/* See rights and use declaration in License.h This library has been modified for the Maple Mini. Includes DMA transfers on DMA1 CH2 and CH3. */ #include // Constructor when using hardware SPI. Faster, but must use SPI pins // specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.) Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t rst) : Adafruit_GFX_AS(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT) { _cs = cs; _dc = dc; _rst = rst; } void Adafruit_ILI9341_STM::writecommand(uint8_t c) { dc_command(); cs_clear(); spiwrite(c); dc_data(); } // Rather than a bazillion writecommand() and writedata() calls, screen // initialization commands and arguments are organized in these tables // stored in PROGMEM. The table may look bulky, but that's mostly the // formatting -- storage-wise this is hundreds of bytes more compact // than the equivalent code. Companion function follows. #define DELAY 0x80 // Companion code to the above tables. Reads and issues // a series of LCD commands stored in PROGMEM byte array. void Adafruit_ILI9341_STM::commandList(uint8_t *addr) { uint8_t numCommands, numArgs; uint16_t ms; numCommands = pgm_read_byte(addr++); // Number of commands to follow while (numCommands--) { // For each command... writecommand(pgm_read_byte(addr++)); // Read, issue command numArgs = pgm_read_byte(addr++); // Number of args to follow ms = numArgs & DELAY; // If hibit set, delay follows args numArgs &= ~DELAY; // Mask out delay bit while (numArgs--) { // For each argument... writedata(pgm_read_byte(addr++)); // Read, issue argument } if (ms) { ms = pgm_read_byte(addr++); // Read post-command delay time (ms) if (ms == 255) ms = 500; // If 255, delay for 500 ms delay(ms); } } } void Adafruit_ILI9341_STM::begin(SPIClass & spi, uint32_t freq) { mSPI = spi; _freq = freq; _safe_freq = (freq>SAFE_FREQ) ? SAFE_FREQ : _freq; pinMode(_dc, OUTPUT); pinMode(_cs, OUTPUT); csport = portSetRegister(_cs); cspinmask = digitalPinToBitMask(_cs); cs_set(); // deactivate chip dcport = portSetRegister(_dc); dcpinmask = digitalPinToBitMask(_dc); mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT)); // toggle RST low to reset if (_rst > 0) { pinMode(_rst, OUTPUT); digitalWrite(_rst, HIGH); delay(5); digitalWrite(_rst, LOW); delay(20); digitalWrite(_rst, HIGH); delay(150); } /* uint8_t x = readcommand8(ILI9341_RDMODE); Serial.print("\nDisplay Power Mode: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDMADCTL); Serial.print("\nMADCTL Mode: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDPIXFMT); Serial.print("\nPixel Format: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDIMGFMT); Serial.print("\nImage Format: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDSELFDIAG); Serial.print("\nSelf Diagnostic: 0x"); Serial.println(x, HEX); */ //if(cmdList) commandList(cmdList); writecommand(0xEF); writedata(0x03); writedata(0x80); writedata(0x02); writecommand(0xCF); writedata(0x00); writedata(0XC1); writedata(0X30); writecommand(0xED); writedata(0x64); writedata(0x03); writedata(0X12); writedata(0X81); writecommand(0xE8); writedata(0x85); writedata(0x00); writedata(0x78); writecommand(0xCB); writedata(0x39); writedata(0x2C); writedata(0x00); writedata(0x34); writedata(0x02); writecommand(0xF7); writedata(0x20); writecommand(0xEA); writedata(0x00); writedata(0x00); writecommand(ILI9341_PWCTR1); //Power control writedata(0x23); //VRH[5:0] writecommand(ILI9341_PWCTR2); //Power control writedata(0x10); //SAP[2:0];BT[3:0] writecommand(ILI9341_VMCTR1); //VCM control writedata(0x3e); writedata(0x28); writecommand(ILI9341_VMCTR2); //VCM control2 writedata(0x86); //-- writecommand(ILI9341_MADCTL); // Memory Access Control writedata(0x48); writecommand(ILI9341_PIXFMT); writedata(0x55); writecommand(ILI9341_FRMCTR1); writedata(0x00); writedata(0x18); writecommand(ILI9341_DFUNCTR); // Display Function Control writedata(0x08); writedata(0x82); writedata(0x27); writecommand(0xF2); // 3Gamma Function Disable writedata(0x00); writecommand(ILI9341_GAMMASET); //Gamma curve selected writedata(0x01); writecommand(ILI9341_GMCTRP1); //Set Gamma writedata(0x0F); writedata(0x31); writedata(0x2B); writedata(0x0C); writedata(0x0E); writedata(0x08); writedata(0x4E); writedata(0xF1); writedata(0x37); writedata(0x07); writedata(0x10); writedata(0x03); writedata(0x0E); writedata(0x09); writedata(0x00); writecommand(ILI9341_GMCTRN1); //Set Gamma writedata(0x00); writedata(0x0E); writedata(0x14); writedata(0x03); writedata(0x11); writedata(0x07); writedata(0x31); writedata(0xC1); writedata(0x48); writedata(0x08); writedata(0x0F); writedata(0x0C); writedata(0x31); writedata(0x36); writedata(0x0F); writecommand(ILI9341_SLPOUT); //Exit Sleep delay(120); writecommand(ILI9341_DISPON); //Display on delay(120); cs_set(); _width = ILI9341_TFTWIDTH; _height = ILI9341_TFTHEIGHT; mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT)); } void Adafruit_ILI9341_STM::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { writecommand(ILI9341_CASET); // Column addr set spiwrite(x0); spiwrite(x1); writecommand(ILI9341_PASET); // Row addr set spiwrite(y0); spiwrite(y1); writecommand(ILI9341_RAMWR); // write to RAM } void Adafruit_ILI9341_STM::pushColors(void * colorBuffer, uint16_t nr_pixels, uint8_t async) { cs_clear(); if (async==0) { mSPI.dmaSend(colorBuffer, nr_pixels, 1); cs_set(); } else { mSPI.dmaSendAsync(colorBuffer, nr_pixels, 1); } } void Adafruit_ILI9341_STM::pushColor(uint16_t color) { cs_clear(); spiwrite(color); cs_set(); } void Adafruit_ILI9341_STM::drawPixel(int16_t x, int16_t y, uint16_t color) { if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return; setAddrWindow(x, y, x + 1, y + 1); spiwrite(color); cs_set(); } void Adafruit_ILI9341_STM::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Rudimentary clipping if ((x >= _width) || (y >= _height || h < 1)) return; if ((y + h - 1) >= _height) h = _height - y; if (h < 2 ) { drawPixel(x, y, color); return; } setAddrWindow(x, y, x, y + h - 1); if (h>DMA_ON_LIMIT) { lineBuffer[0] = color; mSPI.dmaSend(lineBuffer, h, 0); } else { mSPI.write(color, h); } cs_set(); } void Adafruit_ILI9341_STM::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Rudimentary clipping if ((x >= _width) || (y >= _height || w < 1)) return; if ((x + w - 1) >= _width) w = _width - x; if (w < 2 ) { drawPixel(x, y, color); return; } setAddrWindow(x, y, x + w - 1, y); if (w>DMA_ON_LIMIT) { lineBuffer[0] = color; mSPI.dmaSend(lineBuffer, w, 0); } else { mSPI.write(color, w); } cs_set(); } void Adafruit_ILI9341_STM::fillScreen(uint16_t color) { lineBuffer[0] = color; setAddrWindow(0, 0, _width - 1, _height - 1); uint32_t nr_bytes = _width * _height; while ( nr_bytes>65535 ) { nr_bytes -= 65535; mSPI.dmaSend(lineBuffer, (65535), 0); } mSPI.dmaSend(lineBuffer, nr_bytes, 0); cs_set(); } // fill a rectangle void Adafruit_ILI9341_STM::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { lineBuffer[0] = color; // rudimentary clipping (drawChar w/big text requires this) if ((x >= _width) || (y >= _height || h < 1 || w < 1)) return; if ((x + w - 1) >= _width) w = _width - x; if ((y + h - 1) >= _height) h = _height - y; if (w == 1 && h == 1) { drawPixel(x, y, color); return; } setAddrWindow(x, y, x + w - 1, y + h - 1); uint32_t nr_bytes = w * h; if ( nr_bytes>DMA_ON_LIMIT ) { while ( nr_bytes>65535 ) { nr_bytes -= 65535; mSPI.dmaSend(lineBuffer, (65535), 0); } mSPI.dmaSend(lineBuffer, nr_bytes, 0); } else { mSPI.write(color, nr_bytes); } cs_set(); } /* * Draw lines faster by calculating straight sections and drawing them with fastVline and fastHline. */ void Adafruit_ILI9341_STM::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t color) { if ((y0 < 0 && y1 <0) || (y0 > _height && y1 > _height)) return; if ((x0 < 0 && x1 <0) || (x0 > _width && x1 > _width)) return; if (x0 < 0) x0 = 0; if (x1 < 0) x1 = 0; if (y0 < 0) y0 = 0; if (y1 < 0) y1 = 0; if (y0 == y1) { if (x1 > x0) { drawFastHLine(x0, y0, x1 - x0 + 1, color); } else if (x1 < x0) { drawFastHLine(x1, y0, x0 - x1 + 1, color); } else { drawPixel(x0, y0, color); } return; } else if (x0 == x1) { if (y1 > y0) { drawFastVLine(x0, y0, y1 - y0 + 1, color); } else { drawFastVLine(x0, y1, y0 - y1 + 1, color); } return; } bool steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } int16_t xbegin = x0; if (steep) { for (; x0 <= x1; x0++) { err -= dy; if (err < 0) { int16_t len = x0 - xbegin; if (len) { drawFastVLine (y0, xbegin, len + 1, color); //writeVLine_cont_noCS_noFill(y0, xbegin, len + 1); } else { drawPixel(y0, x0, color); //writePixel_cont_noCS(y0, x0, color); } xbegin = x0 + 1; y0 += ystep; err += dx; } } if (x0 > xbegin + 1) { //writeVLine_cont_noCS_noFill(y0, xbegin, x0 - xbegin); drawFastVLine(y0, xbegin, x0 - xbegin, color); } } else { for (; x0 <= x1; x0++) { err -= dy; if (err < 0) { int16_t len = x0 - xbegin; if (len) { drawFastHLine(xbegin, y0, len + 1, color); //writeHLine_cont_noCS_noFill(xbegin, y0, len + 1); } else { drawPixel(x0, y0, color); //writePixel_cont_noCS(x0, y0, color); } xbegin = x0 + 1; y0 += ystep; err += dx; } } if (x0 > xbegin + 1) { //writeHLine_cont_noCS_noFill(xbegin, y0, x0 - xbegin); drawFastHLine(xbegin, y0, x0 - xbegin, color); } } } // Pass 8-bit (each) R,G,B, get back 16-bit packed color uint16_t Adafruit_ILI9341_STM::color565(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } #define MADCTL_MY 0x80 #define MADCTL_MX 0x40 #define MADCTL_MV 0x20 #define MADCTL_ML 0x10 #define MADCTL_RGB 0x00 #define MADCTL_BGR 0x08 #define MADCTL_MH 0x04 void Adafruit_ILI9341_STM::setRotation(uint8_t m) { rotation = m % 4; // can't be higher than 3 switch (rotation) { case 0: m = (MADCTL_MX | MADCTL_BGR); _width = ILI9341_TFTWIDTH; _height = ILI9341_TFTHEIGHT; break; case 1: m = (MADCTL_MV | MADCTL_BGR); _width = ILI9341_TFTHEIGHT; _height = ILI9341_TFTWIDTH; break; case 2: m = (MADCTL_MY | MADCTL_BGR); _width = ILI9341_TFTWIDTH; _height = ILI9341_TFTHEIGHT; break; case 3: m = (MADCTL_MX | MADCTL_MY | MADCTL_MV | MADCTL_BGR); _width = ILI9341_TFTHEIGHT; _height = ILI9341_TFTWIDTH; break; } mSPI.setDataSize(DATA_SIZE_8BIT); writecommand(ILI9341_MADCTL); writedata(m); cs_set(); mSPI.setDataSize(DATA_SIZE_16BIT); } void Adafruit_ILI9341_STM::invertDisplay(boolean i) { writecommand(i ? ILI9341_INVON : ILI9341_INVOFF); cs_set(); } uint16_t Adafruit_ILI9341_STM::readPixel(int16_t x, int16_t y) { mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT)); writecommand(ILI9341_CASET); // Column addr set spiwrite16(x); spiwrite16(x); writecommand(ILI9341_PASET); // Row addr set spiwrite16(y); spiwrite16(y); writecommand(ILI9341_RAMRD); // read GRAM (void)spiread(); //dummy read uint8_t r = spiread(); uint8_t g = spiread(); uint8_t b = spiread(); cs_set(); mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT)); return color565(r, g, b); } uint16_t Adafruit_ILI9341_STM::readPixels(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t *buf) { mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT)); writecommand(ILI9341_CASET); // Column addr set spiwrite16(x1); spiwrite16(x2); writecommand(ILI9341_PASET); // Row addr set spiwrite16(y1); spiwrite16(y2); writecommand(ILI9341_RAMRD); // read GRAM (void)spiread(); //dummy read uint8_t r, g, b; uint16_t len = (x2-x1+1)*(y2-y1+1); uint16_t ret = len; while (len--) { r = spiread(); g = spiread(); b = spiread(); *buf++ = color565(r, g, b); } cs_set(); mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT)); return ret; } uint16_t Adafruit_ILI9341_STM::readPixelsRGB24(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t *buf) { mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT)); writecommand(ILI9341_CASET); // Column addr set spiwrite16(x1); spiwrite16(x2); writecommand(ILI9341_PASET); // Row addr set spiwrite16(y1); spiwrite16(y2); writecommand(ILI9341_RAMRD); // read GRAM (void)spiread(); //dummy read uint8_t r, g, b; uint16_t len = (x2-x1+1)*(y2-y1+1); uint16_t ret = len; mSPI.dmaTransfer(buf, buf, len*3); cs_set(); mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT)); return ret; } uint8_t Adafruit_ILI9341_STM::readcommand8(uint8_t c, uint8_t index) { // the SPI clock must be set lower mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT)); writecommand(c); uint8_t r = spiread(); cs_set(); mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT)); return r; } /* uint16_t Adafruit_ILI9341_STM::readcommand16(uint8_t c) { digitalWrite(_dc, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! uint16_t r = spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } uint32_t Adafruit_ILI9341_STM::readcommand32(uint8_t c) { digitalWrite(_dc, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! dummyclock(); dummyclock(); uint32_t r = spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } */