1133 lines
43 KiB
C
1133 lines
43 KiB
C
/******************************************************************************
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2011, 2012 LeafLabs, LLC.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation
|
|
* files (the "Software"), to deal in the Software without
|
|
* restriction, including without limitation the rights to use, copy,
|
|
* modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* @file libmaple/include/libmaple/timer.h
|
|
* @author Marti Bolivar <mbolivar@leaflabs.com>
|
|
* @brief Timer interface.
|
|
*/
|
|
|
|
#ifndef _LIBMAPLE_TIMER_H_
|
|
#define _LIBMAPLE_TIMER_H_
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"{
|
|
#endif
|
|
|
|
/* Roger clark. Replaced with line below #include <series/timer.h>*/
|
|
#include "stm32f1/include/series/timer.h"
|
|
#include <libmaple/libmaple.h>
|
|
#include <libmaple/rcc.h>
|
|
#include <libmaple/nvic.h>
|
|
#include <libmaple/bitband.h>
|
|
|
|
/*
|
|
* Register maps
|
|
*/
|
|
|
|
/** Advanced control timer register map type */
|
|
typedef struct timer_adv_reg_map {
|
|
__io uint32 CR1; /**< Control register 1 */
|
|
__io uint32 CR2; /**< Control register 2 */
|
|
__io uint32 SMCR; /**< Slave mode control register */
|
|
__io uint32 DIER; /**< DMA/interrupt enable register */
|
|
__io uint32 SR; /**< Status register */
|
|
__io uint32 EGR; /**< Event generation register */
|
|
__io uint32 CCMR1; /**< Capture/compare mode register 1 */
|
|
__io uint32 CCMR2; /**< Capture/compare mode register 2 */
|
|
__io uint32 CCER; /**< Capture/compare enable register */
|
|
__io uint32 CNT; /**< Counter */
|
|
__io uint32 PSC; /**< Prescaler */
|
|
__io uint32 ARR; /**< Auto-reload register */
|
|
__io uint32 RCR; /**< Repetition counter register */
|
|
__io uint32 CCR1; /**< Capture/compare register 1 */
|
|
__io uint32 CCR2; /**< Capture/compare register 2 */
|
|
__io uint32 CCR3; /**< Capture/compare register 3 */
|
|
__io uint32 CCR4; /**< Capture/compare register 4 */
|
|
__io uint32 BDTR; /**< Break and dead-time register */
|
|
__io uint32 DCR; /**< DMA control register */
|
|
__io uint32 DMAR; /**< DMA address for full transfer */
|
|
} timer_adv_reg_map;
|
|
|
|
/* General purpose timer register map type: intentionally omitted.
|
|
*
|
|
* General purpose timers differ slightly across series, so leave it
|
|
* up to the series header to define struct timer_gen_reg_map. */
|
|
|
|
/** Basic timer register map type */
|
|
typedef struct timer_bas_reg_map {
|
|
__io uint32 CR1; /**< Control register 1 */
|
|
__io uint32 CR2; /**< Control register 2 */
|
|
const uint32 RESERVED1; /**< Reserved */
|
|
__io uint32 DIER; /**< DMA/interrupt enable register */
|
|
__io uint32 SR; /**< Status register */
|
|
__io uint32 EGR; /**< Event generation register */
|
|
const uint32 RESERVED2; /**< Reserved */
|
|
const uint32 RESERVED3; /**< Reserved */
|
|
const uint32 RESERVED4; /**< Reserved */
|
|
__io uint32 CNT; /**< Counter */
|
|
__io uint32 PSC; /**< Prescaler */
|
|
__io uint32 ARR; /**< Auto-reload register */
|
|
} timer_bas_reg_map;
|
|
|
|
/*
|
|
* Timer devices
|
|
*/
|
|
|
|
/**
|
|
* @brief Timer register map type.
|
|
*
|
|
* Just holds a pointer to the correct type of register map, based on
|
|
* the timer's type.
|
|
*/
|
|
typedef union timer_reg_map {
|
|
timer_adv_reg_map *adv; /**< Advanced register map */
|
|
timer_gen_reg_map *gen; /**< General purpose register map */
|
|
timer_bas_reg_map *bas; /**< Basic register map */
|
|
} timer_reg_map;
|
|
|
|
/**
|
|
* @brief Timer type
|
|
*
|
|
* Type marker for timer_dev.
|
|
*
|
|
* @see timer_dev
|
|
*/
|
|
typedef enum timer_type {
|
|
TIMER_ADVANCED, /**< Advanced type */
|
|
TIMER_GENERAL, /**< General purpose type */
|
|
TIMER_BASIC, /**< Basic type */
|
|
} timer_type;
|
|
|
|
/** Timer device type */
|
|
typedef struct timer_dev {
|
|
timer_reg_map regs; /**< Register map */
|
|
rcc_clk_id clk_id; /**< RCC clock information */
|
|
timer_type type; /**< Timer's type */
|
|
voidFuncPtr handlers[]; /**<
|
|
* Don't touch these. Use these instead:
|
|
* @see timer_attach_interrupt()
|
|
* @see timer_detach_interrupt() */
|
|
} timer_dev;
|
|
|
|
#if STM32_HAVE_TIMER(1)
|
|
extern timer_dev *const TIMER1;
|
|
extern timer_dev timer1;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(2)
|
|
extern timer_dev *const TIMER2;
|
|
extern timer_dev timer2;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(3)
|
|
extern timer_dev *const TIMER3;
|
|
extern timer_dev timer3;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(4)
|
|
extern timer_dev *const TIMER4;
|
|
extern timer_dev timer4;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(5)
|
|
extern timer_dev *const TIMER5;
|
|
extern timer_dev timer5;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(6)
|
|
extern timer_dev *const TIMER6;
|
|
extern timer_dev timer6;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(7)
|
|
extern timer_dev *const TIMER7;
|
|
extern timer_dev timer7;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(8)
|
|
extern timer_dev *const TIMER8;
|
|
extern timer_dev timer8;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(9)
|
|
extern timer_dev *const TIMER9;
|
|
extern timer_dev timer9;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(10)
|
|
extern timer_dev *const TIMER10;
|
|
extern timer_dev timer10;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(11)
|
|
extern timer_dev *const TIMER11;
|
|
extern timer_dev timer11;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(12)
|
|
extern timer_dev *const TIMER12;
|
|
extern timer_dev timer12;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(13)
|
|
extern timer_dev *const TIMER13;
|
|
extern timer_dev timer13;
|
|
#endif
|
|
#if STM32_HAVE_TIMER(14)
|
|
extern timer_dev *const TIMER14;
|
|
extern timer_dev timer14;
|
|
#endif
|
|
|
|
/*
|
|
* Register bit definitions
|
|
*/
|
|
|
|
/* Control register 1 (CR1) */
|
|
|
|
#define TIMER_CR1_ARPE_BIT 7
|
|
#define TIMER_CR1_DIR_BIT 4
|
|
#define TIMER_CR1_OPM_BIT 3
|
|
#define TIMER_CR1_URS_BIT 2
|
|
#define TIMER_CR1_UDIS_BIT 1
|
|
#define TIMER_CR1_CEN_BIT 0
|
|
|
|
#define TIMER_CR1_CKD (0x3 << 8)
|
|
#define TIMER_CR1_CKD_1TCKINT (0x0 << 8)
|
|
#define TIMER_CR1_CKD_2TCKINT (0x1 << 8)
|
|
#define TIMER_CR1_CKD_4TICKINT (0x2 << 8)
|
|
#define TIMER_CR1_ARPE (1U << TIMER_CR1_ARPE_BIT)
|
|
#define TIMER_CR1_CKD_CMS (0x3 << 5)
|
|
#define TIMER_CR1_CKD_CMS_EDGE (0x0 << 5)
|
|
#define TIMER_CR1_CKD_CMS_CENTER1 (0x1 << 5)
|
|
#define TIMER_CR1_CKD_CMS_CENTER2 (0x2 << 5)
|
|
#define TIMER_CR1_CKD_CMS_CENTER3 (0x3 << 5)
|
|
#define TIMER_CR1_DIR (1U << TIMER_CR1_DIR_BIT)
|
|
#define TIMER_CR1_OPM (1U << TIMER_CR1_OPM_BIT)
|
|
#define TIMER_CR1_URS (1U << TIMER_CR1_URS_BIT)
|
|
#define TIMER_CR1_UDIS (1U << TIMER_CR1_UDIS_BIT)
|
|
#define TIMER_CR1_CEN (1U << TIMER_CR1_CEN_BIT)
|
|
|
|
/* Control register 2 (CR2) */
|
|
|
|
#define TIMER_CR2_OIS4_BIT 14
|
|
#define TIMER_CR2_OIS3N_BIT 13
|
|
#define TIMER_CR2_OIS3_BIT 12
|
|
#define TIMER_CR2_OIS2N_BIT 11
|
|
#define TIMER_CR2_OIS2_BIT 10
|
|
#define TIMER_CR2_OIS1N_BIT 9
|
|
#define TIMER_CR2_OIS1_BIT 8
|
|
#define TIMER_CR2_TI1S_BIT 7
|
|
#define TIMER_CR2_CCDS_BIT 3
|
|
#define TIMER_CR2_CCUS_BIT 2
|
|
#define TIMER_CR2_CCPC_BIT 0
|
|
|
|
#define TIMER_CR2_OIS4 (1U << TIMER_CR2_OIS4_BIT)
|
|
#define TIMER_CR2_OIS3N (1U << TIMER_CR2_OIS3N_BIT)
|
|
#define TIMER_CR2_OIS3 (1U << TIMER_CR2_OIS3_BIT)
|
|
#define TIMER_CR2_OIS2N (1U << TIMER_CR2_OIS2N_BIT)
|
|
#define TIMER_CR2_OIS2 (1U << TIMER_CR2_OIS2_BIT)
|
|
#define TIMER_CR2_OIS1N (1U << TIMER_CR2_OIS1N_BIT)
|
|
#define TIMER_CR2_OIS1 (1U << TIMER_CR2_OIS1_BIT)
|
|
#define TIMER_CR2_TI1S (1U << TIMER_CR2_TI1S_BIT)
|
|
#define TIMER_CR2_MMS (0x7 << 4)
|
|
#define TIMER_CR2_MMS_RESET (0x0 << 4)
|
|
#define TIMER_CR2_MMS_ENABLE (0x1 << 4)
|
|
#define TIMER_CR2_MMS_UPDATE (0x2 << 4)
|
|
#define TIMER_CR2_MMS_COMPARE_PULSE (0x3 << 4)
|
|
#define TIMER_CR2_MMS_COMPARE_OC1REF (0x4 << 4)
|
|
#define TIMER_CR2_MMS_COMPARE_OC2REF (0x5 << 4)
|
|
#define TIMER_CR2_MMS_COMPARE_OC3REF (0x6 << 4)
|
|
#define TIMER_CR2_MMS_COMPARE_OC4REF (0x7 << 4)
|
|
#define TIMER_CR2_CCDS (1U << TIMER_CR2_CCDS_BIT)
|
|
#define TIMER_CR2_CCUS (1U << TIMER_CR2_CCUS_BIT)
|
|
#define TIMER_CR2_CCPC (1U << TIMER_CR2_CCPC_BIT)
|
|
|
|
/* Slave mode control register (SMCR) */
|
|
|
|
#define TIMER_SMCR_ETP_BIT 15
|
|
#define TIMER_SMCR_ECE_BIT 14
|
|
#define TIMER_SMCR_MSM_BIT 7
|
|
|
|
#define TIMER_SMCR_ETP (1U << TIMER_SMCR_ETP_BIT)
|
|
#define TIMER_SMCR_ECE (1U << TIMER_SMCR_ECE_BIT)
|
|
#define TIMER_SMCR_ETPS (0x3 << 12)
|
|
#define TIMER_SMCR_ETPS_OFF (0x0 << 12)
|
|
#define TIMER_SMCR_ETPS_DIV2 (0x1 << 12)
|
|
#define TIMER_SMCR_ETPS_DIV4 (0x2 << 12)
|
|
#define TIMER_SMCR_ETPS_DIV8 (0x3 << 12)
|
|
#define TIMER_SMCR_ETF (0xF << 12)
|
|
#define TIMER_SMCR_MSM (1U << TIMER_SMCR_MSM_BIT)
|
|
#define TIMER_SMCR_TS (0x7 << 4)
|
|
#define TIMER_SMCR_TS_ITR0 (0x0 << 4)
|
|
#define TIMER_SMCR_TS_ITR1 (0x1 << 4)
|
|
#define TIMER_SMCR_TS_ITR2 (0x2 << 4)
|
|
#define TIMER_SMCR_TS_ITR3 (0x3 << 4)
|
|
#define TIMER_SMCR_TS_TI1F_ED (0x4 << 4)
|
|
#define TIMER_SMCR_TS_TI1FP1 (0x5 << 4)
|
|
#define TIMER_SMCR_TS_TI2FP2 (0x6 << 4)
|
|
#define TIMER_SMCR_TS_ETRF (0x7 << 4)
|
|
#define TIMER_SMCR_SMS 0x7
|
|
#define TIMER_SMCR_SMS_DISABLED 0x0
|
|
#define TIMER_SMCR_SMS_ENCODER1 0x1
|
|
#define TIMER_SMCR_SMS_ENCODER2 0x2
|
|
#define TIMER_SMCR_SMS_ENCODER3 0x3
|
|
#define TIMER_SMCR_SMS_RESET 0x4
|
|
#define TIMER_SMCR_SMS_GATED 0x5
|
|
#define TIMER_SMCR_SMS_TRIGGER 0x6
|
|
#define TIMER_SMCR_SMS_EXTERNAL 0x7
|
|
|
|
/* DMA/Interrupt enable register (DIER) */
|
|
|
|
#define TIMER_DIER_TDE_BIT 14
|
|
#define TIMER_DIER_COMDE_BIT 13
|
|
#define TIMER_DIER_CC4DE_BIT 12
|
|
#define TIMER_DIER_CC3DE_BIT 11
|
|
#define TIMER_DIER_CC2DE_BIT 10
|
|
#define TIMER_DIER_CC1DE_BIT 9
|
|
#define TIMER_DIER_UDE_BIT 8
|
|
#define TIMER_DIER_BIE_BIT 7
|
|
#define TIMER_DIER_TIE_BIT 6
|
|
#define TIMER_DIER_COMIE_BIT 5
|
|
#define TIMER_DIER_CC4IE_BIT 4
|
|
#define TIMER_DIER_CC3IE_BIT 3
|
|
#define TIMER_DIER_CC2IE_BIT 2
|
|
#define TIMER_DIER_CC1IE_BIT 1
|
|
#define TIMER_DIER_UIE_BIT 0
|
|
|
|
#define TIMER_DIER_TDE (1U << TIMER_DIER_TDE_BIT)
|
|
#define TIMER_DIER_COMDE (1U << TIMER_DIER_COMDE_BIT)
|
|
#define TIMER_DIER_CC4DE (1U << TIMER_DIER_CC4DE_BIT)
|
|
#define TIMER_DIER_CC3DE (1U << TIMER_DIER_CC3DE_BIT)
|
|
#define TIMER_DIER_CC2DE (1U << TIMER_DIER_CC2DE_BIT)
|
|
#define TIMER_DIER_CC1DE (1U << TIMER_DIER_CC1DE_BIT)
|
|
#define TIMER_DIER_UDE (1U << TIMER_DIER_UDE_BIT)
|
|
#define TIMER_DIER_BIE (1U << TIMER_DIER_BIE_BIT)
|
|
#define TIMER_DIER_TIE (1U << TIMER_DIER_TIE_BIT)
|
|
#define TIMER_DIER_COMIE (1U << TIMER_DIER_COMIE_BIT)
|
|
#define TIMER_DIER_CC4IE (1U << TIMER_DIER_CC4IE_BIT)
|
|
#define TIMER_DIER_CC3IE (1U << TIMER_DIER_CC3IE_BIT)
|
|
#define TIMER_DIER_CC2IE (1U << TIMER_DIER_CC2IE_BIT)
|
|
#define TIMER_DIER_CC1IE (1U << TIMER_DIER_CC1IE_BIT)
|
|
#define TIMER_DIER_UIE (1U << TIMER_DIER_UIE_BIT)
|
|
|
|
/* Status register (SR) */
|
|
|
|
#define TIMER_SR_CC4OF_BIT 12
|
|
#define TIMER_SR_CC3OF_BIT 11
|
|
#define TIMER_SR_CC2OF_BIT 10
|
|
#define TIMER_SR_CC1OF_BIT 9
|
|
#define TIMER_SR_BIF_BIT 7
|
|
#define TIMER_SR_TIF_BIT 6
|
|
#define TIMER_SR_COMIF_BIT 5
|
|
#define TIMER_SR_CC4IF_BIT 4
|
|
#define TIMER_SR_CC3IF_BIT 3
|
|
#define TIMER_SR_CC2IF_BIT 2
|
|
#define TIMER_SR_CC1IF_BIT 1
|
|
#define TIMER_SR_UIF_BIT 0
|
|
|
|
#define TIMER_SR_CC4OF (1U << TIMER_SR_CC4OF_BIT)
|
|
#define TIMER_SR_CC3OF (1U << TIMER_SR_CC3OF_BIT)
|
|
#define TIMER_SR_CC2OF (1U << TIMER_SR_CC2OF_BIT)
|
|
#define TIMER_SR_CC1OF (1U << TIMER_SR_CC1OF_BIT)
|
|
#define TIMER_SR_BIF (1U << TIMER_SR_BIF_BIT)
|
|
#define TIMER_SR_TIF (1U << TIMER_SR_TIF_BIT)
|
|
#define TIMER_SR_COMIF (1U << TIMER_SR_COMIF_BIT)
|
|
#define TIMER_SR_CC4IF (1U << TIMER_SR_CC4IF_BIT)
|
|
#define TIMER_SR_CC3IF (1U << TIMER_SR_CC3IF_BIT)
|
|
#define TIMER_SR_CC2IF (1U << TIMER_SR_CC2IF_BIT)
|
|
#define TIMER_SR_CC1IF (1U << TIMER_SR_CC1IF_BIT)
|
|
#define TIMER_SR_UIF (1U << TIMER_SR_UIF_BIT)
|
|
|
|
/* Event generation register (EGR) */
|
|
|
|
#define TIMER_EGR_BG_BIT 7
|
|
#define TIMER_EGR_TG_BIT 6
|
|
#define TIMER_EGR_COMG_BIT 5
|
|
#define TIMER_EGR_CC4G_BIT 4
|
|
#define TIMER_EGR_CC3G_BIT 3
|
|
#define TIMER_EGR_CC2G_BIT 2
|
|
#define TIMER_EGR_CC1G_BIT 1
|
|
#define TIMER_EGR_UG_BIT 0
|
|
|
|
#define TIMER_EGR_BG (1U << TIMER_EGR_BG_BIT)
|
|
#define TIMER_EGR_TG (1U << TIMER_EGR_TG_BIT)
|
|
#define TIMER_EGR_COMG (1U << TIMER_EGR_COMG_BIT)
|
|
#define TIMER_EGR_CC4G (1U << TIMER_EGR_CC4G_BIT)
|
|
#define TIMER_EGR_CC3G (1U << TIMER_EGR_CC3G_BIT)
|
|
#define TIMER_EGR_CC2G (1U << TIMER_EGR_CC2G_BIT)
|
|
#define TIMER_EGR_CC1G (1U << TIMER_EGR_CC1G_BIT)
|
|
#define TIMER_EGR_UG (1U << TIMER_EGR_UG_BIT)
|
|
|
|
/* Capture/compare mode registers, common values */
|
|
|
|
#define TIMER_CCMR_CCS_OUTPUT 0x0
|
|
#define TIMER_CCMR_CCS_INPUT_TI1 0x1
|
|
#define TIMER_CCMR_CCS_INPUT_TI2 0x2
|
|
#define TIMER_CCMR_CCS_INPUT_TRC 0x3
|
|
|
|
/* Capture/compare mode register 1 (CCMR1) */
|
|
|
|
#define TIMER_CCMR1_OC2CE_BIT 15
|
|
#define TIMER_CCMR1_OC2PE_BIT 11
|
|
#define TIMER_CCMR1_OC2FE_BIT 10
|
|
#define TIMER_CCMR1_OC1CE_BIT 7
|
|
#define TIMER_CCMR1_OC1PE_BIT 3
|
|
#define TIMER_CCMR1_OC1FE_BIT 2
|
|
|
|
#define TIMER_CCMR1_OC2CE (1U << TIMER_CCMR1_OC2CE_BIT)
|
|
#define TIMER_CCMR1_OC2M (0x3 << 12)
|
|
#define TIMER_CCMR1_IC2F (0xF << 12)
|
|
#define TIMER_CCMR1_OC2PE (1U << TIMER_CCMR1_OC2PE_BIT)
|
|
#define TIMER_CCMR1_OC2FE (1U << TIMER_CCMR1_OC2FE_BIT)
|
|
#define TIMER_CCMR1_IC2PSC (0x3 << 10)
|
|
#define TIMER_CCMR1_CC2S (0x3 << 8)
|
|
#define TIMER_CCMR1_CC2S_OUTPUT (TIMER_CCMR_CCS_OUTPUT << 8)
|
|
#define TIMER_CCMR1_CC2S_INPUT_TI1 (TIMER_CCMR_CCS_INPUT_TI1 << 8)
|
|
#define TIMER_CCMR1_CC2S_INPUT_TI2 (TIMER_CCMR_CCS_INPUT_TI2 << 8)
|
|
#define TIMER_CCMR1_CC2S_INPUT_TRC (TIMER_CCMR_CCS_INPUT_TRC << 8)
|
|
#define TIMER_CCMR1_OC1CE (1U << TIMER_CCMR1_OC1CE_BIT)
|
|
#define TIMER_CCMR1_OC1M (0x3 << 4)
|
|
#define TIMER_CCMR1_IC1F (0xF << 4)
|
|
#define TIMER_CCMR1_OC1PE (1U << TIMER_CCMR1_OC1PE_BIT)
|
|
#define TIMER_CCMR1_OC1FE (1U << TIMER_CCMR1_OC1FE_BIT)
|
|
#define TIMER_CCMR1_IC1PSC (0x3 << 2)
|
|
#define TIMER_CCMR1_CC1S 0x3
|
|
#define TIMER_CCMR1_CC1S_OUTPUT TIMER_CCMR_CCS_OUTPUT
|
|
#define TIMER_CCMR1_CC1S_INPUT_TI1 TIMER_CCMR_CCS_INPUT_TI1
|
|
#define TIMER_CCMR1_CC1S_INPUT_TI2 TIMER_CCMR_CCS_INPUT_TI2
|
|
#define TIMER_CCMR1_CC1S_INPUT_TRC TIMER_CCMR_CCS_INPUT_TRC
|
|
|
|
/* Capture/compare mode register 2 (CCMR2) */
|
|
|
|
#define TIMER_CCMR2_OC4CE_BIT 15
|
|
#define TIMER_CCMR2_OC4PE_BIT 11
|
|
#define TIMER_CCMR2_OC4FE_BIT 10
|
|
#define TIMER_CCMR2_OC3CE_BIT 7
|
|
#define TIMER_CCMR2_OC3PE_BIT 3
|
|
#define TIMER_CCMR2_OC3FE_BIT 2
|
|
|
|
#define TIMER_CCMR2_OC4CE (1U << TIMER_CCMR2_OC4CE_BIT)
|
|
#define TIMER_CCMR2_OC4M (0x3 << 12)
|
|
#define TIMER_CCMR2_IC4F (0xF << 12)
|
|
#define TIMER_CCMR2_OC4PE (1U << TIMER_CCMR2_OC4PE_BIT)
|
|
#define TIMER_CCMR2_OC4FE (1U << TIMER_CCMR2_OC4FE_BIT)
|
|
#define TIMER_CCMR2_IC4PSC (0x3 << 10)
|
|
#define TIMER_CCMR2_CC4S (0x3 << 8)
|
|
#define TIMER_CCMR2_CC4S_OUTPUT (TIMER_CCMR_CCS_OUTPUT << 8)
|
|
#define TIMER_CCMR2_CC4S_INPUT_TI1 (TIMER_CCMR_CCS_INPUT_TI1 << 8)
|
|
#define TIMER_CCMR2_CC4S_INPUT_TI2 (TIMER_CCMR_CCS_INPUT_TI2 << 8)
|
|
#define TIMER_CCMR2_CC4S_INPUT_TRC (TIMER_CCMR_CCS_INPUT_TRC << 8)
|
|
#define TIMER_CCMR2_OC3CE (1U << TIMER_CCMR2_OC3CE_BIT)
|
|
#define TIMER_CCMR2_OC3M (0x3 << 4)
|
|
#define TIMER_CCMR2_IC3F (0xF << 4)
|
|
#define TIMER_CCMR2_OC3PE (1U << TIMER_CCMR2_OC3PE_BIT)
|
|
#define TIMER_CCMR2_OC3FE (1U << TIMER_CCMR2_OC3FE_BIT)
|
|
#define TIMER_CCMR2_IC3PSC (0x3 << 2)
|
|
#define TIMER_CCMR2_CC3S 0x3
|
|
#define TIMER_CCMR2_CC3S_OUTPUT TIMER_CCMR_CCS_OUTPUT
|
|
#define TIMER_CCMR2_CC3S_INPUT_TI1 TIMER_CCMR_CCS_INPUT_TI1
|
|
#define TIMER_CCMR2_CC3S_INPUT_TI2 TIMER_CCMR_CCS_INPUT_TI2
|
|
#define TIMER_CCMR2_CC3S_INPUT_TRC TIMER_CCMR_CCS_INPUT_TRC
|
|
|
|
/* Capture/compare enable register (CCER) */
|
|
|
|
#define TIMER_CCER_CC4P_BIT 13
|
|
#define TIMER_CCER_CC4E_BIT 12
|
|
#define TIMER_CCER_CC3NP_BIT 11
|
|
#define TIMER_CCER_CC3NE_BIT 10
|
|
#define TIMER_CCER_CC3P_BIT 9
|
|
#define TIMER_CCER_CC3E_BIT 8
|
|
#define TIMER_CCER_CC2NP_BIT 7
|
|
#define TIMER_CCER_CC2NE_BIT 6
|
|
#define TIMER_CCER_CC2P_BIT 5
|
|
#define TIMER_CCER_CC2E_BIT 4
|
|
#define TIMER_CCER_CC1NP_BIT 3
|
|
#define TIMER_CCER_CC1NE_BIT 2
|
|
#define TIMER_CCER_CC1P_BIT 1
|
|
#define TIMER_CCER_CC1E_BIT 0
|
|
|
|
#define TIMER_CCER_CC4P (1U << TIMER_CCER_CC4P_BIT)
|
|
#define TIMER_CCER_CC4E (1U << TIMER_CCER_CC4E_BIT)
|
|
#define TIMER_CCER_CC3NP (1U << TIMER_CCER_CC3NP_BIT)
|
|
#define TIMER_CCER_CC3NE (1U << TIMER_CCER_CC3NE_BIT)
|
|
#define TIMER_CCER_CC3P (1U << TIMER_CCER_CC3P_BIT)
|
|
#define TIMER_CCER_CC3E (1U << TIMER_CCER_CC3E_BIT)
|
|
#define TIMER_CCER_CC2NP (1U << TIMER_CCER_CC2NP_BIT)
|
|
#define TIMER_CCER_CC2NE (1U << TIMER_CCER_CC2NE_BIT)
|
|
#define TIMER_CCER_CC2P (1U << TIMER_CCER_CC2P_BIT)
|
|
#define TIMER_CCER_CC2E (1U << TIMER_CCER_CC2E_BIT)
|
|
#define TIMER_CCER_CC1NP (1U << TIMER_CCER_CC1NP_BIT)
|
|
#define TIMER_CCER_CC1NE (1U << TIMER_CCER_CC1NE_BIT)
|
|
#define TIMER_CCER_CC1P (1U << TIMER_CCER_CC1P_BIT)
|
|
#define TIMER_CCER_CC1E (1U << TIMER_CCER_CC1E_BIT)
|
|
|
|
/* Break and dead-time register (BDTR) */
|
|
|
|
#define TIMER_BDTR_MOE_BIT 15
|
|
#define TIMER_BDTR_AOE_BIT 14
|
|
#define TIMER_BDTR_BKP_BIT 13
|
|
#define TIMER_BDTR_BKE_BIT 12
|
|
#define TIMER_BDTR_OSSR_BIT 11
|
|
#define TIMER_BDTR_OSSI_BIT 10
|
|
|
|
#define TIMER_BDTR_MOE (1U << TIMER_BDTR_MOE_BIT)
|
|
#define TIMER_BDTR_AOE (1U << TIMER_BDTR_AOE_BIT)
|
|
#define TIMER_BDTR_BKP (1U << TIMER_BDTR_BKP_BIT)
|
|
#define TIMER_BDTR_BKE (1U << TIMER_BDTR_BKE_BIT)
|
|
#define TIMER_BDTR_OSSR (1U << TIMER_BDTR_OSSR_BIT)
|
|
#define TIMER_BDTR_OSSI (1U << TIMER_BDTR_OSSI_BIT)
|
|
#define TIMER_BDTR_LOCK (0x3 << 8)
|
|
#define TIMER_BDTR_LOCK_OFF (0x0 << 8)
|
|
#define TIMER_BDTR_LOCK_LEVEL1 (0x1 << 8)
|
|
#define TIMER_BDTR_LOCK_LEVEL2 (0x2 << 8)
|
|
#define TIMER_BDTR_LOCK_LEVEL3 (0x3 << 8)
|
|
#define TIMER_BDTR_DTG 0xFF
|
|
|
|
/* DMA control register (DCR) */
|
|
|
|
#define TIMER_DCR_DBL (0x1F << 8)
|
|
#define TIMER_DCR_DBL_1_XFER (0x0 << 8)
|
|
#define TIMER_DCR_DBL_2_XFER (0x1 << 8)
|
|
#define TIMER_DCR_DBL_3_XFER (0x2 << 8)
|
|
#define TIMER_DCR_DBL_4_XFER (0x3 << 8)
|
|
#define TIMER_DCR_DBL_5_XFER (0x4 << 8)
|
|
#define TIMER_DCR_DBL_6_XFER (0x5 << 8)
|
|
#define TIMER_DCR_DBL_7_XFER (0x6 << 8)
|
|
#define TIMER_DCR_DBL_8_XFER (0x7 << 8)
|
|
#define TIMER_DCR_DBL_9_XFER (0x8 << 8)
|
|
#define TIMER_DCR_DBL_10_XFER (0x9 << 8)
|
|
#define TIMER_DCR_DBL_11_XFER (0xA << 8)
|
|
#define TIMER_DCR_DBL_12_XFER (0xB << 8)
|
|
#define TIMER_DCR_DBL_13_XFER (0xC << 8)
|
|
#define TIMER_DCR_DBL_14_XFER (0xD << 8)
|
|
#define TIMER_DCR_DBL_15_XFER (0xE << 8)
|
|
#define TIMER_DCR_DBL_16_XFER (0xF << 8)
|
|
#define TIMER_DCR_DBL_17_XFER (0x10 << 8)
|
|
#define TIMER_DCR_DBL_18_XFER (0x11 << 8)
|
|
#define TIMER_DCR_DBA 0x1F
|
|
#define TIMER_DCR_DBA_CR1 0x0
|
|
#define TIMER_DCR_DBA_CR2 0x1
|
|
#define TIMER_DCR_DBA_SMCR 0x2
|
|
#define TIMER_DCR_DBA_DIER 0x3
|
|
#define TIMER_DCR_DBA_SR 0x4
|
|
#define TIMER_DCR_DBA_EGR 0x5
|
|
#define TIMER_DCR_DBA_CCMR1 0x6
|
|
#define TIMER_DCR_DBA_CCMR2 0x7
|
|
#define TIMER_DCR_DBA_CCER 0x8
|
|
#define TIMER_DCR_DBA_CNT 0x9
|
|
#define TIMER_DCR_DBA_PSC 0xA
|
|
#define TIMER_DCR_DBA_ARR 0xB
|
|
#define TIMER_DCR_DBA_RCR 0xC
|
|
#define TIMER_DCR_DBA_CCR1 0xD
|
|
#define TIMER_DCR_DBA_CCR2 0xE
|
|
#define TIMER_DCR_DBA_CCR3 0xF
|
|
#define TIMER_DCR_DBA_CCR4 0x10
|
|
#define TIMER_DCR_DBA_BDTR 0x11
|
|
#define TIMER_DCR_DBA_DCR 0x12
|
|
#define TIMER_DCR_DBA_DMAR 0x13
|
|
|
|
/*
|
|
* Convenience routines
|
|
*/
|
|
|
|
/**
|
|
* @brief Used to configure the behavior of a timer channel.
|
|
*
|
|
* Be careful: not all timers can be configured in every mode.
|
|
*/
|
|
typedef enum timer_mode {
|
|
/**
|
|
* The timer stops counting, channel interrupts are detached, and
|
|
* no state changes are output. */
|
|
TIMER_DISABLED,
|
|
|
|
/** PWM output. */
|
|
TIMER_PWM,
|
|
|
|
/* TIMER_PWM_CENTER_ALIGNED, TODO: Center-aligned PWM output mode. */
|
|
|
|
/**
|
|
* The timer counts from 0 to its reload value repeatedly; every
|
|
* time the counter value reaches one of the channel compare
|
|
* values, the corresponding interrupt is fired. */
|
|
TIMER_OUTPUT_COMPARE,
|
|
|
|
/* TIMER_INPUT_CAPTURE, TODO: In this mode, the timer can measure the
|
|
* pulse lengths of input signals */
|
|
/* TIMER_ONE_PULSE, TODO: In this mode, the timer can generate a single
|
|
* pulse on a GPIO pin for a specified amount of
|
|
* time. */
|
|
|
|
TIMER_ENCODER, //CARLOS Change
|
|
} timer_mode;
|
|
|
|
/** Timer channel numbers */
|
|
typedef enum timer_channel {
|
|
TIMER_CH1 = 1, /**< Channel 1 */
|
|
TIMER_CH2 = 2, /**< Channel 2 */
|
|
TIMER_CH3 = 3, /**< Channel 3 */
|
|
TIMER_CH4 = 4 /**< Channel 4 */
|
|
} timer_channel;
|
|
|
|
/*
|
|
* Note: Don't require timer_channel arguments! We want to be able to say
|
|
*
|
|
* for (int channel = 1; channel <= 4; channel++) {
|
|
* ...
|
|
* }
|
|
*
|
|
* without the compiler yelling at us.
|
|
*/
|
|
|
|
void timer_init(timer_dev *dev);
|
|
void timer_disable(timer_dev *dev);
|
|
void timer_set_mode(timer_dev *dev, uint8 channel, timer_mode mode);
|
|
void timer_foreach(void (*fn)(timer_dev*));
|
|
int timer_has_cc_channel(timer_dev *dev, uint8 channel);
|
|
|
|
/**
|
|
* @brief Timer interrupt number.
|
|
*
|
|
* Not all timers support all of these values. All timers support
|
|
* TIMER_UPDATE_INTERRUPT. "General purpose" timers can be a special
|
|
* nuisance in this regard, as they individually support different
|
|
* subsets of the available interupts. Consult your target's reference
|
|
* manual for the details.
|
|
*/
|
|
typedef enum timer_interrupt_id {
|
|
TIMER_UPDATE_INTERRUPT, /**< Update interrupt. */
|
|
TIMER_CC1_INTERRUPT, /**< Capture/compare 1 interrupt. */
|
|
TIMER_CC2_INTERRUPT, /**< Capture/compare 2 interrupt. */
|
|
TIMER_CC3_INTERRUPT, /**< Capture/compare 3 interrupt. */
|
|
TIMER_CC4_INTERRUPT, /**< Capture/compare 4 interrupt. */
|
|
TIMER_COM_INTERRUPT, /**< COM interrupt. */
|
|
TIMER_TRG_INTERRUPT, /**< Trigger interrupt. */
|
|
TIMER_BREAK_INTERRUPT, /**< Break interrupt. */
|
|
} timer_interrupt_id;
|
|
|
|
void timer_attach_interrupt(timer_dev *dev,
|
|
uint8 interrupt,
|
|
voidFuncPtr handler);
|
|
void timer_detach_interrupt(timer_dev *dev, uint8 interrupt);
|
|
|
|
//CARLOS
|
|
uint8 get_direction(timer_dev *dev);
|
|
|
|
|
|
|
|
/**
|
|
* Initialize all timer devices on the chip.
|
|
*/
|
|
static inline void timer_init_all(void) {
|
|
timer_foreach(timer_init);
|
|
}
|
|
|
|
/**
|
|
* Disables all timers on the device.
|
|
*/
|
|
static inline void timer_disable_all(void) {
|
|
timer_foreach(timer_disable);
|
|
}
|
|
|
|
/**
|
|
* @brief Stop a timer's counter from changing.
|
|
*
|
|
* Does not affect the timer's mode or other settings.
|
|
*
|
|
* @param dev Device whose counter to pause.
|
|
*/
|
|
static inline void timer_pause(timer_dev *dev) {
|
|
*bb_perip(&(dev->regs).bas->CR1, TIMER_CR1_CEN_BIT) = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Start a timer's counter.
|
|
*
|
|
* Does not affect the timer's mode or other settings.
|
|
*
|
|
* @param dev Device whose counter to resume
|
|
*/
|
|
static inline void timer_resume(timer_dev *dev) {
|
|
*bb_perip(&(dev->regs).bas->CR1, TIMER_CR1_CEN_BIT) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the timer's counter value.
|
|
*
|
|
* This value is likely to be inaccurate if the counter is running
|
|
* with a low prescaler.
|
|
*
|
|
* @param dev Timer whose counter to return
|
|
*/
|
|
static inline uint16 timer_get_count(timer_dev *dev) {
|
|
return (uint16)(dev->regs).bas->CNT;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the counter value for the given timer.
|
|
* @param dev Timer whose counter to set
|
|
* @param value New counter value
|
|
*/
|
|
static inline void timer_set_count(timer_dev *dev, uint16 value) {
|
|
(dev->regs).bas->CNT = value;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the given timer's prescaler.
|
|
*
|
|
* Note that if the timer's prescaler is set (e.g. via
|
|
* timer_set_prescaler() or accessing a TIMx_PSC register), the value
|
|
* returned by this function will reflect the new setting, but the
|
|
* timer's counter will only reflect the new prescaler at the next
|
|
* update event.
|
|
*
|
|
* @param dev Timer whose prescaler to return
|
|
* @see timer_generate_update()
|
|
*/
|
|
static inline uint16 timer_get_prescaler(timer_dev *dev) {
|
|
return (uint16)(dev->regs).bas->PSC;
|
|
}
|
|
|
|
/**
|
|
* @brief Set a timer's prescale value.
|
|
*
|
|
* Divides the input clock by (PSC+1). The new value will not take
|
|
* effect until the next update event.
|
|
*
|
|
* @param dev Timer whose prescaler to set
|
|
* @param psc New prescaler value
|
|
* @see timer_generate_update()
|
|
*/
|
|
static inline void timer_set_prescaler(timer_dev *dev, uint16 psc) {
|
|
(dev->regs).bas->PSC = psc;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns a timer's reload value.
|
|
* @param dev Timer whose reload value to return
|
|
*/
|
|
static inline uint16 timer_get_reload(timer_dev *dev) {
|
|
return (uint16)(dev->regs).bas->ARR;
|
|
}
|
|
|
|
/**
|
|
* @brief Set a timer's reload value.
|
|
* @param dev Timer whose reload value to set
|
|
* @param arr New reload value to use. Takes effect at next update event.
|
|
* @see timer_generate_update()
|
|
*/
|
|
static inline void timer_set_reload(timer_dev *dev, uint16 arr) {
|
|
(dev->regs).bas->ARR = arr;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the compare value for the given timer channel.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel whose compare value to get.
|
|
*/
|
|
static inline uint16 timer_get_compare(timer_dev *dev, uint8 channel) {
|
|
__io uint32 *ccr = &(dev->regs).gen->CCR1 + (channel - 1);
|
|
return *ccr;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the compare value for the given timer channel.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel whose compare value to set.
|
|
* @param value New compare value.
|
|
*/
|
|
static inline void timer_set_compare(timer_dev *dev,
|
|
uint8 channel,
|
|
uint16 value) {
|
|
__io uint32 *ccr = &(dev->regs).gen->CCR1 + (channel - 1);
|
|
*ccr = value;
|
|
}
|
|
|
|
/**
|
|
* @brief Generate an update event for the given timer.
|
|
*
|
|
* Normally, this will cause the prescaler and auto-reload values in
|
|
* the PSC and ARR registers to take immediate effect. However, this
|
|
* function will do nothing if the UDIS bit is set in the timer's CR1
|
|
* register (UDIS is cleared by default).
|
|
*
|
|
* @param dev Timer device to generate an update for.
|
|
*/
|
|
static inline void timer_generate_update(timer_dev *dev) {
|
|
*bb_perip(&(dev->regs).bas->EGR, TIMER_EGR_UG_BIT) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable a timer's trigger DMA request
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL
|
|
*/
|
|
static inline void timer_dma_enable_trg_req(timer_dev *dev) {
|
|
*bb_perip(&(dev->regs).gen->DIER, TIMER_DIER_TDE_BIT) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable a timer's trigger DMA request
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL
|
|
*/
|
|
static inline void timer_dma_disable_trg_req(timer_dev *dev) {
|
|
*bb_perip(&(dev->regs).gen->DIER, TIMER_DIER_TDE_BIT) = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable a timer channel's DMA request.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL
|
|
* @param channel Channel whose DMA request to enable.
|
|
*/
|
|
static inline void timer_dma_enable_req(timer_dev *dev, uint8 channel) {
|
|
*bb_perip(&(dev->regs).gen->DIER, channel + 8) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable a timer channel's DMA request.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel whose DMA request to disable.
|
|
*/
|
|
static inline void timer_dma_disable_req(timer_dev *dev, uint8 channel) {
|
|
*bb_perip(&(dev->regs).gen->DIER, channel + 8) = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable a timer interrupt.
|
|
* @param dev Timer device.
|
|
* @param interrupt Interrupt number to enable; this may be any
|
|
* timer_interrupt_id value appropriate for the timer.
|
|
* @see timer_interrupt_id
|
|
* @see timer_channel
|
|
*/
|
|
static inline void timer_enable_irq(timer_dev *dev, uint8 interrupt) {
|
|
*bb_perip(&(dev->regs).adv->DIER, interrupt) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable a timer interrupt.
|
|
* @param dev Timer device.
|
|
* @param interrupt Interrupt number to disable; this may be any
|
|
* timer_interrupt_id value appropriate for the timer.
|
|
* @see timer_interrupt_id
|
|
* @see timer_channel
|
|
*/
|
|
static inline void timer_disable_irq(timer_dev *dev, uint8 interrupt) {
|
|
*bb_perip(&(dev->regs).adv->DIER, interrupt) = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable a timer channel's capture/compare signal.
|
|
*
|
|
* If the channel is configured as output, the corresponding output
|
|
* compare signal will be output on the corresponding output pin. If
|
|
* the channel is configured as input, enables capture of the counter
|
|
* value into the input capture/compare register.
|
|
*
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel to enable, from 1 to 4.
|
|
*/
|
|
static inline void timer_cc_enable(timer_dev *dev, uint8 channel) {
|
|
*bb_perip(&(dev->regs).gen->CCER, 4 * (channel - 1)) = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable a timer channel's output compare or input capture signal.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel to disable, from 1 to 4.
|
|
* @see timer_cc_enable()
|
|
*/
|
|
static inline void timer_cc_disable(timer_dev *dev, uint8 channel) {
|
|
*bb_perip(&(dev->regs).gen->CCER, 4 * (channel - 1)) = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Get a channel's capture/compare output polarity
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel whose capture/compare output polarity to get.
|
|
* @return Polarity, either 0 or 1.
|
|
* @see timer_cc_set_polarity()
|
|
*/
|
|
static inline uint8 timer_cc_get_pol(timer_dev *dev, uint8 channel) {
|
|
return *bb_perip(&(dev->regs).gen->CCER, 4 * (channel - 1) + 1);
|
|
}
|
|
|
|
/**
|
|
* @brief Set a timer channel's capture/compare output polarity.
|
|
*
|
|
* If the timer channel is configured as output: polarity == 0 means
|
|
* the output channel will be active high; polarity == 1 means active
|
|
* low.
|
|
*
|
|
* If the timer channel is configured as input: polarity == 0 means
|
|
* capture is done on the rising edge of ICn; when used as an external
|
|
* trigger, ICn is non-inverted. polarity == 1 means capture is done
|
|
* on the falling edge of ICn; when used as an external trigger, ICn
|
|
* is inverted.
|
|
*
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel whose capture/compare output polarity to set.
|
|
* @param pol New polarity, 0 or 1.
|
|
*/
|
|
static inline void timer_cc_set_pol(timer_dev *dev, uint8 channel, uint8 pol) {
|
|
*bb_perip(&(dev->regs).gen->CCER, 4 * (channel - 1) + 1) = pol;
|
|
}
|
|
|
|
/**
|
|
* @brief Get a timer's DMA burst length.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @return Number of transfers per read or write to timer DMA register,
|
|
* from 1 to 18.
|
|
*/
|
|
static inline uint8 timer_dma_get_burst_len(timer_dev *dev) {
|
|
uint32 dbl = ((dev->regs).gen->DCR & TIMER_DCR_DBL) >> 8;
|
|
return dbl + 1; /* 0 means 1 transfer, etc. */
|
|
}
|
|
|
|
/**
|
|
* @brief Set a timer's DMA burst length.
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param length DMA burst length; i.e., number of DMA transfers per
|
|
* read/write to timer DMA register, from 1 to 18.
|
|
*/
|
|
static inline void timer_dma_set_burst_len(timer_dev *dev, uint8 length) {
|
|
uint32 tmp = (dev->regs).gen->DCR;
|
|
tmp &= ~TIMER_DCR_DBL;
|
|
tmp |= (length - 1) << 8;
|
|
(dev->regs).gen->DCR = tmp;
|
|
}
|
|
|
|
/**
|
|
* @brief Timer DMA base address.
|
|
*
|
|
* Defines the base address for DMA transfers.
|
|
*/
|
|
typedef enum timer_dma_base_addr {
|
|
/** Base is control register 1 */
|
|
TIMER_DMA_BASE_CR1 = TIMER_DCR_DBA_CR1,
|
|
/** Base is control register 2 */
|
|
TIMER_DMA_BASE_CR2 = TIMER_DCR_DBA_CR2,
|
|
/** Base is slave mode control register */
|
|
TIMER_DMA_BASE_SMCR = TIMER_DCR_DBA_SMCR,
|
|
/** Base is DMA interrupt enable register */
|
|
TIMER_DMA_BASE_DIER = TIMER_DCR_DBA_DIER,
|
|
/** Base is status register */
|
|
TIMER_DMA_BASE_SR = TIMER_DCR_DBA_SR,
|
|
/** Base is event generation register */
|
|
TIMER_DMA_BASE_EGR = TIMER_DCR_DBA_EGR,
|
|
/** Base is capture/compare mode register 1 */
|
|
TIMER_DMA_BASE_CCMR1 = TIMER_DCR_DBA_CCMR1,
|
|
/** Base is capture/compare mode register 2 */
|
|
TIMER_DMA_BASE_CCMR2 = TIMER_DCR_DBA_CCMR2,
|
|
/** Base is capture/compare enable register */
|
|
TIMER_DMA_BASE_CCER = TIMER_DCR_DBA_CCER,
|
|
/** Base is counter */
|
|
TIMER_DMA_BASE_CNT = TIMER_DCR_DBA_CNT,
|
|
/** Base is prescaler */
|
|
TIMER_DMA_BASE_PSC = TIMER_DCR_DBA_PSC,
|
|
/** Base is auto-reload register */
|
|
TIMER_DMA_BASE_ARR = TIMER_DCR_DBA_ARR,
|
|
/** Base is repetition counter register */
|
|
TIMER_DMA_BASE_RCR = TIMER_DCR_DBA_RCR,
|
|
/** Base is capture/compare register 1 */
|
|
TIMER_DMA_BASE_CCR1 = TIMER_DCR_DBA_CCR1,
|
|
/** Base is capture/compare register 2 */
|
|
TIMER_DMA_BASE_CCR2 = TIMER_DCR_DBA_CCR2,
|
|
/** Base is capture/compare register 3 */
|
|
TIMER_DMA_BASE_CCR3 = TIMER_DCR_DBA_CCR3,
|
|
/** Base is capture/compare register 4 */
|
|
TIMER_DMA_BASE_CCR4 = TIMER_DCR_DBA_CCR4,
|
|
/** Base is break and dead-time register */
|
|
TIMER_DMA_BASE_BDTR = TIMER_DCR_DBA_BDTR,
|
|
/** Base is DMA control register */
|
|
TIMER_DMA_BASE_DCR = TIMER_DCR_DBA_DCR,
|
|
/** Base is DMA address for full transfer */
|
|
TIMER_DMA_BASE_DMAR = TIMER_DCR_DBA_DMAR,
|
|
} timer_dma_base_addr;
|
|
|
|
/**
|
|
* @brief Get the timer's DMA base address.
|
|
*
|
|
* Some restrictions apply; see the reference manual for your chip.
|
|
*
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @return DMA base address
|
|
*/
|
|
static inline timer_dma_base_addr timer_dma_get_base_addr(timer_dev *dev) {
|
|
uint32 dcr = (dev->regs).gen->DCR;
|
|
return (timer_dma_base_addr)(dcr & TIMER_DCR_DBA);
|
|
}
|
|
|
|
/**
|
|
* @brief Set the timer's DMA base address.
|
|
*
|
|
* Some restrictions apply; see the reference manual for your chip.
|
|
*
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param dma_base DMA base address.
|
|
*/
|
|
static inline void timer_dma_set_base_addr(timer_dev *dev,
|
|
timer_dma_base_addr dma_base) {
|
|
uint32 tmp = (dev->regs).gen->DCR;
|
|
tmp &= ~TIMER_DCR_DBA;
|
|
tmp |= dma_base;
|
|
(dev->regs).gen->DCR = tmp;
|
|
}
|
|
|
|
/**
|
|
* Timer output compare modes.
|
|
*/
|
|
typedef enum timer_oc_mode {
|
|
/**
|
|
* Frozen: comparison between output compare register and counter
|
|
* has no effect on the outputs. */
|
|
TIMER_OC_MODE_FROZEN = 0 << 4,
|
|
/**
|
|
* OCxREF signal is forced high when the count matches the channel
|
|
* capture/compare register. */
|
|
TIMER_OC_MODE_ACTIVE_ON_MATCH = 1 << 4,
|
|
/**
|
|
* OCxREF signal is forced low when the counter matches the
|
|
* channel capture/compare register. */
|
|
TIMER_OC_MODE_INACTIVE_ON_MATCH = 2 << 4,
|
|
/**
|
|
* OCxREF toggles when counter matches the channel capture/compare
|
|
* register. */
|
|
TIMER_OC_MODE_TOGGLE = 3 << 4,
|
|
/** OCxREF is forced low. */
|
|
TIMER_OC_MODE_FORCE_INACTIVE = 4 << 4,
|
|
/** OCxREF is forced high. */
|
|
TIMER_OC_MODE_FORCE_ACTIVE = 5 << 4,
|
|
/**
|
|
* PWM mode 1. In upcounting, channel is active as long as count
|
|
* is less than channel capture/compare register, else inactive.
|
|
* In downcounting, channel is inactive as long as count exceeds
|
|
* capture/compare register, else active. */
|
|
TIMER_OC_MODE_PWM_1 = 6 << 4,
|
|
/**
|
|
* PWM mode 2. In upcounting, channel is inactive as long as count
|
|
* is less than capture/compare register, else active. In
|
|
* downcounting, channel is active as long as count exceeds
|
|
* capture/compare register, else inactive. */
|
|
TIMER_OC_MODE_PWM_2 = 7 << 4,
|
|
} timer_oc_mode;
|
|
|
|
/**
|
|
* Timer output compare mode flags.
|
|
* @see timer_oc_set_mode()
|
|
*/
|
|
typedef enum timer_oc_mode_flags {
|
|
TIMER_OC_CE = 1U << 7, /**< Output compare clear enable. */
|
|
TIMER_OC_PE = 1U << 3, /**< Output compare preload enable. */
|
|
TIMER_OC_FE = 1U << 2, /**< Output compare fast enable. */
|
|
} timer_oc_mode_flags;
|
|
|
|
/**
|
|
* @brief Configure a channel's output compare mode.
|
|
*
|
|
* @param dev Timer device, must have type TIMER_ADVANCED or TIMER_GENERAL.
|
|
* @param channel Channel to configure in output compare mode.
|
|
* @param mode Timer mode to set.
|
|
* @param flags OR of timer_oc_mode_flags.
|
|
* @see timer_oc_mode
|
|
* @see timer_oc_mode_flags
|
|
*/
|
|
static inline void timer_oc_set_mode(timer_dev *dev,
|
|
uint8 channel,
|
|
timer_oc_mode mode,
|
|
uint8 flags) {
|
|
/* channel == 1,2 -> CCMR1; channel == 3,4 -> CCMR2 */
|
|
__io uint32 *ccmr = &(dev->regs).gen->CCMR1 + (((channel - 1) >> 1) & 1);
|
|
/* channel == 1,3 -> shift = 0, channel == 2,4 -> shift = 8 */
|
|
uint8 shift = 8 * (1 - (channel & 1));
|
|
|
|
uint32 tmp = *ccmr;
|
|
tmp &= ~(0xFF << shift);
|
|
tmp |= (mode | flags | TIMER_CCMR_CCS_OUTPUT) << shift;
|
|
*ccmr = tmp;
|
|
}
|
|
|
|
/*
|
|
* Old, erroneous bit definitions from previous releases, kept for
|
|
* backwards compatibility:
|
|
*/
|
|
|
|
/** Deprecated. Use TIMER_CCMR1_CC4S_OUTPUT instead. */
|
|
#define TIMER_CCMR1_CC4S_OUTPUT TIMER_CCMR2_CC4S_OUTPUT
|
|
/** Deprecated. Use TIMER_CCMR1_CC4S_INPUT_TI1 instead. */
|
|
#define TIMER_CCMR1_CC4S_INPUT_TI1 TIMER_CCMR2_CC4S_INPUT_TI1
|
|
/** Deprecated. Use TIMER_CCMR1_CC4S_INPUT_TI2 instead. */
|
|
#define TIMER_CCMR1_CC4S_INPUT_TI2 TIMER_CCMR2_CC4S_INPUT_TI2
|
|
/** Deprecated. Use TIMER_CCMR1_CC4S_INPUT_TRC instead. */
|
|
#define TIMER_CCMR1_CC4S_INPUT_TRC TIMER_CCMR2_CC4S_INPUT_TRC
|
|
/** Deprecated. Use TIMER_CCMR2_IC4F instead. */
|
|
#define TIMER_CCMR2_IC2F TIMER_CCMR2_IC4F
|
|
/** Deprecated. Use TIMER_CCMR2_IC4PSC instead. */
|
|
#define TIMER_CCMR2_IC2PSC TIMER_CCMR2_IC4PSC
|
|
/** Deprecated. Use TIMER_CCMR2_IC3F instead. */
|
|
#define TIMER_CCMR2_IC1F TIMER_CCMR2_IC3F
|
|
/** Deprecated. Use TIMER_CCMR2_IC3PSC instead. */
|
|
#define TIMER_CCMR2_IC1PSC TIMER_CCMR2_IC3PSC
|
|
/** Deprecated. Use TIMER_CCMR1_CC3S_OUTPUT instead. */
|
|
#define TIMER_CCMR1_CC3S_OUTPUT TIMER_CCMR2_CC3S_OUTPUT
|
|
/** Deprecated. Use TIMER_CCMR1_CC3S_INPUT_TI1 instead. */
|
|
#define TIMER_CCMR1_CC3S_INPUT_TI1 TIMER_CCMR2_CC3S_INPUT_TI1
|
|
/** Deprecated. Use TIMER_CCMR1_CC3S_INPUT_TI2 instead. */
|
|
#define TIMER_CCMR1_CC3S_INPUT_TI2 TIMER_CCMR2_CC3S_INPUT_TI2
|
|
/** Deprecated. Use TIMER_CCMR1_CC3S_INPUT_TRC instead. */
|
|
#define TIMER_CCMR1_CC3S_INPUT_TRC TIMER_CCMR2_CC3S_INPUT_TRC
|
|
|
|
/** Deprecated. Use TIMER_DCR_DBL_1_XFER instead. */
|
|
#define TIMER_DCR_DBL_1BYTE TIMER_DCR_DBL_1_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_2_XFER instead. */
|
|
#define TIMER_DCR_DBL_2BYTE TIMER_DCR_DBL_2_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_3_XFER instead. */
|
|
#define TIMER_DCR_DBL_3BYTE TIMER_DCR_DBL_3_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_4_XFER instead. */
|
|
#define TIMER_DCR_DBL_4BYTE TIMER_DCR_DBL_4_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_5_XFER instead. */
|
|
#define TIMER_DCR_DBL_5BYTE TIMER_DCR_DBL_5_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_6_XFER instead. */
|
|
#define TIMER_DCR_DBL_6BYTE TIMER_DCR_DBL_6_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_7_XFER instead. */
|
|
#define TIMER_DCR_DBL_7BYTE TIMER_DCR_DBL_7_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_8_XFER instead. */
|
|
#define TIMER_DCR_DBL_8BYTE TIMER_DCR_DBL_8_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_9_XFER instead. */
|
|
#define TIMER_DCR_DBL_9BYTE TIMER_DCR_DBL_9_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_10_XFER instead. */
|
|
#define TIMER_DCR_DBL_10BYTE TIMER_DCR_DBL_10_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_11_XFER instead. */
|
|
#define TIMER_DCR_DBL_11BYTE TIMER_DCR_DBL_11_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_12_XFER instead. */
|
|
#define TIMER_DCR_DBL_12BYTE TIMER_DCR_DBL_12_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_13_XFER instead. */
|
|
#define TIMER_DCR_DBL_13BYTE TIMER_DCR_DBL_13_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_14_XFER instead. */
|
|
#define TIMER_DCR_DBL_14BYTE TIMER_DCR_DBL_14_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_15_XFER instead. */
|
|
#define TIMER_DCR_DBL_15BYTE TIMER_DCR_DBL_15_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_16_XFER instead. */
|
|
#define TIMER_DCR_DBL_16BYTE TIMER_DCR_DBL_16_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_17_XFER instead. */
|
|
#define TIMER_DCR_DBL_17BYTE TIMER_DCR_DBL_17_XFER
|
|
/** Deprecated. Use TIMER_DCR_DBL_18_XFER instead. */
|
|
#define TIMER_DCR_DBL_18BYTE TIMER_DCR_DBL_18_XFER
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif
|
|
|
|
#endif
|