Arduino_STM32/STM32F1/libraries/SDIO/SdioF1.cpp

1308 lines
42 KiB
C++

/* Arduino SdCard Library
* Copyright (C) 2016 by William Greiman
*
* This file is part of the Arduino SdSpiCard Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdSpiCard Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdioF1.h"
#include <libmaple/sdio.h>
#include <libmaple/dma.h>
#include <boards.h>
#define USE_DEBUG_MODE 0
#define USE_YIELD 0
//==============================================================================
//#define SDHC_PROCTL_DTW_4BIT 0x01
#define CMD8_RETRIES 10
#define BUSY_TIMEOUT_MILLIS 1000
//==============================================================================
#define CMD_RESP_NONE SDIO_CMD_WAIT_NO_RESP
#define CMD_RESP_R1 SDIO_CMD_WAIT_SHORT_RESP // normal response
#define CMD_RESP_R1b SDIO_CMD_WAIT_SHORT_RESP // normal response + busy data line (optional)
#define CMD_RESP_R2 SDIO_CMD_WAIT_LONG_RESP // CID, CSD
#define CMD_RESP_R3 SDIO_CMD_WAIT_SHORT_RESP // OCR register, response to ACMD41
#define CMD_RESP_R6 SDIO_CMD_WAIT_SHORT_RESP // published RCA response, response to CMD3
#define CMD_RESP_R7 SDIO_CMD_WAIT_SHORT_RESP // response to CMD8
#define CMD0_XFERTYP (uint16_t)( CMD0 | CMD_RESP_NONE )
#define CMD2_XFERTYP (uint16_t)( CMD2 | CMD_RESP_R2 )
#define CMD3_XFERTYP (uint16_t)( CMD3 | CMD_RESP_R6 )
#define CMD6_XFERTYP (uint16_t)( CMD6 | CMD_RESP_R1 )
#define ACMD6_XFERTYP (uint16_t)( ACMD6 | CMD_RESP_R1 )
#define CMD7_XFERTYP (uint16_t)( CMD7 | CMD_RESP_R1b )
#define CMD8_XFERTYP (uint16_t)( CMD8 | CMD_RESP_R7 )
#define CMD9_XFERTYP (uint16_t)( CMD9 | CMD_RESP_R2 )
#define CMD10_XFERTYP (uint16_t)( CMD10 | CMD_RESP_R2 )
#define CMD12_XFERTYP (uint16_t)( CMD12 | CMD_RESP_R1b )
#define CMD13_XFERTYP (uint16_t)( CMD13 | CMD_RESP_R1 )
#define CMD17_XFERTYP (uint16_t)( CMD17 | CMD_RESP_R1 )
#define CMD18_XFERTYP (uint16_t)( CMD18 | CMD_RESP_R1 )
#define ACMD23_XFERTYP (uint16_t)( ACMD23 | CMD_RESP_R1 )
#define CMD24_XFERTYP (uint16_t)( CMD24 | CMD_RESP_R1 )
#define CMD25_XFERTYP (uint16_t)( CMD25 | CMD_RESP_R1 )
#define CMD32_XFERTYP (uint16_t)( CMD32 | CMD_RESP_R1 )
#define CMD33_XFERTYP (uint16_t)( CMD32 | CMD_RESP_R1 )
#define CMD38_XFERTYP (uint16_t)( CMD38 | CMD_RESP_R1b )
#define ACMD41_XFERTYP (uint16_t)( ACMD41 | CMD_RESP_R3 )
/*
* ACMD42 to enable disable CD/D3 pull up. Needed for 4bit mode.
*/
const uint8_t ACMD42 = 0X2A;
#define ACMD42_XFERTYP (uint16_t)( ACMD41 | CMD_RESP_R1 )
#define CMD55_XFERTYP (uint16_t)( CMD55 | CMD_RESP_R1 )
//=============================================================================
//static void enableGPIO(bool enable);
//static void enableDmaIrs();
static void initSDHC(void);
static bool isBusyCMD13(void);
static bool isBusyTransferComplete(void);
static bool isBusyTransferCRC(void);
//static bool isBusyCommandComplete();
//static bool isBusyCommandInhibit();
static bool readReg16(uint32_t xfertyp, void* data);
//static void setSdclk(uint32_t kHzMax);
static bool yieldTimeout(bool (*fcn)(void));
static bool yieldDmaStatus(void);
static bool waitDmaStatus(void);
static bool waitTimeout(bool (*fcn)(void));
//-----------------------------------------------------------------------------
static const uint32_t IDLE_STATE = 0;
static const uint32_t READ_STATE = 1;
static const uint32_t WRITE_STATE = 2;
volatile uint32_t m_curLba;
volatile uint32_t m_limitLba;
volatile uint8_t m_curState;
volatile uint64_t m_totalReadLbas = 0;
volatile uint64_t m_readErrors = 0;
volatile uint64_t m_writeErrors = 0;
volatile uint64_t m_totalWriteLbas = 0;
#define TRX_RD 0
#define TRX_WR 1
static uint8_t m_dir = TRX_RD;
static bool (*m_busyFcn)() = 0;
static bool m_initDone = false;
//static uint32_t m_lba; // for raw non-DMA read(write)Start, read(write)Data, read(write)Stop
static uint32_t m_cnt; // for raw non-DMA read(write)Start, read(write)Data, read(write)Stop
static bool m_version2;
static bool m_highCapacity;
static uint8_t m_errorCode = SD_CARD_ERROR_INIT_NOT_CALLED;
static uint32_t m_errorLine = 0;
static uint32_t m_rca;
//static volatile bool m_dmaBusy = false;
static volatile uint32_t m_irqstat;
static uint32_t m_sdClkKhz = 0;
static uint32_t m_ocr;
static cid_t m_cid;
static csd_t m_csd;
static uint32_t t = 0;
uint32_t aligned[128]; // temporary buffer for misaligned buffers
//=============================================================================
#if USE_DEBUG_MODE
#define DBG_PRINT() { \
Serial.write('_'); Serial.print(__FUNCTION__); Serial.write('_'); Serial.print(__LINE__); Serial.print(": "); \
Serial.print("DMA->ISR: 0x"); Serial.print(SDIO_DMA_DEV->regs->ISR, HEX); \
/*Serial.print("DMA->HISR: "); Serial.println(SDIO_DMA_DEV->regs->HISR, HEX);*/ \
Serial.print(", DMA->CCR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CCR4, HEX); \
Serial.print(", DMA->CNDTR: "); Serial.print(SDIO_DMA_DEV->regs->CNDTR4,DEC); \
/**/Serial.print(", DMA->CPAR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CPAR4, HEX); \
/**/Serial.print(", DMA->CMAR: 0x"); Serial.print(SDIO_DMA_DEV->regs->CMAR4, HEX); \
Serial.print(", DMA->IFCR: 0x"); Serial.print(SDIO_DMA_DEV->regs->IFCR, HEX); \
\
/*Serial.print(" SDIO->POWER: "); Serial.println(SDIO->POWER, HEX);*/ \
Serial.print(", SDIO->CLKCR: 0x"); Serial.print(SDIO->CLKCR, HEX); \
Serial.print(", SDIO->DTIMER: 0x"); Serial.print(SDIO->DTIMER, HEX); \
Serial.print(", SDIO->DCTRL: 0x"); Serial.print(SDIO->DCTRL, HEX); \
/**/Serial.print(", SDIO->DLEN: "); Serial.print(SDIO->DLEN); \
Serial.print(", SDIO->DCOUNT: "); Serial.print(SDIO->DCOUNT); \
Serial.print(", SDIO->STA: 0x"); Serial.println(SDIO->STA, HEX); \
Serial.print(", SDIO->FIFOCNT: "); Serial.println(SDIO->FIFOCNT); \
/*delay(1);*/ \
}
#define DBG_PIN PD0
#else // USE_DEBUG_MODE
#define DBG_PRINT()
#endif // USE_DEBUG_MODE
/*****************************************************************************/
static void _panic(const char *message, uint32_t code)
{
Serial.print(message); Serial.println(code, HEX);
//Block the execution with blinky leds
while (1) {delay (1);};
/*
pinMode(BOARD_LED_PIN, OUTPUT);
//pinMode(BOARD_LED2_PIN, OUTPUT);
while (1) {
digitalWrite(BOARD_LED_PIN, HIGH);
//digitalWrite(BOARD_LED2_PIN, LOW);
delay(250);
digitalWrite(BOARD_LED_PIN, LOW);
//digitalWrite(BOARD_LED2_PIN, HIGH);
delay(250);
}
*/
}
/*===========================================================================*/
/*
* Todo: Change the DMA parts so it works with F1 DMA, but since yield is disabled, we can ignore it for now.
*/
#if USE_YIELD
void yield(void)
{
uint32_t val = SDIO->STA;
if ( val & SDIO_STA_TRX_ERROR_FLAGS ) {
Serial.print("SDIO ERROR:: SDIO->CLKCR: "); Serial.print(SDIO->CLKCR, HEX); \
Serial.print(", SDIO->DTIMER: "); Serial.print(SDIO->DTIMER, HEX); \
Serial.print(", SDIO->DCTRL: "); Serial.print(SDIO->DCTRL, HEX); \
Serial.print(", SDIO->DLEN: "); Serial.print(SDIO->DLEN); \
Serial.print(", SDIO->DCOUNT: "); Serial.print(SDIO->DCOUNT); \
Serial.print(", SDIO->STA: "); Serial.print(SDIO->STA, HEX); \
Serial.print(", SDIO->RESP0: "); Serial.println(SDIO->RESP[0], HEX); \
if (val & SDIO_STA_STBITERR) Serial.print(" STBITERR");
if (val & SDIO_STA_RXOVERR) Serial.print(" RXOVERR");
if (val & SDIO_STA_TXUNDERR) Serial.print(" TXUNDERR");
if (val & SDIO_STA_DTIMEOUT) Serial.print(" DTIMEOUT");
if (val & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL");
_panic(" - SDIO: Data Transmission Error ", val);
}
val = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
/* if ( val & DMA_ISR_FEIF ) {
val ^= DMA_ISR_FEIF;
dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
}
*/
if ( val ) {
if (val & DMA_ISR_TEIF) Serial.print(" TEIF");
//if (val & DMA_ISR_DMEIF) Serial.print(" DMEIF");
//if (val & DMA_ISR_FEIF) Serial.print(" FEIF");
_panic(" - DMA: Data Transmission Error ", val);
}
//Serial.write('.');
}
#endif
//=============================================================================
// Error function and macro.
inline bool setSdErrorCode(uint8_t code, uint32_t line) {
m_errorCode = code;
m_errorLine = line;
return false; // setSdErrorCode
}
#define sdError(code) setSdErrorCode(code, __LINE__)
//=============================================================================
/* ISR
void sdhc_isr() {
SDHC_IRQSIGEN = 0;
m_irqstat = SDHC_IRQSTAT;
SDHC_IRQSTAT = m_irqstat;
m_dmaBusy = false;
}*/
//=============================================================================
// Static functions.
//-----------------------------------------------------------------------------
static bool cardCommand(uint16_t xfertyp, uint32_t arg)
{
#if USE_DEBUG_MODE==2
Serial.print("cardCommand: "); Serial.print(xfertyp&SDIO_CMD_CMDINDEX); Serial.print(", arg: "); Serial.print(arg, HEX);
#endif
uint8_t resp = sdio_cmd_send(xfertyp, arg); // returns non-zero if OK, zero if it fails
#if USE_DEBUG_MODE==2
Serial.print(", resp: "); Serial.print(resp, HEX);
Serial.print(", SDIO->STA: "); Serial.print(SDIO->STA, HEX); Serial.print(", cmd_resp: "); Serial.print(SDIO->RESP[0], HEX);
if ( (xfertyp&SDIO_CMD_WAIT_LONG_RESP)==SDIO_CMD_WAIT_LONG_RESP ) {
Serial.print(", "); Serial.print(SDIO->RESP[1], HEX); Serial.print(", "); Serial.print(SDIO->RESP[2], HEX); Serial.print(", "); Serial.println(SDIO->RESP[3], HEX);
} else Serial.println();
#endif
return resp; // return non-zero when OK
}
//-----------------------------------------------------------------------------
static bool cardAcmd(uint32_t rca, uint32_t xfertyp, uint32_t arg) {
return cardCommand(CMD55_XFERTYP, rca) && cardCommand((uint16_t)xfertyp, arg);
}
/*---------------------------------------------------------------------------*/
static bool cardCMD6(uint32_t arg, uint8_t* status) {
// CMD6 returns 64 bytes.
// use polling only for the moment
if (waitTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
// get the 64 bytes over data lines
sdio_setup_transfer(80000, 64, (SDIO_BLOCKSIZE_64 | SDIO_DIR_RX | SDIO_DCTRL_DTEN));
cardCommand(CMD6_XFERTYP, arg);
// wait data Rx response
if (waitTimeout(isBusyTransferComplete)) {
return sdError(SD_CARD_ERROR_CMD6);
}
DBG_PRINT();
// copy 64 bytes as 16 words from FIFO to buffer
for (uint8_t i=0; i<16; i++) {
*(uint32_t*)(&status[i<<2]) = SDIO->FIFO;
}
//SDIO->DCTRL = 0; // disable data controller
#if USE_DEBUG_MODE
Serial.print("read data: "); for (uint8_t i=0; i<17; i++) { Serial.print(status[i], HEX); Serial.print(", "); } Serial.println();
#endif
return true;
}
//-----------------------------------------------------------------------------
static void initSDHC(void)
{
sdio_begin();
DBG_PRINT();
}
/*---------------------------------------------------------------------------*/
static bool isBusyCMD13(void) {
if (!cardCommand(CMD13_XFERTYP, m_rca)) { // SEND_STATUS
// Caller will timeout.
return true;
}
return !(SDIO->RESP[0] & CARD_STATUS_READY_FOR_DATA);
}
/*
* Returns False if DMA transfer disabled.
* True otherwise
*/
static bool inline isEnabledDMA(void)
{
return dma_is_enabled(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
}
/*
* Returns False if DMA transfer is completed or in error.
* True otherwise
*/
static bool isBusyDMA(void)
{
if (!isEnabledDMA()) return false;
uint8_t isr = dma_get_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
isr &= DMA_ISR_TCIF | DMA_ISR_TEIF;
//if (isr&DMA_ISR_TCIF) dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return !(isr); // ignore transfer error flag
}
/*---------------------------------------------------------------------------*/
/*
* Returns true while the transfer has not completed
* False when it has completed.
*/
static bool isBusyTransferComplete(void)
{
uint32_t mask = SDIO->STA &(SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS);
//#if USE_DEBUG_MODE
if ( mask & SDIO_STA_TRX_ERROR_FLAGS ) {
Serial.print("XFER ERROR: SDIO->STA: "); Serial.print(SDIO->STA, HEX);
if (mask & SDIO_STA_STBITERR) Serial.print(" STBITERR");
if (mask & SDIO_STA_RXOVERR) Serial.print(" RXOVERR");
if (mask & SDIO_STA_TXUNDERR) Serial.print(" TXUNDERR");
if (mask & SDIO_STA_DTIMEOUT) Serial.print(" DTIMEOUT");
if (mask & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL");
Serial.println();
}
//#endif
if (mask) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false;
}
return true;
}
/*
* New function, to follow Reference Manual sequence.
* Returns true if still not confirmed DBCKEND: Data block sent/received (CRC check passed)
* False when it has completed the transfer with CRC check.
*/
static bool isBusyTransferCRC(void)
{
uint32_t mask = SDIO->STA &(SDIO_STA_DBCKEND | SDIO_STA_TRX_ERROR_FLAGS);
#if USE_DEBUG_MODE
if ( mask & SDIO_STA_TRX_ERROR_FLAGS ) {
Serial.print("XFER ERROR: SDIO->STA: "); Serial.print(SDIO->STA, HEX);
if (mask & SDIO_STA_STBITERR) Serial.print(" STBITERR");
if (mask & SDIO_STA_RXOVERR) Serial.print(" RXOVERR");
if (mask & SDIO_STA_TXUNDERR) Serial.print(" TXUNDERR");
if (mask & SDIO_STA_DTIMEOUT) Serial.print(" DTIMEOUT");
if (mask & SDIO_STA_DCRCFAIL) Serial.print(" DCRCFAIL");
Serial.println();
}
#endif
if (mask) {
//dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
//Serial.print("SDIO->STA SDIO_STA_DBCKEND"); Serial.println(SDIO->STA && SDIO_STA_DBCKEND, HEX);
return false;
}
return true;
}
/*---------------------------------------------------------------------------*/
static void trxStart(uint8_t* buf, uint32_t n, uint8_t dir)
{
m_dir = dir;
uint32_t flags = (SDIO_BLOCKSIZE_512 | SDIO_DCTRL_DTEN);
if (dir==TRX_RD) flags |= SDIO_DIR_RX;
// setup SDIO to transfer n blocks of 512 bytes
sdio_setup_transfer(0x00FFFFFF, n, flags);
}
/*---------------------------------------------------------------------------*/
static bool trxStop()
{
if (!cardCommand(CMD12_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD12);
}
/*
* Added this to wait to complete on sync.
*/
if (yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
if ( t ) {
Serial.print(", in "); Serial.println(millis()-t);
t = 0;
}
return true;
}
/*---------------------------------------------------------------------------*/
static bool dmaTrxStart(uint32_t n, uint8_t dir)
{
uint32_t flags = (SDIO_BLOCKSIZE_512 | SDIO_DCTRL_DMAEN | SDIO_DCTRL_DTEN);
if (dir==TRX_RD) flags |= SDIO_DIR_RX;
// setup SDIO to transfer n blocks of 512 bytes
sdio_setup_transfer(0x00FFFFFF, n, flags);
return true;
}
/*
* This one replaces dmaTrxStart, and will just prepare the DMA part, then a new
* one will enable the DMA reception as per the RM.
*/
static bool dmaTrxPrepare(uint8_t* buf, uint32_t n, uint8_t dir)
{
uint32_t flags;
m_dir = dir;
if ((3 & (uint32_t)buf) || n == 0) { // check alignment
_panic("- transferStart: unaligned buffer address ", (uint32_t)buf);
return sdError(SD_CARD_ERROR_DMA);
}
/*
* No point to wait here again if we always wait before calling this.
if (dir==TRX_RD && yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
*/
/*
* Following RM 22.3.2. Setup DMA first, SDIO peripheral next
*
*/
flags = (DMA_MINC_MODE);
// not extra flag if read
if (dir!=TRX_RD) flags |= DMA_FROM_MEM;// write
dma_setup_transfer(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, &SDIO->FIFO, DMA_SIZE_32BITS, buf, DMA_SIZE_32BITS, flags);
dma_set_num_transfers(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, n>>2); // F1 DMA controller counts each word as 1 data item.
//dma_set_fifo_flags(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, (DMA_FCR_DMDIS | DMA_FCR_FTH_FULL)); // disable direct mode | threshold FULL
dma_clear_isr_bits(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
dma_enable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true;
}
/*---------------------------------------------------------------------------*/
static bool dmaTrxEnd(bool multi_block)
{
if(m_curState != READ_STATE){
if ( yieldTimeout(isBusyTransferComplete) ) {
DBG_PRINT();
if (m_dir==TRX_RD)
return sdError(SD_CARD_ERROR_READ_CRC);
else
return sdError(SD_CARD_ERROR_WRITE);
}
}
if ( !yieldDmaStatus() ) {
DBG_PRINT();
return sdError(SD_CARD_ERROR_DMA);
}
if (multi_block) {
return trxStop();
} else {
if ( t ) {
Serial.print(", in "); Serial.println(millis()-t);
t = 0;
}
return true;
}
}
//-----------------------------------------------------------------------------
// Read 16 byte CID or CSD register.
static bool readReg16(uint32_t xfertyp, void* data)
{
// It's not safe to call this function if a multiblock read/write is going on.
if (m_curState != IDLE_STATE) {
return false;
}
uint8_t* d = reinterpret_cast<uint8_t*>(data);
if (!cardCommand(xfertyp, m_rca)) {
return false; // Caller will set errorCode.
}
*(uint32_t*)(&d[0]) = __builtin_bswap32(SDIO->RESP[0]);
*(uint32_t*)(&d[4]) = __builtin_bswap32(SDIO->RESP[1]);
*(uint32_t*)(&d[8]) = __builtin_bswap32(SDIO->RESP[2]);
*(uint32_t*)(&d[12]) = __builtin_bswap32(SDIO->RESP[3]);
d[15] = 0;
return true;
}
/*---------------------------------------------------------------------------*/
// Return true if timeout occurs.
static bool yieldTimeout(bool (*fcn)()) {
m_busyFcn = fcn;
uint32_t m = millis();
while (fcn()) {
if ((millis() - m) > BUSY_TIMEOUT_MILLIS) {
m_busyFcn = 0;
return true;
}
yield();
}
m_busyFcn = 0;
return false; // Caller will set errorCode.
}
/*---------------------------------------------------------------------------*/
static bool yieldDmaStatus(void)
{
if (yieldTimeout(isBusyDMA)) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false; // Caller will set errorCode.
}
// Did not time out. Disable it and return true.
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true;
}
/*---------------------------------------------------------------------------*/
static bool waitDmaStatus(void)
{
if (waitTimeout(isBusyDMA)) {
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false; // Caller will set errorCode.
}
// Did not time out. Disable it and return true
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return true;
}
/*---------------------------------------------------------------------------*/
// Return true if timeout occurs.
static bool waitTimeout(bool (*fcn)(void)) {
uint32_t m = millis();
while (fcn()) {
if ((millis() - m) > BUSY_TIMEOUT_MILLIS) {
return true;
}
delayMicroseconds(1);
}
return false; // Caller will set errorCode.
}
//=============================================================================
bool SdioCard::begin(void)
{
uint32_t arg;
m_initDone = false;
m_errorCode = SD_CARD_ERROR_NONE;
m_highCapacity = false;
m_version2 = false;
#if USE_DEBUG_MODE
pinMode(DBG_PIN, OUTPUT);
digitalWrite(DBG_PIN, HIGH);
delay(100);
#endif
// initialize controller.
initSDHC();
// initialize DMA device
dma_init(SDIO_DMA_DEV);
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); // Disable DMA in case it was left enabled from a previous use.
/*
* Todo. Check this, channel must be disabled to change DMA priority, and seems like channel is not completing transfers
*/
dma_set_priority(SDIO_DMA_DEV, SDIO_DMA_CHANNEL, DMA_PRIORITY_VERY_HIGH);
if (!cardCommand(CMD0_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD0);
}
delay(50); //small pause after reset command
// Try several times for case of reset delay.
for (uint32_t i = 0; i < CMD8_RETRIES; i++) {
if (cardCommand(CMD8_XFERTYP, 0X1AA)) {
if (SDIO->RESP[0] != 0X1AA) {
return sdError(SD_CARD_ERROR_CMD8);
}
m_version2 = true;
break;
}
}
arg = m_version2 ? 0X50300000 : 0x00300000;
uint32_t m = millis();
do {
if (!cardAcmd(0, ACMD41_XFERTYP, arg) ||
((millis() - m) > BUSY_TIMEOUT_MILLIS)) {
return sdError(SD_CARD_ERROR_ACMD41);
}
} while ((SDIO->RESP[0] & 0x80000000) == 0);
m_ocr = SDIO->RESP[0];
if (m_ocr & 0x40000000) {
// Is high capacity.
m_highCapacity = true;
}
if (!cardCommand(CMD2_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD2);
}
if (!cardCommand(CMD3_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD3);
}
m_rca = SDIO->RESP[0] & 0xFFFF0000;
if (!readReg16(CMD9_XFERTYP, &m_csd)) {
return sdError(SD_CARD_ERROR_CMD9);
}
if (!readReg16(CMD10_XFERTYP, &m_cid)) {
return sdError(SD_CARD_ERROR_CMD10);
}
if (!cardCommand(CMD7_XFERTYP, m_rca)) {
return sdError(SD_CARD_ERROR_CMD7);
}
arg = 0x00; //bit 0, Connect[1]/Disconnect[0] the 50 KOhm pull-up resistor on CD/DAT3
if (!cardAcmd(m_rca, ACMD42_XFERTYP, arg)) {
_panic("*** ACMD42 to disconnect D3 pullup failed! ***", 0);
}
// Set card to bus width four.
if (!cardAcmd(m_rca, ACMD6_XFERTYP, 2)) {
return sdError(SD_CARD_ERROR_ACMD6);
}
// Set SDHC to bus width four.
sdio_set_dbus_width(SDIO_CLKCR_WIDBUS_4BIT);
/*
// Determine if High Speed mode is supported and set frequency.
uint8_t status[64];
// see "Physical Layer Simplified Specification Version 6.00", chapter 4.3.10, Table 4-13.
// Support Bits of Functions in Function Group 1: bits 415:400, which are bytes [12][13]
// Function Selection of Function Group 1: bits 379:376, which is low nibble of byte [16]
if (cardCMD6(0X00FFFFFF, status) && (2 & status[13]) &&
cardCMD6(0X80FFFFF1, status) && (status[16] & 0XF) == 1) {
Serial.println("\n*** 50MHz clock supported ***");
m_sdClkKhz = 24000; // set clock to 24MHz
} else {
//_panic("*** Only 25MHz clock supported! ***", 0);
m_sdClkKhz = 8000; // set clock to 24MHz
}
*/
// delay seems to be needed for cards that take some time to adjust */
delay(1);
m_sdClkKhz = 18000; // set clock to 24MHz
sdio_set_clock(m_sdClkKhz*1000);
m_initDone = true;
return true;
}
//-----------------------------------------------------------------------------
uint32_t SdioCard::cardSize(void) {
return sdCardCapacity(&m_csd);
}
/*---------------------------------------------------------------------------*/
bool SdioCard::erase(uint32_t firstBlock, uint32_t lastBlock) {
// check for single block erase
if (!m_csd.v1.erase_blk_en) {
// erase size mask
uint8_t m = (m_csd.v1.sector_size_high << 1) | m_csd.v1.sector_size_low;
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
// error card can't erase specified area
return sdError(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
}
}
if (!m_highCapacity) {
firstBlock <<= 9;
lastBlock <<= 9;
}
if (!cardCommand(CMD32_XFERTYP, firstBlock)) {
return sdError(SD_CARD_ERROR_CMD32);
}
if (!cardCommand(CMD33_XFERTYP, lastBlock)) {
return sdError(SD_CARD_ERROR_CMD33);
}
if (!cardCommand(CMD38_XFERTYP, 0)) {
return sdError(SD_CARD_ERROR_CMD38);
}
if (waitTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_ERASE_TIMEOUT);
}
return true;
}
//-----------------------------------------------------------------------------
uint8_t SdioCard::errorCode() {
return m_errorCode;
}
//-----------------------------------------------------------------------------
uint32_t SdioCard::errorData() {
return m_irqstat;
}
//-----------------------------------------------------------------------------
uint32_t SdioCard::errorLine() {
return m_errorLine;
}
//-----------------------------------------------------------------------------
bool SdioCard::isBusy() {
return m_busyFcn ? m_busyFcn() : m_initDone && isBusyCMD13();
}
//-----------------------------------------------------------------------------
uint32_t SdioCard::kHzSdClk() {
return m_sdClkKhz;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::readBlock(uint32_t lba, uint8_t* buf)
{
#if USE_DEBUG_MODE
Serial.print("readBlock: "); Serial.println(lba); //Serial.print(", buf: "); Serial.println((uint32_t)buf, HEX);
#endif
volatile bool _state = false;
uint16_t retries = 3;
while ( retries-- ){
/*if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
*/
if (m_curState != READ_STATE || m_curLba != lba) {
#if USE_DEBUG_MODE
Serial.print("New lba, syncing :");
Serial.println(lba);
#endif
_state = syncBlocks();
DBG_PRINT();
if (!_state) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit, tested with 32KB before and worked fine.
// prepare DMA for data read transfer
_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
DBG_PRINT();
// prepare SDIO data read transfer 0x8000 = 64*512
_state = dmaTrxStart(512, TRX_RD);
DBG_PRINT();
// send command to start data transfer
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
DBG_PRINT();
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curLba = lba;
m_curState = READ_STATE;
}
else {
// prepare DMA for data read transfer
_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
// prepare SDIO data read transfer
_state = dmaTrxStart(512, TRX_RD);
}
_state = dmaTrxEnd(0);
if ( _state ) {
if ( (uint32_t)buf & 3 ) {
//memcpy(buf, aligned, 512);
register uint8_t * dst = buf;
register uint8_t * src = (uint8_t *)aligned;
register uint16_t i = 64;
while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
}
}
m_totalReadLbas++;
m_curLba++;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
sdError(SD_CARD_ERROR_NONE);
return true;
}
syncBlocks();
m_readErrors++;
}
DBG_PRINT()
syncBlocks();
m_readErrors++;
return false;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::readBlocks(uint32_t lba, uint8_t* buf, size_t n)
{
#if USE_DEBUG_MODE
Serial.print("readBlocks: "); Serial.print(lba);
//Serial.print(", buf: "); Serial.print((uint32_t)buf, HEX);
Serial.print(", "); Serial.println(n);
#endif
volatile bool _state = false;
uint16_t retries = 3;
while ( retries-- ){
if ((uint32_t)buf & 3) {
for (size_t i = 0; i < n; i++, lba++, buf += 512) {
if (!readBlock(lba, buf)) {
return false; // readBlock will set errorCode.
}
}
return true;
}
if (m_curState != READ_STATE || m_curLba != lba) {
#if USE_DEBUG_MODE
Serial.print("New lba, syncing :");
Serial.println(lba);
#endif
_state = syncBlocks();
DBG_PRINT();
if (!_state) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit
// prepare DMA for data read transfer
_state = dmaTrxPrepare(buf, 512*n, TRX_RD);
// prepare SDIO for data read transfer
_state = dmaTrxStart(512*n, TRX_RD);
// send command to start data transfer
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curLba = lba;
m_curState = READ_STATE;
}
else {
// prepare DMA for data read transfer
_state = dmaTrxPrepare(buf, 512*n, TRX_RD);
// prepare SDIO data read transfer
_state = dmaTrxStart(512*n, TRX_RD);
}
_state = dmaTrxEnd(0);
if (_state){
m_totalReadLbas += n;
m_curLba += n;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
sdError(SD_CARD_ERROR_NONE);
return true;
}
syncBlocks();
m_readErrors++;
}
DBG_PRINT()
syncBlocks();
m_readErrors++;
return false;
}
//-----------------------------------------------------------------------------
bool SdioCard::readCID(void* cid) {
memcpy(cid, &m_cid, 16);
return true;
}
//-----------------------------------------------------------------------------
bool SdioCard::readCSD(void* csd) {
memcpy(csd, &m_csd, 16);
return true;
}
/*---------------------------------------------------------------------------*/
/* replacing this one with DMA support.
bool SdioCard::readData(uint8_t *dst)
{
//Serial.print("readData: "); Serial.print(m_lba); Serial.print(", m_cnt: "); Serial.println(m_cnt);
if ( m_cnt==0 ) return false;
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
// non-DMA block read
trxStart(dst, 512, TRX_RD);
// send command to start data transfer
if ( !cardCommand(CMD17_XFERTYP, (m_highCapacity ? m_lba : 512*m_lba)) ) {
return sdError(SD_CARD_ERROR_CMD17);
}
// Receive a data block from the SDIO
register uint32_t STA; // to speed up SDIO flags checking
register uint16_t cnt = 512;
register uint32_t * ptr = (uint32_t *)dst;
// ----> TIME CRITICAL SECTION BEGIN <----
do {
STA = SDIO->STA;
if (STA & SDIO_STA_RXFIFOHF) {
// Receive FIFO half full, there are at least 8 words in it
noInterrupts();
*ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO;
*ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO; *ptr++ = SDIO->FIFO;
interrupts();
cnt -= 8;
}
} while ( !(STA & (SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS)) );
// <---- TIME CRITICAL SECTION END ---->
// read data still available in FIFO
while ( (SDIO->STA & SDIO_STA_RXDAVL) && (cnt--) ) {
*ptr++ = SDIO->FIFO;
}
// check error, temporary stuff, remove for final version
if ( SDIO->STA & SDIO_STA_TRX_ERROR_FLAGS ) {
_panic("ERROR: non-DMA read error ", SDIO->STA);
return false;
}
m_lba++;
m_cnt--;
return !(SDIO->STA&SDIO_STA_TRX_ERROR_FLAGS);
}
*/
bool SdioCard::readData(uint8_t *buf)
{
volatile bool _state = false;
uint16_t retries = 3;
while ( retries-- ){
// prepare DMA for data read transfer
_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
// prepare SDIO data read transfer
_state = dmaTrxStart(512, TRX_RD);
_state = dmaTrxEnd(0);
if ( _state ) {
if ( (uint32_t)buf & 3 ) {
//memcpy(buf, aligned, 512);
register uint8_t * dst = buf;
register uint8_t * src = (uint8_t *)aligned;
register uint16_t i = 64;
while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
}
}
m_curLba += 1;
return true;
}
else {
readStop();
//_state = dmaTrxPrepare((uint32_t)buf & 3 ? (uint8_t*)aligned : buf, 512, TRX_RD);
//_state = dmaTrxStart(512, TRX_RD);
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? m_curLba : 512*m_curLba));
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
}
}
DBG_PRINT()
m_readErrors++;
return sdError(SD_CARD_ERROR_READ);
}
//-----------------------------------------------------------------------------
bool SdioCard::readOCR(uint32_t* ocr) {
*ocr = m_ocr;
return true;
}
//-----------------------------------------------------------------------------
bool SdioCard::readStart(uint32_t lba)
{
m_curLba = lba;
/*
m_lba = lba;
m_cnt = 1024;
return true;
*/
volatile bool _state = false;
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
DBG_PRINT();
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curState = READ_STATE;
return true;
}
/*---------------------------------------------------------------------------*/
// SDHC will do Auto CMD12 after count blocks.
bool SdioCard::readStart(uint32_t lba, uint32_t count)
{
//Serial.print("readStart: "); Serial.print(lba); Serial.print(", cnt: "); Serial.println(count);
m_curLba = lba;
/*
m_lba = lba;
m_cnt = count;
return true;
*/
volatile bool _state = false;
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
_state = cardCommand(CMD18_XFERTYP, (m_highCapacity ? lba : 512*lba));
DBG_PRINT();
if ( !_state ) {
return sdError(SD_CARD_ERROR_CMD18);
}
m_curState = READ_STATE;
return true;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::readStop()
{
if ( isEnabledDMA()){
yieldDmaStatus();
}
sdio_setup_transfer(0x00FFFFFF, 0, 0);
// Empty SDIO FIFO
while ( SDIO->STA & SDIO_STA_RXDAVL) {
volatile uint32 _unused = SDIO->FIFO;
}
//Serial.println("readStop.");
//m_lba = 0;
if (!trxStop()) {
return false;
}
return true;
}
//-----------------------------------------------------------------------------
inline bool SdioCard::syncBlocks() {
/* if ( isEnabledDMA()){
waitDmaStatus();
}
*/
if (m_curState == READ_STATE) {
m_curState = IDLE_STATE;
if (!readStop()) {
return false;
}
} else if (m_curState == WRITE_STATE) {
m_curState = IDLE_STATE;
return writeStop();
}
return true;
}
//-----------------------------------------------------------------------------
uint8_t SdioCard::type() {
return m_version2 ? m_highCapacity ?
SD_CARD_TYPE_SDHC : SD_CARD_TYPE_SD2 : SD_CARD_TYPE_SD1;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::writeBlock(uint32_t lba, const uint8_t* buf)
{
#if USE_DEBUG_MODE
Serial.print("writeBlock: "); Serial.println(lba); //Serial.print(", buf: "); Serial.println((uint32_t)buf, HEX);
#endif
uint8_t * ptr = (uint8_t *)buf;
if (3 & (uint32_t)ptr) {
Serial.print("writeBlock: "); Serial.print(lba);
Serial.print(", buf: "); Serial.print((uint32_t)ptr, HEX);
//memcpy(aligned, buf, 512);
register uint8_t * src = (uint8_t *)ptr;
ptr = (uint8_t *)aligned;
register uint8_t * dst = ptr;
register uint16_t i = 64;
while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
}
}
if (m_curState != WRITE_STATE || m_curLba != lba) {
if (!syncBlocks()) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit
// prepare DMA for data transfer
dmaTrxPrepare(ptr, 512, TRX_WR); // 1 block, write transfer
// send command to start data transfer
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curLba = lba;
m_curState = WRITE_STATE;
}
else {
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
// prepare DMA for data transfer
dmaTrxPrepare(ptr, 512, TRX_WR); // 1 block, write transfer
}
// prepare SDIO for data transfer
dmaTrxStart(512, TRX_WR); // 1 block, write transfer
if (!dmaTrxEnd(0)){
m_curState = IDLE_STATE;
m_writeErrors++;
return false;
}
m_curLba++;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
return true;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::writeBlocks(uint32_t lba, const uint8_t* buf, size_t n)
{
#if USE_DEBUG_MODE
Serial.print("writeBlocks: "); Serial.print(lba);
//Serial.print(", buf: "); Serial.print((uint32_t)buf, HEX);
Serial.print(", "); Serial.println(n);
#endif
if (3 & (uint32_t)buf) { // misaligned buffer address, write single blocks
for (size_t i = 0; i < n; i++, lba++, buf += 512) {
if (!writeBlock(lba, buf)) {
return false; // writeBlock will set errorCode.
}
}
return true;
}
if (yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
#if 0
// set number of blocks to write - this can speed up block write
if ( !cardAcmd(m_rca, ACMD23_XFERTYP, n) ) {
return sdError(SD_CARD_ERROR_ACMD23);
}
#endif
if (m_curState != WRITE_STATE || m_curLba != lba) {
if (!syncBlocks()) {
return false;
}
m_limitLba = (lba + 1024); //arbitrary limit, 512KB
// prepare DMA for data transfer
dmaTrxPrepare((uint8_t *)buf, 512*n, TRX_WR); // n blocks, write transfer
// send command to start data transfer
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curLba = lba;
m_curState = WRITE_STATE;
}
else {
// prepare DMA for data transfer
dmaTrxPrepare((uint8_t *)buf, 512*n, TRX_WR); // n blocks, write transfer
}
// prepare SDIO for data transfer
dmaTrxStart(512*n, TRX_WR); // n blocks, write transfer
if (!dmaTrxEnd(0)){
m_writeErrors++;
m_curState = IDLE_STATE;
return false;
}
m_curLba += n;
if (m_curLba >= m_limitLba) {
syncBlocks();
}
return true;
}
/*---------------------------------------------------------------------------*/
/*
bool SdioCard::writeData(const uint8_t* src)
{
//Serial.print("writeData: "); Serial.print(m_lba); Serial.print(", cnt: "); Serial.println(m_cnt);
if ( !m_cnt ) return false;
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
// send command to start block data transfer
if ( !cardCommand(CMD24_XFERTYP, (m_highCapacity ? m_lba : 512*m_lba)) ) {
return sdError(SD_CARD_ERROR_CMD24);
}
// non-DMA block write
trxStart((uint8_t*)src, 512, TRX_WR);
// Receive a data block from the SDIO
register uint32_t STA; // to speed up SDIO flags checking
register uint16_t cnt = 512;
register uint32_t * ptr = (uint32_t*)src;
// pre-fill up the FIFO with 32 words
noInterrupts();
while ( (cnt--)>(512-32) ) SDIO->FIFO = *ptr++;
interrupts();
// ----> TIME CRITICAL SECTION BEGIN <----
do {
STA = SDIO->STA;
if (STA & SDIO_STA_TXFIFOHE) {
// Transmit FIFO half empty, fill up the remaining 16 words
noInterrupts();
SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++;
SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++;
SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++;
SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++; SDIO->FIFO = *ptr++;
interrupts();
cnt -= 16;
}
} while ( !(STA & (SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS)) && cnt);
// <---- TIME CRITICAL SECTION END ---->
if ( waitTimeout(isBusyTransferComplete) ) {
return sdError(SD_CARD_ERROR_WRITE_TIMEOUT);
}
m_lba++;
m_cnt--;
if (SDIO->STA&SDIO_STA_TRX_ERROR_FLAGS) {
_panic("writeData error: ", SDIO->STA);
}
return !(SDIO->STA&SDIO_STA_TRX_ERROR_FLAGS);
}
*/
bool SdioCard::writeData(const uint8_t* src)
{
uint8_t * ptr = (uint8_t *)src;
if (3 & (uint32_t)ptr) {
Serial.print("writeBlock: "); Serial.print(m_curLba);
Serial.print(", buf: "); Serial.print((uint32_t)ptr, HEX);
//memcpy(aligned, buf, 512);
register uint8_t * src = (uint8_t *)ptr;
ptr = (uint8_t *)aligned;
register uint8_t * dst = ptr;
register uint16_t i = 64;
while ( i-- ) { // do 8 byte copies, is much faster than single byte copy
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
*dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++;
}
}
if (yieldTimeout(isBusyCMD13)) { // wait for previous transmission end
return sdError(SD_CARD_ERROR_CMD13);
}
// prepare DMA for data transfer
dmaTrxPrepare(ptr, 512, TRX_WR); // 1 block, write transfer
DBG_PRINT();
// prepare SDIO for data transfer
dmaTrxStart(512, TRX_WR); // 1 block, write transfer
DBG_PRINT();
if (!dmaTrxEnd(0)){
m_writeErrors++;
return false;
}
return true;
}
//-----------------------------------------------------------------------------
bool SdioCard::writeStart(uint32_t lba)
{
/*
m_lba = lba;
m_cnt = 1024;
return true;
*/
DBG_PRINT();
m_curLba = lba;
if (yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curState = WRITE_STATE;
return true;
}
/*---------------------------------------------------------------------------*/
// SDHC will do Auto CMD12 after count blocks.
bool SdioCard::writeStart(uint32_t lba, uint32_t count)
{
//Serial.print("writeStart: "); Serial.print(lba); Serial.print(", cnt: "); Serial.println(count);
/*
m_lba = lba;
m_cnt = count;
return true;
*/
m_curLba = lba;
if (yieldTimeout(isBusyCMD13)) {
return sdError(SD_CARD_ERROR_CMD13);
}
if ( !cardCommand(CMD25_XFERTYP, (m_highCapacity ? lba : 512*lba)) ) {
return sdError(SD_CARD_ERROR_CMD25);
}
m_curState = WRITE_STATE;
return true;
}
/*---------------------------------------------------------------------------*/
bool SdioCard::writeStop()
{
if ( isEnabledDMA()){
if ( !yieldDmaStatus() ) {
DBG_PRINT();
return sdError(SD_CARD_ERROR_DMA);
}
}
//m_lba = 0;
m_curState = IDLE_STATE;
return trxStop();
//Serial.println("writeStop.");
}