/* See rights and use declaration in License.h This library has been modified for the Maple Mini. Includes DMA transfers on DMA1 CH2 and CH3. */ #include #include #include #include #include "pins_arduino.h" #include "wiring_private.h" #include // Using library SPI in folder: D:\Documents\Arduino\hardware\STM32\STM32F1XX\libraries\SPI // Constructor when using software SPI. All output pins are configurable. Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t mosi, int8_t sclk, int8_t rst, int8_t miso) : Adafruit_GFX(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT) { _cs = cs; _dc = dc; _mosi = mosi; _miso = miso; _sclk = sclk; _rst = rst; hwSPI = false; } // Constructor when using hardware SPI. Faster, but must use SPI pins // specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.) Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t rst) : Adafruit_GFX(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT) { _cs = cs; _dc = dc; _rst = rst; hwSPI = true; _mosi = _sclk = 0; } void Adafruit_ILI9341_STM::spiwrite(uint8_t c) { //Serial.print("0x"); Serial.print(c, HEX); Serial.print(", "); if (hwSPI) { #if defined (__AVR__) uint8_t backupSPCR = SPCR; SPCR = mySPCR; SPDR = c; while (!(SPSR & _BV(SPIF))); SPCR = backupSPCR; #elif defined(TEENSYDUINO) SPI.transfer(c); #elif defined (__STM32F1__) SPI.write(c); #elif defined (__arm__) SPI.setClockDivider(11); // 8-ish MHz (full! speed!) SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.transfer(c); #endif } else { // Fast SPI bitbang swiped from LPD8806 library for (uint8_t bit = 0x80; bit; bit >>= 1) { if (c & bit) { //digitalWrite(_mosi, HIGH); *mosiport |= mosipinmask; } else { //digitalWrite(_mosi, LOW); *mosiport &= ~mosipinmask; } //digitalWrite(_sclk, HIGH); *clkport |= clkpinmask; //digitalWrite(_sclk, LOW); *clkport &= ~clkpinmask; } } } void Adafruit_ILI9341_STM::writecommand(uint8_t c) { *dcport &= ~dcpinmask; *csport &= ~cspinmask; spiwrite(c); *csport |= cspinmask; } void Adafruit_ILI9341_STM::writedata(uint8_t c) { *dcport |= dcpinmask; *csport &= ~cspinmask; spiwrite(c); *csport |= cspinmask; } // If the SPI library has transaction support, these functions // establish settings and protect from interference from other // libraries. Otherwise, they simply do nothing. #ifdef SPI_HAS_TRANSACTION static inline void spi_begin(void) __attribute__((always_inline)); static inline void spi_begin(void) { SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); } static inline void spi_end(void) __attribute__((always_inline)); static inline void spi_end(void) { SPI.endTransaction(); } #else #define spi_begin() #define spi_end() #endif // Rather than a bazillion writecommand() and writedata() calls, screen // initialization commands and arguments are organized in these tables // stored in PROGMEM. The table may look bulky, but that's mostly the // formatting -- storage-wise this is hundreds of bytes more compact // than the equivalent code. Companion function follows. #define DELAY 0x80 // Companion code to the above tables. Reads and issues // a series of LCD commands stored in PROGMEM byte array. void Adafruit_ILI9341_STM::commandList(uint8_t *addr) { uint8_t numCommands, numArgs; uint16_t ms; numCommands = pgm_read_byte(addr++); // Number of commands to follow while (numCommands--) { // For each command... writecommand(pgm_read_byte(addr++)); // Read, issue command numArgs = pgm_read_byte(addr++); // Number of args to follow ms = numArgs & DELAY; // If hibit set, delay follows args numArgs &= ~DELAY; // Mask out delay bit while (numArgs--) { // For each argument... writedata(pgm_read_byte(addr++)); // Read, issue argument } if (ms) { ms = pgm_read_byte(addr++); // Read post-command delay time (ms) if (ms == 255) ms = 500; // If 255, delay for 500 ms delay(ms); } } } void Adafruit_ILI9341_STM::begin(void) { if (_rst > 0) { pinMode(_rst, OUTPUT); digitalWrite(_rst, LOW); } pinMode(_dc, OUTPUT); pinMode(_cs, OUTPUT); csport = portOutputRegister(digitalPinToPort(_cs)); cspinmask = digitalPinToBitMask(_cs); dcport = portOutputRegister(digitalPinToPort(_dc)); dcpinmask = digitalPinToBitMask(_dc); if (hwSPI) { // Using hardware SPI #if defined (__AVR__) SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (full! speed!) SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); mySPCR = SPCR; #elif defined(TEENSYDUINO) SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (full! speed!) SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); #elif defined (__STM32F1__) SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV2); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); #elif defined (__arm__) SPI.begin(); SPI.setClockDivider(11); // 8-ish MHz (full! speed!) SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); #endif } else { pinMode(_sclk, OUTPUT); pinMode(_mosi, OUTPUT); pinMode(_miso, INPUT); clkport = portOutputRegister(digitalPinToPort(_sclk)); clkpinmask = digitalPinToBitMask(_sclk); mosiport = portOutputRegister(digitalPinToPort(_mosi)); mosipinmask = digitalPinToBitMask(_mosi); *clkport &= ~clkpinmask; *mosiport &= ~mosipinmask; } // toggle RST low to reset if (_rst > 0) { digitalWrite(_rst, HIGH); delay(5); digitalWrite(_rst, LOW); delay(20); digitalWrite(_rst, HIGH); delay(150); } /* uint8_t x = readcommand8(ILI9341_RDMODE); Serial.print("\nDisplay Power Mode: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDMADCTL); Serial.print("\nMADCTL Mode: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDPIXFMT); Serial.print("\nPixel Format: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDIMGFMT); Serial.print("\nImage Format: 0x"); Serial.println(x, HEX); x = readcommand8(ILI9341_RDSELFDIAG); Serial.print("\nSelf Diagnostic: 0x"); Serial.println(x, HEX); */ //if(cmdList) commandList(cmdList); if (hwSPI) spi_begin(); writecommand(0xEF); writedata(0x03); writedata(0x80); writedata(0x02); writecommand(0xCF); writedata(0x00); writedata(0XC1); writedata(0X30); writecommand(0xED); writedata(0x64); writedata(0x03); writedata(0X12); writedata(0X81); writecommand(0xE8); writedata(0x85); writedata(0x00); writedata(0x78); writecommand(0xCB); writedata(0x39); writedata(0x2C); writedata(0x00); writedata(0x34); writedata(0x02); writecommand(0xF7); writedata(0x20); writecommand(0xEA); writedata(0x00); writedata(0x00); writecommand(ILI9341_PWCTR1); //Power control writedata(0x23); //VRH[5:0] writecommand(ILI9341_PWCTR2); //Power control writedata(0x10); //SAP[2:0];BT[3:0] writecommand(ILI9341_VMCTR1); //VCM control writedata(0x3e); //�Աȶȵ��� writedata(0x28); writecommand(ILI9341_VMCTR2); //VCM control2 writedata(0x86); //-- writecommand(ILI9341_MADCTL); // Memory Access Control writedata(0x48); writecommand(ILI9341_PIXFMT); writedata(0x55); writecommand(ILI9341_FRMCTR1); writedata(0x00); writedata(0x18); writecommand(ILI9341_DFUNCTR); // Display Function Control writedata(0x08); writedata(0x82); writedata(0x27); writecommand(0xF2); // 3Gamma Function Disable writedata(0x00); writecommand(ILI9341_GAMMASET); //Gamma curve selected writedata(0x01); writecommand(ILI9341_GMCTRP1); //Set Gamma writedata(0x0F); writedata(0x31); writedata(0x2B); writedata(0x0C); writedata(0x0E); writedata(0x08); writedata(0x4E); writedata(0xF1); writedata(0x37); writedata(0x07); writedata(0x10); writedata(0x03); writedata(0x0E); writedata(0x09); writedata(0x00); writecommand(ILI9341_GMCTRN1); //Set Gamma writedata(0x00); writedata(0x0E); writedata(0x14); writedata(0x03); writedata(0x11); writedata(0x07); writedata(0x31); writedata(0xC1); writedata(0x48); writedata(0x08); writedata(0x0F); writedata(0x0C); writedata(0x31); writedata(0x36); writedata(0x0F); writecommand(ILI9341_SLPOUT); //Exit Sleep if (hwSPI) spi_end(); delay(120); if (hwSPI) spi_begin(); writecommand(ILI9341_DISPON); //Display on if (hwSPI) spi_end(); } void Adafruit_ILI9341_STM::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { #if defined (__STM32F1__) writecommand(ILI9341_CASET); // Column addr set *dcport |= dcpinmask; *csport &= ~cspinmask; SPI.setDataSize (SPI_CR1_DFF); SPI.write(x0); SPI.write(x1); // SPI.setDataSize (0); writecommand(ILI9341_PASET); // Row addr set *dcport |= dcpinmask; *csport &= ~cspinmask; // SPI.setDataSize (SPI_CR1_DFF); SPI.write(y0); SPI.write(y1); SPI.setDataSize (0); writecommand(ILI9341_RAMWR); // write to RAM #else writecommand(ILI9341_CASET); // Column addr set writedata(x0 >> 8); writedata(x0 & 0xFF); // XSTART writedata(x1 >> 8); writedata(x1 & 0xFF); // XEND writecommand(ILI9341_PASET); // Row addr set writedata(y0 >> 8); writedata(y0); // YSTART writedata(y1 >> 8); writedata(y1); // YEND writecommand(ILI9341_RAMWR); // write to RAM #endif } void Adafruit_ILI9341_STM::pushColor(uint16_t color) { if (hwSPI) spi_begin(); //digitalWrite(_dc, HIGH); *dcport |= dcpinmask; //digitalWrite(_cs, LOW); *csport &= ~cspinmask; spiwrite(color >> 8); spiwrite(color); *csport |= cspinmask; //digitalWrite(_cs, HIGH); if (hwSPI) spi_end(); } void Adafruit_ILI9341_STM::drawPixel(int16_t x, int16_t y, uint16_t color) { if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return; if (hwSPI) spi_begin(); setAddrWindow(x, y, x + 1, y + 1); *dcport |= dcpinmask; *csport &= ~cspinmask; spiwrite(color >> 8); spiwrite(color); *csport |= cspinmask; if (hwSPI) spi_end(); } void Adafruit_ILI9341_STM::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Rudimentary clipping if ((x >= _width) || (y >= _height || h < 1)) return; if ((y + h - 1) >= _height) h = _height - y; if (h < 2 ) { drawPixel(x, y, color); return; } // if (hwSPI) spi_begin(); setAddrWindow(x, y, x, y + h - 1); *dcport |= dcpinmask; *csport &= ~cspinmask; #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set SPI 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, h, 0); SPI.setDataSize (0); #else uint8_t hi = color >> 8, lo = color; while (h--) { spiwrite(hi); spiwrite(lo); } #endif *csport |= cspinmask; } void Adafruit_ILI9341_STM::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Rudimentary clipping if ((x >= _width) || (y >= _height || w < 1)) return; if ((x + w - 1) >= _width) w = _width - x; if (w < 2 ) { drawPixel(x, y, color); return; } // if (hwSPI) spi_begin(); setAddrWindow(x, y, x + w - 1, y); *dcport |= dcpinmask; *csport &= ~cspinmask; #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, w, 0); SPI.setDataSize (0); #else uint8_t hi = color >> 8, lo = color; while (w--) { spiwrite(hi); spiwrite(lo); } #endif *csport |= cspinmask; //digitalWrite(_cs, HIGH); // if (hwSPI) spi_end(); } void Adafruit_ILI9341_STM::fillScreen(uint16_t color) { #if defined (__STM32F1__) setAddrWindow(0, 0, _width - 1, _height - 1); *dcport |= dcpinmask; *csport &= ~cspinmask; SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, (65535), 0); SPI.dmaSend(lineBuffer, ((_width * _height) - 65535), 0); SPI.setDataSize (0); #else fillRect(0, 0, _width, _height, color); #endif } // fill a rectangle void Adafruit_ILI9341_STM::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // rudimentary clipping (drawChar w/big text requires this) if ((x >= _width) || (y >= _height || h < 1 || w < 1)) return; if ((x + w - 1) >= _width) w = _width - x; if ((y + h - 1) >= _height) h = _height - y; if (w == 1 && h == 1) { drawPixel(x, y, color); return; } if (hwSPI) spi_begin(); setAddrWindow(x, y, x + w - 1, y + h - 1); *dcport |= dcpinmask; *csport &= ~cspinmask; #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; if (w*h <= 65535) { SPI.dmaSend(lineBuffer, (w*h), 0); } else { SPI.dmaSend(lineBuffer, (65535), 0); SPI.dmaSend(lineBuffer, ((w*h) - 65535), 0); } SPI.setDataSize (0); #else uint8_t hi = color >> 8, lo = color; for(y=h; y>0; y--) { for(x=w; x>0; x--) { SPI.write(hi); SPI.write(lo); } } #endif *csport |= cspinmask; if (hwSPI) spi_end(); } /* * Draw lines faster by calculating straight sections and drawing them with fastVline and fastHline. */ #if defined (__STM32F1__) void Adafruit_ILI9341_STM::drawLine(int16_t x0, int16_t y0,int16_t x1, int16_t y1, uint16_t color) { if ((y0 < 0 && y1 <0) || (y0 > _height && y1 > _height)) return; if ((x0 < 0 && x1 <0) || (x0 > _width && x1 > _width)) return; if (x0 < 0) x0 = 0; if (x1 < 0) x1 = 0; if (y0 < 0) y0 = 0; if (y1 < 0) y1 = 0; if (y0 == y1) { if (x1 > x0) { drawFastHLine(x0, y0, x1 - x0 + 1, color); } else if (x1 < x0) { drawFastHLine(x1, y0, x0 - x1 + 1, color); } else { drawPixel(x0, y0, color); } return; } else if (x0 == x1) { if (y1 > y0) { drawFastVLine(x0, y0, y1 - y0 + 1, color); } else { drawFastVLine(x0, y1, y0 - y1 + 1, color); } return; } bool steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } int16_t xbegin = x0; lineBuffer[0] = color; *csport &= ~cspinmask; if (steep) { for (; x0 <= x1; x0++) { err -= dy; if (err < 0) { int16_t len = x0 - xbegin; if (len) { drawFastVLine (y0, xbegin, len + 1, color); //writeVLine_cont_noCS_noFill(y0, xbegin, len + 1); } else { drawPixel(y0, x0, color); //writePixel_cont_noCS(y0, x0, color); } xbegin = x0 + 1; y0 += ystep; err += dx; } } if (x0 > xbegin + 1) { //writeVLine_cont_noCS_noFill(y0, xbegin, x0 - xbegin); drawFastVLine(y0, xbegin, x0 - xbegin, color); } } else { for (; x0 <= x1; x0++) { err -= dy; if (err < 0) { int16_t len = x0 - xbegin; if (len) { drawFastHLine(xbegin, y0, len + 1, color); //writeHLine_cont_noCS_noFill(xbegin, y0, len + 1); } else { drawPixel(x0, y0, color); //writePixel_cont_noCS(x0, y0, color); } xbegin = x0 + 1; y0 += ystep; err += dx; } } if (x0 > xbegin + 1) { //writeHLine_cont_noCS_noFill(xbegin, y0, x0 - xbegin); drawFastHLine(xbegin, y0, x0 - xbegin, color); } } *csport |= cspinmask; } #endif // Pass 8-bit (each) R,G,B, get back 16-bit packed color uint16_t Adafruit_ILI9341_STM::color565(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } #define MADCTL_MY 0x80 #define MADCTL_MX 0x40 #define MADCTL_MV 0x20 #define MADCTL_ML 0x10 #define MADCTL_RGB 0x00 #define MADCTL_BGR 0x08 #define MADCTL_MH 0x04 void Adafruit_ILI9341_STM::setRotation(uint8_t m) { if (hwSPI) spi_begin(); writecommand(ILI9341_MADCTL); rotation = m % 4; // can't be higher than 3 switch (rotation) { case 0: writedata(MADCTL_MX | MADCTL_BGR); _width = ILI9341_TFTWIDTH; _height = ILI9341_TFTHEIGHT; break; case 1: writedata(MADCTL_MV | MADCTL_BGR); _width = ILI9341_TFTHEIGHT; _height = ILI9341_TFTWIDTH; break; case 2: writedata(MADCTL_MY | MADCTL_BGR); _width = ILI9341_TFTWIDTH; _height = ILI9341_TFTHEIGHT; break; case 3: writedata(MADCTL_MX | MADCTL_MY | MADCTL_MV | MADCTL_BGR); _width = ILI9341_TFTHEIGHT; _height = ILI9341_TFTWIDTH; break; } if (hwSPI) spi_end(); } void Adafruit_ILI9341_STM::invertDisplay(boolean i) { if (hwSPI) spi_begin(); writecommand(i ? ILI9341_INVON : ILI9341_INVOFF); if (hwSPI) spi_end(); } ////////// stuff not actively being used, but kept for posterity uint8_t Adafruit_ILI9341_STM::spiread(void) { uint8_t r = 0; if (hwSPI) { #if defined (__AVR__) uint8_t backupSPCR = SPCR; SPCR = mySPCR; SPDR = 0x00; while (!(SPSR & _BV(SPIF))); r = SPDR; SPCR = backupSPCR; #elif defined(TEENSYDUINO) r = SPI.transfer(0x00); #elif defined (__STM32F1__) r = SPI.transfer(0x00); #elif defined (__arm__) SPI.setClockDivider(11); // 8-ish MHz (full! speed!) SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); r = SPI.transfer(0x00); #endif } else { for (uint8_t i = 0; i < 8; i++) { digitalWrite(_sclk, LOW); digitalWrite(_sclk, HIGH); r <<= 1; if (digitalRead(_miso)) r |= 0x1; } } //Serial.print("read: 0x"); Serial.print(r, HEX); return r; } uint8_t Adafruit_ILI9341_STM::readdata(void) { digitalWrite(_dc, HIGH); digitalWrite(_cs, LOW); uint8_t r = spiread(); digitalWrite(_cs, HIGH); return r; } uint8_t Adafruit_ILI9341_STM::readcommand8(uint8_t c, uint8_t index) { if (hwSPI) spi_begin(); digitalWrite(_dc, LOW); // command digitalWrite(_cs, LOW); spiwrite(0xD9); // woo sekret command? digitalWrite(_dc, HIGH); // data spiwrite(0x10 + index); digitalWrite(_cs, HIGH); digitalWrite(_dc, LOW); digitalWrite(_sclk, LOW); digitalWrite(_cs, LOW); spiwrite(c); digitalWrite(_dc, HIGH); uint8_t r = spiread(); digitalWrite(_cs, HIGH); if (hwSPI) spi_end(); return r; } /* uint16_t Adafruit_ILI9341_STM::readcommand16(uint8_t c) { digitalWrite(_dc, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! uint16_t r = spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } uint32_t Adafruit_ILI9341_STM::readcommand32(uint8_t c) { digitalWrite(_dc, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! dummyclock(); dummyclock(); uint32_t r = spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } */