); // Transmit memory size
__GP_REGISTER8 (PATR, 0x001C); // Authentication type address in PPPoE mode
__GP_REGISTER8 (PTIMER, 0x0028); // PPP LCP Request Timer
__GP_REGISTER8 (PMAGIC, 0x0029); // PPP LCP Magic Number
__GP_REGISTER_N(UIPR, 0x002A, 4); // Unreachable IP address in UDP mode
__GP_REGISTER16(UPORT, 0x002E); // Unreachable Port address in UDP mode
#undef __GP_REGISTER8
#undef __GP_REGISTER16
#undef __GP_REGISTER_N
// W5100 Socket registers
// ----------------------
private:
static inline uint8_t readSn(SOCKET _s, uint16_t _addr);
static inline uint8_t writeSn(SOCKET _s, uint16_t _addr, uint8_t _data);
static inline uint16_t readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
static inline uint16_t writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
static const uint16_t CH_BASE = 0x0400;
static const uint16_t CH_SIZE = 0x0100;
#define __SOCKET_REGISTER8(name, address) \
static inline void write##name(SOCKET _s, uint8_t _data) { \
writeSn(_s, address, _data); \
} \
static inline uint8_t read##name(SOCKET _s) { \
return readSn(_s, address); \
}
#define __SOCKET_REGISTER16(name, address) \
static void write##name(SOCKET _s, uint16_t _data) { \
writeSn(_s, address, _data >> 8); \
writeSn(_s, address+1, _data & 0xFF); \
} \
static uint16_t read##name(SOCKET _s) { \
uint16_t res = readSn(_s, address); \
uint16_t res2 = readSn(_s,address + 1); \
res = res << 8; \
res2 = res2 & 0xFF; \
res = res | res2; \
return res; \
}
#define __SOCKET_REGISTER_N(name, address, size) \
static uint16_t write##name(SOCKET _s, uint8_t *_buff) { \
return writeSn(_s, address, _buff, size); \
} \
static uint16_t read##name(SOCKET _s, uint8_t *_buff) { \
return readSn(_s, address, _buff, size); \
}
public:
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
#undef __SOCKET_REGISTER8
#undef __SOCKET_REGISTER16
#undef __SOCKET_REGISTER_N
private:
static const uint8_t RST = 7; // Reset BIT
static const int SOCKETS = 4;
static const uint16_t SMASK = 0x07FF; // Tx buffer MASK
static const uint16_t RMASK = 0x07FF; // Rx buffer MASK
public:
static const uint16_t SSIZE = 2048; // Max Tx buffer size
private:
static const uint16_t RSIZE = 2048; // Max Rx buffer size
uint16_t SBASE[SOCKETS]; // Tx buffer base address
uint16_t RBASE[SOCKETS]; // Rx buffer base address
private:
#if defined(ARDUINO_ARCH_AVR)
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
inline static void initSS() { DDRB |= _BV(4); };
inline static void setSS() { PORTB &= ~_BV(4); };
inline static void resetSS() { PORTB |= _BV(4); };
#elif defined(__AVR_ATmega32U4__)
inline static void initSS() { DDRB |= _BV(6); };
inline static void setSS() { PORTB &= ~_BV(6); };
inline static void resetSS() { PORTB |= _BV(6); };
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB162__)
inline static void initSS() { DDRB |= _BV(0); };
inline static void setSS() { PORTB &= ~_BV(0); };
inline static void resetSS() { PORTB |= _BV(0); };
#else
inline static void initSS() { DDRB |= _BV(2); };
inline static void setSS() { PORTB &= ~_BV(2); };
inline static void resetSS() { PORTB |= _BV(2); };
#endif
#endif // ARDUINO_ARCH_AVR
};
extern W5100Class W5100;
uint8_t W5100Class::readSn(SOCKET _s, uint16_t _addr) {
return read(CH_BASE + _s * CH_SIZE + _addr);
}
uint8_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t _data) {
return write(CH_BASE + _s * CH_SIZE + _addr, _data);
}
uint16_t W5100Class::readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
return read(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
}
uint16_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
return write(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
}
void W5100Class::getGatewayIp(uint8_t *_addr) {
readGAR(_addr);
}
void W5100Class::setGatewayIp(uint8_t *_addr) {
writeGAR(_addr);
}
void W5100Class::getSubnetMask(uint8_t *_addr) {
readSUBR(_addr);
}
void W5100Class::setSubnetMask(uint8_t *_addr) {
writeSUBR(_addr);
}
void W5100Class::getMACAddress(uint8_t *_addr) {
readSHAR(_addr);
}
void W5100Class::setMACAddress(uint8_t *_addr) {
writeSHAR(_addr);
}
void W5100Class::getIPAddress(uint8_t *_addr) {
readSIPR(_addr);
}
void W5100Class::setIPAddress(uint8_t *_addr) {
writeSIPR(_addr);
}
void W5100Class::setRetransmissionTime(uint16_t _timeout) {
writeRTR(_timeout);
}
void W5100Class::setRetransmissionCount(uint8_t _retry) {
writeRCR(_retry);
}
#endif