Arduino_STM32/STM32F1/libraries/USBComposite/USBCompositeSerial.cpp

275 lines
7.1 KiB
C++

/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include <USBCompositeSerial.h>
#include <string.h>
#include <stdint.h>
#include <libmaple/nvic.h>
#include <libmaple/usb.h>
#include <string.h>
#include <libmaple/iwdg.h>
#include "usb_composite_serial.h"
#define USB_TIMEOUT 50
#if defined(SERIAL_USB)
static void rxHook(unsigned, void*);
static void ifaceSetupHook(unsigned, void*);
#endif
bool USBCompositeSerial::init(USBCompositeSerial* me) {
(void)me;
#if defined(SERIAL_USB)
composite_cdcacm_set_hooks(USBHID_CDCACM_HOOK_RX, rxHook);
composite_cdcacm_set_hooks(USBHID_CDCACM_HOOK_IFACE_SETUP, ifaceSetupHook);
#endif
return true;
}
void USBCompositeSerial::begin(long speed) {
(void)speed;
if (!enabled) {
USBComposite.clear();
registerComponent();
USBComposite.begin();
enabled = true;
}
}
void USBCompositeSerial::end() {
if (enabled) {
USBComposite.end();
enabled = false;
}
}
size_t USBCompositeSerial::write(uint8 ch) {
size_t n = 0;
this->write(&ch, 1);
return n;
}
size_t USBCompositeSerial::write(const char *str) {
size_t n = 0;
this->write((const uint8*)str, strlen(str));
return n;
}
size_t USBCompositeSerial::write(const uint8 *buf, uint32 len)
{
size_t n = 0;
if (!this->isConnected() || !buf) {
return 0;
}
uint32 txed = 0;
while (txed < len) {
txed += composite_cdcacm_tx((const uint8*)buf + txed, len - txed);
}
return n;
}
int USBCompositeSerial::available(void) {
return composite_cdcacm_data_available();
}
int USBCompositeSerial::peek(void)
{
uint8 b;
if (composite_cdcacm_peek(&b, 1)==1)
{
return b;
}
else
{
return -1;
}
}
bool USBCompositeSerial::registerComponent() {
return USBComposite.add(&usbSerialPart, this, (USBPartInitializer)&USBCompositeSerial::init);
}
void USBCompositeSerial::flush(void)
{
/*Roger Clark. Rather slow method. Need to improve this */
uint8 b;
while(composite_cdcacm_data_available())
{
this->read(&b, 1);
}
return;
}
uint32 USBCompositeSerial::read(uint8 * buf, uint32 len) {
uint32 rxed = 0;
while (rxed < len) {
rxed += composite_cdcacm_rx(buf + rxed, len - rxed);
}
return rxed;
}
/* Blocks forever until 1 byte is received */
int USBCompositeSerial::read(void) {
uint8 b;
/*
this->read(&b, 1);
return b;
*/
if (composite_cdcacm_rx(&b, 1)==0)
{
return -1;
}
else
{
return b;
}
}
uint8 USBCompositeSerial::pending(void) {
return composite_cdcacm_get_pending();
}
uint8 USBCompositeSerial::isConnected(void) {
return usb_is_connected(USBLIB) && usb_is_configured(USBLIB) && composite_cdcacm_get_dtr();
}
uint8 USBCompositeSerial::getDTR(void) {
return composite_cdcacm_get_dtr();
}
uint8 USBCompositeSerial::getRTS(void) {
return composite_cdcacm_get_rts();
}
#if defined(SERIAL_USB)
enum reset_state_t {
DTR_UNSET,
DTR_HIGH,
DTR_NEGEDGE,
DTR_LOW
};
static reset_state_t reset_state = DTR_UNSET;
static void ifaceSetupHook(unsigned hook, void *requestvp) {
(void)hook;
uint8 request = *(uint8*)requestvp;
// Ignore requests we're not interested in.
if (request != USBHID_CDCACM_SET_CONTROL_LINE_STATE) {
return;
}
// We need to see a negative edge on DTR before we start looking
// for the in-band magic reset byte sequence.
uint8 dtr = composite_cdcacm_get_dtr();
switch (reset_state) {
case DTR_UNSET:
reset_state = dtr ? DTR_HIGH : DTR_LOW;
break;
case DTR_HIGH:
reset_state = dtr ? DTR_HIGH : DTR_NEGEDGE;
break;
case DTR_NEGEDGE:
reset_state = dtr ? DTR_HIGH : DTR_LOW;
break;
case DTR_LOW:
reset_state = dtr ? DTR_HIGH : DTR_LOW;
break;
}
if ((composite_cdcacm_get_baud() == 1200) && (reset_state == DTR_NEGEDGE)) {
iwdg_init(IWDG_PRE_4, 10);
while (1);
}
}
#define RESET_DELAY 100000
static void wait_reset(void) {
delay_us(RESET_DELAY);
nvic_sys_reset();
}
#define STACK_TOP 0x20000800
#define EXC_RETURN 0xFFFFFFF9
#define DEFAULT_CPSR 0x61000000
static void rxHook(unsigned hook, void *ignored) {
(void)hook;
(void)ignored;
/* FIXME this is mad buggy; we need a new reset sequence. E.g. NAK
* after each RX means you can't reset if any bytes are waiting. */
if (reset_state == DTR_NEGEDGE) {
reset_state = DTR_LOW;
if (composite_cdcacm_data_available() >= 4) {
// The magic reset sequence is "1EAF".
static const uint8 magic[4] = {'1', 'E', 'A', 'F'};
uint8 chkBuf[4];
// Peek at the waiting bytes, looking for reset sequence,
// bailing on mismatch.
composite_cdcacm_peek_ex(chkBuf, composite_cdcacm_data_available() - 4, 4);
for (unsigned i = 0; i < sizeof(magic); i++) {
if (chkBuf[i] != magic[i]) {
return;
}
}
// Got the magic sequence -> reset, presumably into the bootloader.
// Return address is wait_reset, but we must set the thumb bit.
uintptr_t target = (uintptr_t)wait_reset | 0x1;
asm volatile("mov r0, %[stack_top] \n\t" // Reset stack
"mov sp, r0 \n\t"
"mov r0, #1 \n\t"
"mov r1, %[target_addr] \n\t"
"mov r2, %[cpsr] \n\t"
"push {r2} \n\t" // Fake xPSR
"push {r1} \n\t" // PC target addr
"push {r0} \n\t" // Fake LR
"push {r0} \n\t" // Fake R12
"push {r0} \n\t" // Fake R3
"push {r0} \n\t" // Fake R2
"push {r0} \n\t" // Fake R1
"push {r0} \n\t" // Fake R0
"mov lr, %[exc_return] \n\t"
"bx lr"
:
: [stack_top] "r" (STACK_TOP),
[target_addr] "r" (target),
[exc_return] "r" (EXC_RETURN),
[cpsr] "r" (DEFAULT_CPSR)
: "r0", "r1", "r2");
/* Can't happen. */
ASSERT_FAULT(0);
}
}
}
#endif
USBCompositeSerial CompositeSerial;