

http://www.RinkyDinkElectronics.com/ (C)2015 Rinky-Dink Electronics, Henning Karlsen

OLED_I2C

Arduino and chipKit library for I2C 128x64 pixel SSD1306 OLEDs

Manual

Library Manual: OLED_I2C Page 2

Introduction:
This library has been made to make it easy to use 128x64 pixel OLED displays based on the
SSD1306 controller chip with an Arduino or a chipKit.

This library will default to I2C Fast Mode (400 KHz) when using the hardware I2C interface.

The library has not been tested in combination with the Wire library and I have no idea if
they can share pins. Do not send me any questions about this. If you experience problems with
pin-sharing you can move the displays SDA and SCL pins to any available pins on your
development board. This library will in this case fall back to a software-based, TWI-/I2C-like
protocol which will require exclusive access to the pins used.

If you are using a chipKit Uno32 or uC32 and you want to use the hardware I2C interface you
must remember to set the JP6 and JP8 jumpers to the I2C position (closest to the analog pins).

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: OLED_I2C Page 3

Defined Literals:

Alignment
For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Included Fonts:

TinyFont

Charactersize:

Number of characters:
 4x6 pixels
95

SmallFont

Charactersize:

Number of characters:
 6x8 pixels
95

MediumNumbers

Charactersize:

Number of characters:
 12x16 pixels
13

BigNumbers

Charactersize:

Number of characters:
 14x24 pixels
13

Library Manual: OLED_I2C Page 4

Functions:

OLED(Data, Clock, [Reset]);
The main class constructor.

Parameters: Data: Pin for Data transfer

Clock: Pin for Clock signal
Reset: Pin for Reset <optional>

Usage: OLED myOLED(SDA, SCL); // Start an instance of the OLED class with the hardware TWI/I2C and no reset

begin();

Initialize the display.

Parameters: None

Usage: myOLED.begin(); // Initialize the display

Notes: This will reset (if a reset pin is used) and clear the display.

setBrightness(value);

Set the brightness of the display.

Parameters: value: Specify a value to use for brightness (0-255)

Usage: myOLED.setBrightness(207); // Sets the brightness to the default value of 207

Notes: Note that the span of the adjustable brightness is quite small and might not be noticeable

Library Manual: OLED_I2C Page 5

update();
Copy the screen buffer to the screen.
This is the only command, except invert() and setBrightness(), that will make anything happen on the physical screen. All
other commands only modify the screen buffer.

Parameters: None

Usage: myOLED.update(); // Copy the screen buffer to the screen

Notes: Remember to call update() after you have updated the screen buffer.

clrScr();

Clear the screen buffer.

Parameters: None

Usage: myOLED.clrScr(); // Clear the screen buffer

fillScr();

Fill the screen buffer.

Parameters: None

Usage: myOLED.fillScr(); // Fill the screen buffer

invert(mode);

Set inversion of the display on or off.

Parameters: mode: true - Invert the display

 false – Normal display

Usage: myOLED.invert(true); // Set display inversion on

setPixel(x, y);

Turn on the specified pixel in the screen buffer.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel

Usage: myOLED.setPixel(0, 0); // Turn on the upper left pixel (in the screen buffer)

clrPixel(x, y);

Turn off the specified pixel in the screen buffer.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel

Usage: myOLED.clrPixel(0, 0); // Turn off the upper left pixel (in the screen buffer)

invPixel(x, y);

Invert the state of the specified pixel in the screen buffer.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel

Usage: myOLED.invPixel(0, 0); // Invert the upper left pixel (in the screen buffer)

Library Manual: OLED_I2C Page 6

print(st, x, y);
Print a string at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character
y: y-coordinate of the upper, left corner of the first character

Usage: myOLED.print(“Hello World”,CENTER,0); // Print “Hello World” centered at the top of the screen (in
the screen buffer)

Notes: The string can be either a char array or a String object

printNumI(num, x, y[, length[, filler]]);

Print an integer number at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign
length: <optional>
 minimum number of digits/characters (including sign) to display
filler: <optional>
 filler character to use to get the minimum length. The character will be inserted in front
 of the number, but after the sign. Default is ' ' (space).

Usage: myOLED.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen (in the
screen buffer)

printNumF(num, dec, x, y[, divider[, length[, filler]]]);

Print a floating-point number at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign
divider: <Optional>
 Single character to use as decimal point. Default is '.'
length: <optional>
 minimum number of digits/characters (including sign) to display
filler: <optional>
 filler character to use to get the minimum length. The character will be inserted in front
 of the number, but after the sign. Default is ' ' (space).

Usage: myOLED.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
(in the screen buffer)

Notes: Supported range depends on the number of fractional digits used.
Approx range is +/- 2*(10^(9-dec))

invertText(mode);

Select if text printed with print(), printNumI() and printNumF() should be inverted.

Parameters: mode: true - Invert the text
 false – Normal text

Usage: myOLED.invertText(true); // Turn on inverted printing

Notes: SetFont() will turn off inverted printing

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().

Parameters: fontname: Name of the array containing the font you wish to use

Usage: myOLED.setFont(SmallFont); // Select the font called SmallFont

Notes: You must declare the font-array as an external or include it in your sketch.

Library Manual: OLED_I2C Page 7

drawLine(x1, y1, x2, y2);
Draw a line between two points in the screen buffer.

Parameters: x1: x-coordinate of the start-point

y1: y-coordinate of the start-point
x2: x-coordinate of the end-point
y2: y-coordinate of the end-point

Usage: myOLED.drawLine(0,0,127,63); // Draw a line from the upper left to the lower right corner

clrLine(x1, y1, x2, y2);

Clear a line between two points in the screen buffer.

Parameters: x1: x-coordinate of the start-point

y1: y-coordinate of the start-point
x2: x-coordinate of the end-point
y2: y-coordinate of the end-point

Usage: myOLED.clrLine(0,0,127,63); // Clear a line from the upper left to the lower right corner

drawRect(x1, y1, x2, y2);

Draw a rectangle between two points in the screen buffer.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myOLED.drawRect(64,32,127,63); // Draw a rectangle in the lower right corner of the screen

clrRect(x1, y1, x2, y2);

Clear a rectangle between two points in the screen buffer.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myOLED.clrRect(64,32,127,63); // Clear a rectangle in the lower right corner of the screen

drawRoundRect(x1, y1, x2, y2);

Draw a rectangle with slightly rounded corners between two points in the screen buffer.
The minimum size is 5 pixels in both directions. If a smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myOLED.drawRoundRect(0,0,63,31); // Draw a rounded rectangle in the upper left corner of the screen

clrRoundRect(x1, y1, x2, y2);

Clear a rectangle with slightly rounded corners between two points in the screen buffer.
The minimum size is 5 pixels in both directions. If a smaller size is requested the rectangle will not be drawn/cleared.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myOLED.clrRoundRect(0,0,63,31); // Clear a rounded rectangle in the upper left corner of the screen

drawCircle(x, y, radius);

Draw a circle with a specified radius in the screen buffer.

Parameters: x: x-coordinate of the center of the circle

y: y-coordinate of the center of the circle
radius: radius of the circle in pixels

Usage: myOLED.drawCircle(63,31,20); // Draw a circle in the middle of the screen with a radius of 20 pixels

clrCircle(x, y, radius);

Clear a circle with a specified radius in the screen buffer.

Parameters: x: x-coordinate of the center of the circle

y: y-coordinate of the center of the circle
radius: radius of the circle in pixels

Usage: myOLED.clrCircle(63,31,20); // Clear a circle in the middle of the screen with a radius of 20 pixels

Library Manual: OLED_I2C Page 8

drawBitmap (x, y, data, sx, sy);
Draw a bitmap in the screen buffer.

Parameters: x: x-coordinate of the upper, left corner of the bitmap

y: y-coordinate of the upper, left corner of the bitmap
data: array containing the bitmap-data
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels

Usage: myOLED.drawBitmap(0, 0, bitmap, 32, 32); // Draw a 32x32 pixel bitmap in the upper left corner

Notes: You can use the online-tool “ImageConverter Mono” to convert pictures into compatible arrays.
The online-tool can be found on the Rinky-Dink Electronics website.
Requires that you #include <avr/pgmspace.h> when using an Arduino other than Arduino Due.
While the bitmap data MUST be a multiple of 8 pixels high you do not need to display all the rows.
Example: If the bitmap is 24 pixels high and you specify sy=20 only the upper 20 rows will be
displayed.

