Arduino_STM32/STM32F4/cores/maple/wirish_digital.cpp

145 lines
3.7 KiB
C++

/******************************************************************************
* The MIT License
*
* Copyright (c) 2010 Perry Hung.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/*
* Arduino-compatible digital I/O implementation.
*/
#include "wirish.h"
void pinMode(uint8 pin, WiringPinMode mode) {
gpio_pin_mode outputMode;
boolean pwm = false;
if (pin >= BOARD_NR_GPIO_PINS) {
return;
}
switch(mode) {
case OUTPUT:
outputMode = GPIO_OUTPUT_PP;
break;
case OUTPUT_OPEN_DRAIN:
outputMode = GPIO_OUTPUT_OD;
break;
case INPUT:
case INPUT_FLOATING:
outputMode = GPIO_INPUT_FLOATING;
break;
case INPUT_ANALOG:
outputMode = GPIO_INPUT_ANALOG;
break;
case INPUT_PULLUP:
outputMode = GPIO_INPUT_PU;
break;
case INPUT_PULLDOWN:
outputMode = GPIO_INPUT_PD;
break;
case PWM:
outputMode = GPIO_AF_OUTPUT_PP;
pwm = true;
break;
case PWM_OPEN_DRAIN:
outputMode = GPIO_AF_OUTPUT_OD;
pwm = true;
break;
default:
ASSERT(0);
return;
}
gpio_set_mode(pin, outputMode);
if (PIN_MAP[pin].timer_device != NULL) {
/* Enable/disable timer channels if we're switching into or
* out of PWM. */
timer_set_mode(PIN_MAP[pin].timer_device,
PIN_MAP[pin].timer_channel,
pwm ? TIMER_PWM : TIMER_DISABLED);
}
}
uint32 digitalRead(uint8 pin)
{
if (pin >= BOARD_NR_GPIO_PINS) {
return 0;
}
return gpio_read_pin(pin) ?
HIGH : LOW;
}
void digitalWrite(uint8 pin, uint8 val)
{
if (pin >= BOARD_NR_GPIO_PINS) {
return;
}
gpio_write_pin(pin, val);
}
void togglePin(uint8 pin)
{
if (pin >= BOARD_NR_GPIO_PINS) {
return;
}
gpio_toggle_pin(pin);
}
#define BUTTON_DEBOUNCE_DELAY 1
uint8 isButtonPressed(uint8_t button) {
if (digitalRead(button)) {
delay(BUTTON_DEBOUNCE_DELAY);
while (digitalRead(button))
;
return true;
}
return false;
}
uint8 waitForButtonPress(uint8_t button, uint32 timeout) {
uint32 start = millis();
uint32 time;
if (timeout == 0) {
while (!isButtonPressed(button))
;
return true;
}
do {
time = millis();
/* properly handle wrap-around */
if ((start > time && time + (0xffffffffU - start) > timeout) ||
time - start > timeout) {
return false;
}
} while (!isButtonPressed(button));
return true;
}