Arduino_STM32/STM32F4/libraries/SPI/src/SPI.cpp

650 lines
19 KiB
C++

/******************************************************************************
* The MIT License
*
* Copyright (c) 2010 Perry Hung.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @author Marti Bolivar <mbolivar@leaflabs.com>
* @brief Wirish SPI implementation.
*/
#include "SPI.h"
//#define SPI_DEBUG
#include <libmaple/timer.h>
#include <libmaple/util.h>
#include <libmaple/rcc.h>
#include "wirish.h"
#include "boards.h"
//#include "HardwareSerial.h"
#if CYCLES_PER_MICROSECOND != 72
/* TODO [0.2.0?] something smarter than this */
#warning "Unexpected clock speed; SPI frequency calculation will be incorrect"
#endif
struct spi_pins {
uint8 nss;
uint8 sck;
uint8 miso;
uint8 mosi;
};
static const spi_pins* dev_to_spi_pins(spi_dev *dev);
static void configure_gpios(spi_dev *dev, bool as_master);
static spi_baud_rate determine_baud_rate(spi_dev *dev, uint32_t freq);
#if (BOARD_NR_SPI >= 3) && !defined(STM32_HIGH_DENSITY)
#error "The SPI library is misconfigured: 3 SPI ports only available on high density STM32 devices"
#endif
static const spi_pins board_spi_pins[] __FLASH__ = {
#if BOARD_NR_SPI >= 1
{BOARD_SPI1_NSS_PIN,
BOARD_SPI1_SCK_PIN,
BOARD_SPI1_MISO_PIN,
BOARD_SPI1_MOSI_PIN},
#endif
#if BOARD_NR_SPI >= 2
{BOARD_SPI2_NSS_PIN,
BOARD_SPI2_SCK_PIN,
BOARD_SPI2_MISO_PIN,
BOARD_SPI2_MOSI_PIN},
#endif
#if BOARD_NR_SPI >= 3
{BOARD_SPI3_NSS_PIN,
BOARD_SPI3_SCK_PIN,
BOARD_SPI3_MISO_PIN,
BOARD_SPI3_MOSI_PIN},
#endif
};
/*
* Constructor
*/
SPIClass::SPIClass(uint32 spi_num) {
switch (spi_num) {
#if BOARD_NR_SPI >= 1
case 1:
this->spi_d = SPI1;
break;
#endif
#if BOARD_NR_SPI >= 2
case 2:
this->spi_d = SPI2;
break;
#endif
#if BOARD_NR_SPI >= 3
case 3:
this->spi_d = SPI3;
break;
#endif
default:
ASSERT(0);
}
//pinMode(BOARD_SPI_DEFAULT_SS,OUTPUT);
clockDivider = SPI_BAUD_PCLK_DIV_16;
dataMode = SPI_MODE0;
}
/*
* Set up/tear down
*/
void SPIClass::begin(void) {
uint32 flags = ((bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB) | SPI_DFF_8_BIT | SPI_SW_SLAVE | SPI_SOFT_SS);
spi_init(spi_d);
configure_gpios(spi_d, 1);
#ifdef SPI_DEBUG
Serial.print("spi_master_enable("); Serial.print(clockDivider); Serial.print(","); Serial.print(dataMode); Serial.print(","); Serial.print(flags); Serial.println(")");
#endif
spi_master_enable(spi_d, (spi_baud_rate)clockDivider, (spi_mode)dataMode, flags);
}
void SPIClass::beginSlave(void) {
if (dataMode >= 4) {
ASSERT(0);
return;
}
uint32 flags = ((bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB) | SPI_DFF_8_BIT | SPI_SW_SLAVE);
spi_init(spi_d);
configure_gpios(spi_d, 0);
#ifdef SPI_DEBUG
Serial.print("spi_slave_enable("); Serial.print(dataMode); Serial.print(","); Serial.print(flags); Serial.println(")");
#endif
spi_slave_enable(spi_d, (spi_mode)dataMode, flags);
}
void SPIClass::end(void) {
if (!spi_is_enabled(this->spi_d)) {
return;
}
// Follows RM0008's sequence for disabling a SPI in master/slave
// full duplex mode.
while (spi_is_rx_nonempty(this->spi_d)) {
// FIXME [0.1.0] remove this once you have an interrupt based driver
volatile uint16 rx __attribute__((unused)) = spi_rx_reg(this->spi_d);
}
while (!spi_is_tx_empty(this->spi_d))
;
while (spi_is_busy(this->spi_d))
;
spi_peripheral_disable(this->spi_d);
}
/* Roger Clark added 3 functions */
void SPIClass::setClockDivider(uint32_t clockDivider)
{
#ifdef SPI_DEBUG
Serial.print("Clock divider set to "); Serial.println(clockDivider);
#endif
this->clockDivider = clockDivider;
this->begin();
}
void SPIClass::setBitOrder(BitOrder bitOrder)
{
#ifdef SPI_DEBUG
Serial.print("Bit order set to "); Serial.println(bitOrder);
#endif
this->bitOrder = bitOrder;
this->begin();
}
/* Victor Perez. Added to test changing datasize from 8 to 16 bit modes on the fly.
* Input parameter should be SPI_CR1_DFF set to 0 or 1 on a 32bit word.
*
*/
void SPIClass::setDataSize(uint32 datasize)
{
uint32 cr1 = this->spi_d->regs->CR1;
datasize &= SPI_CR1_DFF;
cr1 &= ~(SPI_CR1_DFF);
cr1 |= datasize;
this->spi_d->regs->CR1 = cr1;
}
void SPIClass::setDataMode(uint8_t dataMode)
{
/* Notes. As far as I can tell, the AVR numbers for dataMode appear to match the numbers required by the STM32
From the AVR doc http://www.atmel.com/images/doc2585.pdf section 2.4
SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
0 0 0 Falling Rising
1 0 1 Rising Falling
2 1 0 Rising Falling
3 1 1 Falling Rising
On the STM32 it appears to be
bit 1 - CPOL : Clock polarity
(This bit should not be changed when communication is ongoing)
0 : CLK to 0 when idle
1 : CLK to 1 when idle
bit 0 - CPHA : Clock phase
(This bit should not be changed when communication is ongoing)
0 : The first clock transition is the first data capture edge
1 : The second clock transition is the first data capture edge
If someone finds this is not the case or sees a logic error with this let me know ;-)
*/
#ifdef SPI_DEBUG
Serial.print("Data mode set to "); Serial.println(dataMode);
#endif
this->dataMode = dataMode;
this->begin();
}
void SPIClass::beginTransaction(uint8_t pin, SPISettings settings)
{
#ifdef SPI_DEBUG
Serial.println("SPIClass::beginTransaction");
#endif
//_SSPin=pin;
//pinMode(_SSPin,OUTPUT);
//digitalWrite(_SSPin,LOW);
setBitOrder(settings.bitOrder);
setDataMode(settings.dataMode);
setClockDivider(determine_baud_rate(spi_d, settings.clock));
begin();
#if 0
// code from SAM core
uint8_t mode = interruptMode;
if (mode > 0) {
if (mode < 16) {
if (mode & 1) PIOA->PIO_IDR = interruptMask[0];
if (mode & 2) PIOB->PIO_IDR = interruptMask[1];
if (mode & 4) PIOC->PIO_IDR = interruptMask[2];
if (mode & 8) PIOD->PIO_IDR = interruptMask[3];
} else {
interruptSave = interruptsStatus();
noInterrupts();
}
}
uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(pin);
bitOrder[ch] = settings.border;
SPI_ConfigureNPCS(spi, ch, settings.config);
//setBitOrder(pin, settings.border);
//setDataMode(pin, settings.datamode);
//setClockDivider(pin, settings.clockdiv);
#endif
}
void SPIClass::endTransaction(void)
{
#ifdef SPI_DEBUG
Serial.println("SPIClass::endTransaction");
#endif
//digitalWrite(_SSPin,HIGH);
#if false
// code from SAM core
uint8_t mode = interruptMode;
if (mode > 0) {
if (mode < 16) {
if (mode & 1) PIOA->PIO_IER = interruptMask[0];
if (mode & 2) PIOB->PIO_IER = interruptMask[1];
if (mode & 4) PIOC->PIO_IER = interruptMask[2];
if (mode & 8) PIOD->PIO_IER = interruptMask[3];
} else {
if (interruptSave) interrupts();
}
}
#endif
}
/*
* I/O
*/
uint8 SPIClass::read(void) {
uint8 buf[1];
this->read(buf, 1);
return buf[0];
}
void SPIClass::read(uint8 *buf, uint32 len) {
uint32 rxed = 0;
while (rxed < len) {
while (!spi_is_rx_nonempty(this->spi_d))
;
buf[rxed++] = (uint8)spi_rx_reg(this->spi_d);
}
}
void SPIClass::write(uint16 data) {
#ifdef SPI_DEBUG
// Serial.print("SPIClass::write("); Serial.print(data); Serial.println(")");
#endif
// this->write(&data, 1);
/* Added for 16bit data Victor Perez. Roger Clark
* Improved speed by just directly writing the single byte to the SPI data reg and wait for completion, * by taking the Tx code from transfer(byte)
* The original method, of calling write(*data, length) .
* This almost doubles the speed of this function.
*/
spi_tx_reg(this->spi_d, data); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
}
//void SPIClass::write(uint8 byte) {
// this->write(&byte, 1);
/* Roger Clark
* Improved speed by just directly writing the single byte to the SPI data reg and wait for completion, * by taking the Tx code from transfer(byte)
* The original method, of calling write(*data, length) .
* This almost doubles the speed of this function.
*/
// spi_tx_reg(this->spi_d, byte); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
// while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
// while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
//}
void SPIClass::write(const uint8 *data, uint32 length) {
#ifdef SPI_DEBUG
Serial.print("SPIClass::write(data, "); Serial.print(length); Serial.println(")");
#endif
uint32 txed = 0;
while (txed < length) {
txed += spi_tx(this->spi_d, data + txed, length - txed);
}
while (spi_is_tx_empty(this->spi_d) == 0); // "4. After writing the last data item into the SPI_DR register, wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... then wait until BSY=0, this indicates that the transmission of the last data is complete."
}
uint8 SPIClass::transfer(uint8 byte) const {
#ifdef SPI_DEBUG
// Serial.print("SPIClass::transfer("); Serial.print(byte); Serial.println(")");
#endif
uint8 b;
spi_tx_reg(this->spi_d, byte); // "2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE flag)."
while (spi_is_rx_nonempty(this->spi_d) == 0); // "4. Wait until RXNE=1 ..."
b = spi_rx_reg(this->spi_d); // "... and read the last received data."
while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
return b;
}
/* Roger Clark and Victor Perez, 2015
* Performs a DMA SPI transfer with at least a receive buffer.
* If a TX buffer is not provided, FF is sent over and over for the lenght of the transfer.
* On exit TX buffer is not modified, and RX buffer cotains the received data.
* Still in progress.
*/
uint8 SPIClass::dmaTransfer(uint8 *transmitBuf, uint8 *receiveBuf, uint16 length) {
if (length == 0) return 0;
uint8 b;
if (spi_is_rx_nonempty(this->spi_d) == 1) b = spi_rx_reg(this->spi_d); //Clear the RX buffer in case a byte is waiting on it.
dma1_ch3_Active=true;
dma_init(DMA1);
dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event);
// RX
spi_rx_dma_enable(SPI1);
dma_setup_transfer(DMA1, DMA_CH2, &SPI1->regs->DR, DMA_SIZE_8BITS,
receiveBuf, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_TRNS_CMPLT));// receive buffer DMA
dma_set_num_transfers(DMA1, DMA_CH2, length);
// TX
spi_tx_dma_enable(SPI1);
if (!transmitBuf) {
static uint8_t ff = 0XFF;
transmitBuf = &ff;
dma_setup_transfer(DMA1, DMA_CH3, &SPI1->regs->DR, DMA_SIZE_8BITS,
transmitBuf, DMA_SIZE_8BITS, (DMA_FROM_MEM | DMA_TRNS_CMPLT));// Transmit FF repeatedly
}
else {
dma_setup_transfer(DMA1, DMA_CH3, &SPI1->regs->DR, DMA_SIZE_8BITS,
transmitBuf, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_FROM_MEM | DMA_TRNS_CMPLT));// Transmit buffer DMA
}
dma_set_num_transfers(DMA1, DMA_CH3, length);
dma_enable(DMA1, DMA_CH2);// enable receive
dma_enable(DMA1, DMA_CH3);// enable transmit
// while (dma1_ch3_Active);
// if (receiveBuf) {
uint32_t m = millis();
while (dma1_ch3_Active) {
if ((millis() - m) > 100) {
dma1_ch3_Active = 0;
b = 2;
break;
}
}
// }
while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(DMA1, DMA_CH3);
dma_disable(DMA1, DMA_CH2);
spi_rx_dma_disable(SPI1);
spi_tx_dma_disable(SPI1);
return b;
}
/* Roger Clark and Victor Perez, 2015
* Performs a DMA SPI send using a TX buffer.
* On exit TX buffer is not modified.
* Still in progress.
*/
uint8 SPIClass::dmaSend(uint8 *transmitBuf, uint16 length, bool minc) {
if (length == 0) return 0;
uint32 flags = ((DMA_MINC_MODE * minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT);
uint8 b;
dma1_ch3_Active=true;
dma_init(DMA1);
dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event);
// TX
spi_tx_dma_enable(SPI1);
dma_setup_transfer(DMA1, DMA_CH3, &SPI1->regs->DR, DMA_SIZE_8BITS,
transmitBuf, DMA_SIZE_8BITS, flags);// Transmit buffer DMA
dma_set_num_transfers(DMA1, DMA_CH3, length);
dma_enable(DMA1, DMA_CH3);// enable transmit
while (dma1_ch3_Active);
while (spi_is_rx_nonempty(this->spi_d) == 0); // "4. Wait until RXNE=1 ..."
b = spi_rx_reg(this->spi_d); // "... and read the last received data."
while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(DMA1, DMA_CH3);
spi_tx_dma_disable(SPI1);
return b;
}
uint8 SPIClass::dmaSend(uint16 *transmitBuf, uint16 length, bool minc) {
if (length == 0) return 0;
uint32 flags = ((DMA_MINC_MODE * minc) | DMA_FROM_MEM | DMA_TRNS_CMPLT);
uint8 b;
dma1_ch3_Active=true;
dma_init(DMA1);
dma_attach_interrupt(DMA1, DMA_CH3, &SPIClass::DMA1_CH3_Event);
// TX
spi_tx_dma_enable(SPI1);
dma_setup_transfer(DMA1, DMA_CH3, &SPI1->regs->DR, DMA_SIZE_16BITS,
transmitBuf, DMA_SIZE_16BITS, flags);// Transmit buffer DMA
dma_set_num_transfers(DMA1, DMA_CH3, length);
dma_enable(DMA1, DMA_CH3);// enable transmit
while (dma1_ch3_Active);
while (spi_is_rx_nonempty(this->spi_d) == 0); // "4. Wait until RXNE=1 ..."
b = spi_rx_reg(this->spi_d); // "... and read the last received data."
while (spi_is_tx_empty(this->spi_d) == 0); // "5. Wait until TXE=1 ..."
while (spi_is_busy(this->spi_d) != 0); // "... and then wait until BSY=0 before disabling the SPI."
dma_disable(DMA1, DMA_CH3);
spi_tx_dma_disable(SPI1);
return b;
}
void SPIClass::attachInterrupt(void) {
// Should be enableInterrupt()
}
void SPIClass::detachInterrupt(void) {
// Should be disableInterrupt()
}
/*
* Pin accessors
*/
uint8 SPIClass::misoPin(void) {
return dev_to_spi_pins(this->spi_d)->miso;
}
uint8 SPIClass::mosiPin(void) {
return dev_to_spi_pins(this->spi_d)->mosi;
}
uint8 SPIClass::sckPin(void) {
return dev_to_spi_pins(this->spi_d)->sck;
}
uint8 SPIClass::nssPin(void) {
return dev_to_spi_pins(this->spi_d)->nss;
}
/*
* Deprecated functions
*/
uint8 SPIClass::send(uint8 data) {
uint8 buf[] = {data};
return this->send(buf, 1);
}
uint8 SPIClass::send(uint8 *buf, uint32 len) {
uint32 txed = 0;
uint8 ret = 0;
while (txed < len) {
this->write(buf[txed++]);
ret = this->read();
}
return ret;
}
uint8 SPIClass::recv(void) {
return this->read();
}
/*
* Auxiliary functions
*/
static const spi_pins* dev_to_spi_pins(spi_dev *dev) {
switch (dev->clk_id) {
#if BOARD_NR_SPI >= 1
case RCC_SPI1: return board_spi_pins;
#endif
#if BOARD_NR_SPI >= 2
case RCC_SPI2: return board_spi_pins + 1;
#endif
#if BOARD_NR_SPI >= 3
case RCC_SPI3: return board_spi_pins + 2;
#endif
default: return NULL;
}
}
static void disable_pwm(const stm32_pin_info *i) {
if (i->timer_device) {
timer_set_mode(i->timer_device, i->timer_channel, TIMER_DISABLED);
}
}
static void configure_gpios(spi_dev *dev, bool as_master) {
const spi_pins *pins = dev_to_spi_pins(dev);
if (!pins) {
return;
}
const stm32_pin_info *nssi = &PIN_MAP[pins->nss];
const stm32_pin_info *scki = &PIN_MAP[pins->sck];
const stm32_pin_info *misoi = &PIN_MAP[pins->miso];
const stm32_pin_info *mosii = &PIN_MAP[pins->mosi];
disable_pwm(nssi);
disable_pwm(scki);
disable_pwm(misoi);
disable_pwm(mosii);
#ifdef SPI_DEBUG
Serial.print("SPI configure_gpios / (nss=");
Serial.print(pins->nss); Serial.print(", sck="); Serial.print(pins->sck);
Serial.print(", miso="); Serial.print(pins->miso);
Serial.print(", mosi="); Serial.print(pins->mosi);
Serial.println(")");
#endif
#ifdef STM32F4
if(dev->clk_id <= RCC_SPI2) {
if(nssi) {
if(!as_master) {
gpio_set_af_mode(nssi->gpio_device, scki->gpio_bit, 5);
}
}
gpio_set_af_mode(scki->gpio_device, scki->gpio_bit, 5);
gpio_set_af_mode(misoi->gpio_device, misoi->gpio_bit, 5);
gpio_set_af_mode(mosii->gpio_device, mosii->gpio_bit, 5);
} else {
if(nssi) {
if(!as_master) {
gpio_set_af_mode(nssi->gpio_device, scki->gpio_bit, 6);
}
}
gpio_set_af_mode(scki->gpio_device, scki->gpio_bit, 6);
gpio_set_af_mode(misoi->gpio_device, misoi->gpio_bit, 6);
gpio_set_af_mode(mosii->gpio_device, mosii->gpio_bit, 6);
}
#endif
spi_config_gpios(dev, as_master, nssi->gpio_device, nssi->gpio_bit,
scki->gpio_device, scki->gpio_bit,
misoi->gpio_device, misoi->gpio_bit,
mosii->gpio_device, mosii->gpio_bit);
}
static const spi_baud_rate baud_rates[8] __FLASH__ = {
SPI_BAUD_PCLK_DIV_2,
SPI_BAUD_PCLK_DIV_4,
SPI_BAUD_PCLK_DIV_8,
SPI_BAUD_PCLK_DIV_16,
SPI_BAUD_PCLK_DIV_32,
SPI_BAUD_PCLK_DIV_64,
SPI_BAUD_PCLK_DIV_128,
SPI_BAUD_PCLK_DIV_256,
};
/*
* Note: This assumes you're on a LeafLabs-style board
* (CYCLES_PER_MICROSECOND == 72, APB2 at 72MHz, APB1 at 36MHz).
*/
static spi_baud_rate determine_baud_rate(spi_dev *dev, uint32_t freq) {
uint32_t clock = 0, i;
#ifdef SPI_DEBUG
Serial.print("determine_baud_rate("); Serial.print(freq); Serial.println(")");
#endif
switch (rcc_dev_clk(dev->clk_id))
{
case RCC_APB2: clock = STM32_PCLK2; break; // 72 Mhz
case RCC_APB1: clock = STM32_PCLK1; break; // 36 Mhz
}
clock /= 2;
i = 0;
while (i < 7 && freq < clock) {
clock /= 2;
i++;
}
return baud_rates[i];
}
//SPIClass SPI(3);