Arduino_STM32/STM32F4/cores/maple/libmaple/HardwareSPI.cpp

431 lines
11 KiB
C++

/******************************************************************************
* The MIT License
*
* Copyright (c) 2010 Perry Hung.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @author Marti Bolivar <mbolivar@leaflabs.com>
* @brief Wirish SPI implementation.
*/
#include "HardwareSPI.h"
#include "timer.h"
#include "util.h"
#include "rcc.h"
#include "wirish.h"
#include "boards.h"
struct spi_pins {
uint8 nss;
uint8 sck;
uint8 miso;
uint8 mosi;
};
static const spi_pins* dev_to_spi_pins(spi_dev *dev);
static void enable_device(spi_dev *dev,
bool as_master,
SPIFrequency frequency,
spi_cfg_flag endianness,
spi_mode mode);
static const spi_pins board_spi_pins[] __FLASH__ = {
{BOARD_SPI1_NSS_PIN,
BOARD_SPI1_SCK_PIN,
BOARD_SPI1_MISO_PIN,
BOARD_SPI1_MOSI_PIN},
#ifdef BOARD_SPI2_NSS_PIN
{BOARD_SPI2_NSS_PIN,
BOARD_SPI2_SCK_PIN,
BOARD_SPI2_MISO_PIN,
BOARD_SPI2_MOSI_PIN},
#endif
#ifdef STM32_HIGH_DENSITY
{BOARD_SPI3B_NSS_PIN,
BOARD_SPI3B_SCK_PIN,
BOARD_SPI3B_MISO_PIN,
BOARD_SPI3B_MOSI_PIN},
#endif
#ifdef STM32F4
{BOARD_SPI3B_NSS_PIN,
BOARD_SPI3B_SCK_PIN,
BOARD_SPI3B_MISO_PIN,
BOARD_SPI3B_MOSI_PIN},
#endif
};
/*
* Constructor
*/
HardwareSPI::HardwareSPI(uint32 spi_num) {
switch (spi_num) {
case 1:
this->spi_d = SPI1;
break;
case 2:
this->spi_d = SPI2;
break;
#ifdef STM32_HIGH_DENSITY
case 3:
this->spi_d = SPI3;
break;
#endif
#ifdef STM32F4
// case 4:
// this->spi_d = SPI4;
// break;
#endif
default:
ASSERT(0);
}
}
/*
* Set up/tear down
*/
void HardwareSPI::begin(SPIFrequency frequency, uint32 bitOrder, uint32 mode) {
if (mode >= 4) {
ASSERT(0);
return;
}
spi_cfg_flag end = bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB;
spi_mode m = (spi_mode)mode;
enable_device(this->spi_d, true, frequency, end, m);
}
void HardwareSPI::begin(void) {
this->begin(SPI_1_125MHZ, MSBFIRST, 0);
}
void HardwareSPI::beginSlave(uint32 bitOrder, uint32 mode) {
if (mode >= 4) {
ASSERT(0);
return;
}
spi_cfg_flag end = bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB;
spi_mode m = (spi_mode)mode;
enable_device(this->spi_d, false, (SPIFrequency)0, end, m);
}
void HardwareSPI::beginSlave(void) {
this->beginSlave(MSBFIRST, 0);
}
/*
void HardwareSPI::beginTransaction(uint8_t pin, SPISettings settings)
{
// this->begin(settings.clock, settings.bitOrder, settings.dataMode);
this->begin(SPI_1_125MHZ, settings.bitOrder, settings.dataMode);
}
*/
void HardwareSPI::end(void) {
if (!spi_is_enabled(this->spi_d)) {
return;
}
// Follows RM0008's sequence for disabling a SPI in master/slave
// full duplex mode.
while (spi_is_rx_nonempty(this->spi_d)) {
// FIXME [0.1.0] remove this once you have an interrupt based driver
volatile uint16 rx __attribute__((unused)) = spi_rx_reg(this->spi_d);
}
while (!spi_is_tx_empty(this->spi_d))
;
while (spi_is_busy(this->spi_d))
;
spi_peripheral_disable(this->spi_d);
}
/*
* I/O
*/
uint8 HardwareSPI::read(void) {
uint8 buf[1];
this->read(buf, 1);
return buf[0];
}
void HardwareSPI::read(uint8 *buf, uint32 len) {
uint32 rxed = 0;
while (rxed < len) {
while (!spi_is_rx_nonempty(this->spi_d))
;
buf[rxed++] = (uint8)spi_rx_reg(this->spi_d);
}
}
#if 0
void HardwareSPI::readMaster(uint8 *buf, uint32 len) {
uint32 rxed = 0;
while (rxed < len) {
spi_tx_reg(this->spi_d, 0xff);
while (!spi_is_rx_nonempty(this->spi_d))
;
buf[rxed++] = (uint8)spi_rx_reg(this->spi_d);
buf[rxed++] = this->spi_d->regs->DR;
}
}
#endif
void HardwareSPI::readMaster(uint8 *buf, uint32 len) {
spi_reg_map *r = this->spi_d->regs;
uint32 rxed = 0;
while (rxed < len) {
r->DR = 0xff;
while (!(r->SR & SPI_SR_RXNE))
;
buf[rxed++] = r->DR;
}
}
void HardwareSPI::waitReady() {
while (!spi_is_rx_nonempty(this->spi_d))
;
}
void HardwareSPI::write(uint8 byte) {
this->write(&byte, 1);
}
void HardwareSPI::write(const uint8 *data, uint32 length) {
uint32 txed = 0;
while (txed < length) {
txed += spi_tx(this->spi_d, data + txed, length - txed);
}
}
uint8 HardwareSPI::transfer(uint8 byte) {
this->write(byte);
return this->read();
}
/*
* Pin accessors
*/
uint8 HardwareSPI::misoPin(void) {
return dev_to_spi_pins(this->spi_d)->miso;
}
uint8 HardwareSPI::mosiPin(void) {
return dev_to_spi_pins(this->spi_d)->mosi;
}
uint8 HardwareSPI::sckPin(void) {
return dev_to_spi_pins(this->spi_d)->sck;
}
uint8 HardwareSPI::nssPin(void) {
return dev_to_spi_pins(this->spi_d)->nss;
}
/*
* Deprecated functions
*/
uint8 HardwareSPI::send(uint8 data) {
uint8 buf[] = {data};
return this->send(buf, 1);
}
#if 1
uint8 HardwareSPI::send(const uint8 *buf, uint32 len) {
uint32 txed = 0;
uint8 ret = 0;
while (txed < len) {
this->write(buf[txed++]);
ret = this->read();
}
return ret;
}
#else
// this does not work for an unknown reason
uint8 HardwareSPI::send(const uint8 *buf, uint32 len) {
volatile uint32 *dr = &(this->spi_d->regs->DR);
volatile uint32 *sr = &(this->spi_d->regs->SR);
uint32 txed = 0;
uint32 rx=0;
while (txed < len) {
//while (!(*sr & SPI_SR_TXE))
// ;
//*dr = buf[txed++];
this->write(buf[txed++]);
while (!(*sr & SPI_SR_RXNE))
;
rx = *dr;
//rx = this->read();
}
return rx;
}
#endif
uint8 HardwareSPI::recv(void) {
return this->read();
}
/*
* Auxiliary functions
*/
static void configure_gpios(spi_dev *dev, bool as_master);
static spi_baud_rate determine_baud_rate(spi_dev *dev, SPIFrequency freq);
static const spi_pins* dev_to_spi_pins(spi_dev *dev) {
switch (dev->clk_id) {
case RCC_SPI1: return board_spi_pins;
case RCC_SPI2: return board_spi_pins + 1;
#ifdef STM32_HIGH_DENSITY
case RCC_SPI3: return board_spi_pins + 2;
#endif
#ifdef STM32F4
case RCC_SPI4: return board_spi_pins + 3;
#endif
default: return NULL;
}
}
/* Enables the device in master or slave full duplex mode. If you
* change this code, you must ensure that appropriate changes are made
* to HardwareSPI::end(). */
static void enable_device(spi_dev *dev,
bool as_master,
SPIFrequency freq,
spi_cfg_flag endianness,
spi_mode mode) {
spi_baud_rate baud = determine_baud_rate(dev, freq);
uint32 cfg_flags = (endianness | SPI_DFF_8_BIT | SPI_SW_SLAVE |
(as_master ? SPI_SOFT_SS : 0));
spi_init(dev);
configure_gpios(dev, as_master);
if (as_master) {
spi_master_enable(dev, baud, mode, cfg_flags);
} else {
spi_slave_enable(dev, mode, cfg_flags);
}
}
static void disable_pwm(const stm32_pin_info *i) {
if (i->timer_device) {
timer_set_mode(i->timer_device, i->timer_channel, TIMER_DISABLED);
}
}
static void configure_gpios(spi_dev *dev, bool as_master) {
const spi_pins *pins = dev_to_spi_pins(dev);
if (!pins) {
return;
}
const stm32_pin_info *nssi = (pins->nss >= 0) ? &PIN_MAP[pins->nss] : NULL;
const stm32_pin_info *scki = &PIN_MAP[pins->sck];
const stm32_pin_info *misoi = &PIN_MAP[pins->miso];
const stm32_pin_info *mosii = &PIN_MAP[pins->mosi];
if(nssi) {
disable_pwm(nssi);
}
disable_pwm(scki);
disable_pwm(misoi);
disable_pwm(mosii);
#ifdef STM32F4
if(dev->clk_id <= RCC_SPI2) {
if(nssi) {
if(!as_master) {
gpio_set_af_mode(nssi->gpio_device, scki->gpio_bit, 5);
}
}
gpio_set_af_mode(scki->gpio_device, scki->gpio_bit, 5);
gpio_set_af_mode(misoi->gpio_device, misoi->gpio_bit, 5);
gpio_set_af_mode(mosii->gpio_device, mosii->gpio_bit, 5);
} else {
if(nssi) {
if(!as_master) {
gpio_set_af_mode(nssi->gpio_device, scki->gpio_bit, 6);
}
}
gpio_set_af_mode(scki->gpio_device, scki->gpio_bit, 6);
gpio_set_af_mode(misoi->gpio_device, misoi->gpio_bit, 6);
gpio_set_af_mode(mosii->gpio_device, mosii->gpio_bit, 6);
}
#endif
if(nssi) {
spi_gpio_cfg(as_master,
nssi->gpio_device,
nssi->gpio_bit,
scki->gpio_device,
scki->gpio_bit,
misoi->gpio_bit,
mosii->gpio_bit);
} else {
spi_gpio_cfg(as_master,
NULL,
-1,
scki->gpio_device,
scki->gpio_bit,
misoi->gpio_bit,
mosii->gpio_bit);
}
}
static const spi_baud_rate baud_rates[MAX_SPI_FREQS] __FLASH__ = {
SPI_BAUD_PCLK_DIV_2,
SPI_BAUD_PCLK_DIV_4,
SPI_BAUD_PCLK_DIV_8,
SPI_BAUD_PCLK_DIV_16,
SPI_BAUD_PCLK_DIV_32,
SPI_BAUD_PCLK_DIV_64,
SPI_BAUD_PCLK_DIV_128,
SPI_BAUD_PCLK_DIV_256,
};
/*
* Note: This assumes you're on a LeafLabs-style board
* (CYCLES_PER_MICROSECOND == 72, APB2 at 72MHz, APB1 at 36MHz).
*/
static spi_baud_rate determine_baud_rate(spi_dev *dev, SPIFrequency freq) {
if (rcc_dev_clk(dev->clk_id) == RCC_APB2 && freq == SPI_140_625KHZ) {
/* APB2 peripherals are too fast for 140.625 KHz */
ASSERT(0);
return (spi_baud_rate)~0;
}
return (rcc_dev_clk(dev->clk_id) == RCC_APB2 ?
baud_rates[freq + 1] :
baud_rates[freq]);
}