/* Copyright (c) 2017 Daniel Fekete Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * TODO: Check if txBuffer is NULL in every method * TODO: generate different BUFFER_SIZE values for different boards based on available memory * TODO: add alternate pin selection functions * TODO: add constructor with custom buffer parameter */ #include "SerialUART.h" #include "stm32_gpio_af.h" /** * Set the underlying UART instance. */ SerialUART::SerialUART(USART_TypeDef *instance) { this->instance = instance; } /** * Arduino always instantiates the Serial object. * * To save memory, this implementation will: * - not use any memory if begin() is never called * - use statically allocated memory, if begin() is called exactly in one SerialUARTs. * - use statically allocated memory for the first, and malloc() for any subsequent calls to begin() on DIFFERENT SerialUARTs. */ void SerialUART::begin(const uint32_t baud) { if (txBuffer == NULL) { static uint8_t tx[BUFFER_SIZE]; static uint8_t static_tx_used = 0; if (!static_tx_used) { txBuffer = (uint8_t*)tx; static_tx_used = true; } else { txBuffer = (uint8_t*)malloc(BUFFER_SIZE); } } if (rxBuffer == NULL) { static uint8_t rx[BUFFER_SIZE]; static uint8_t static_rx_used = 0; if (!static_rx_used) { rxBuffer = (uint8_t*)rx; static_rx_used = true; } else { rxBuffer = (uint8_t*)malloc(BUFFER_SIZE); } } if (handle == NULL) { static UART_HandleTypeDef h = {}; static uint8_t static_handle_used = 0; if (!static_handle_used) { handle = &h; static_handle_used = true; } else { handle = (UART_HandleTypeDef*)malloc(sizeof(UART_HandleTypeDef)); } } handle->Instance = instance; #ifdef USART1 if (handle->Instance == USART1) { __HAL_RCC_USART1_CLK_ENABLE(); HAL_NVIC_SetPriority(USART1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); } #endif #ifdef USART2 if (handle->Instance == USART2) { __HAL_RCC_USART2_CLK_ENABLE(); HAL_NVIC_SetPriority(USART2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART2_IRQn); } #endif #ifdef USART3 if (handle->Instance == USART3) { __HAL_RCC_USART3_CLK_ENABLE(); HAL_NVIC_SetPriority(USART3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART3_IRQn); } #endif #ifdef USART4 if (handle->Instance == USART4) { __HAL_RCC_USART4_CLK_ENABLE(); HAL_NVIC_SetPriority(USART4_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART4_IRQn); } #endif stm32AfUARTInit(instance, rxPort, rxPin, txPort, txPin); handle->Init.BaudRate = baud; handle->Init.WordLength = UART_WORDLENGTH_8B; handle->Init.StopBits = UART_STOPBITS_1; handle->Init.Parity = UART_PARITY_NONE; handle->Init.Mode = UART_MODE_TX_RX; handle->Init.HwFlowCtl = UART_HWCONTROL_NONE; handle->Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(handle); HAL_UART_Receive_IT(handle, &receive_buffer, 1); } int SerialUART::available() { return rxEnd != rxStart; } int SerialUART::peek() { if (available()) { return rxBuffer[rxStart % BUFFER_SIZE]; } else { return -1; } } void SerialUART::flush() { while(txEnd % BUFFER_SIZE != txStart % BUFFER_SIZE); } int SerialUART::read() { if (available()) { return rxBuffer[rxStart++ % BUFFER_SIZE]; } else { return -1; } } size_t SerialUART::write(const uint8_t c) { while((txEnd + 1) % BUFFER_SIZE == txStart % BUFFER_SIZE); txBuffer[txEnd % BUFFER_SIZE] = c; txEnd++; if (txEnd % BUFFER_SIZE == (txStart + 1) % BUFFER_SIZE) { HAL_UART_Transmit_IT(handle, &txBuffer[txStart % BUFFER_SIZE], 1); } return 1; } void SerialUART::stm32SetRX(uint8_t rx) { rxPort = variant_pin_list[rx].port; rxPin = variant_pin_list[rx].pin_mask; } void SerialUART::stm32SetTX(uint8_t tx) { txPort = variant_pin_list[tx].port; txPin = variant_pin_list[tx].pin_mask; } //// Interrupt SerialUART *interruptUART; #ifdef USART1 extern "C" void USART1_IRQHandler(void) { interruptUART = &SerialUART1; HAL_UART_IRQHandler(interruptUART->handle); } SerialUART SerialUART1(USART1); #endif #ifdef USART2 extern "C" void USART2_IRQHandler(void) { interruptUART = &SerialUART2; HAL_UART_IRQHandler(interruptUART->handle); } SerialUART SerialUART2(USART2); #endif #ifdef USART3 extern "C" void USART3_IRQHandler(void) { interruptUART = &SerialUART3; HAL_UART_IRQHandler(interruptUART->handle); } SerialUART SerialUART3(USART3); #endif #ifdef USART4 extern "C" void USART4_IRQHandler(void) { interruptUART = &SerialUART4; HAL_UART_IRQHandler(interruptUART->handle); } SerialUART SerialUART4(USART4); #endif extern "C" void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { interruptUART->txStart++; if (interruptUART->txStart != interruptUART->txEnd) { HAL_UART_Transmit_IT(interruptUART->handle, &interruptUART->txBuffer[interruptUART->txStart % BUFFER_SIZE], 1); } } extern "C" void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { interruptUART->rxBuffer[interruptUART->rxEnd % BUFFER_SIZE] = interruptUART->receive_buffer; interruptUART->rxEnd++; HAL_UART_Receive_IT(interruptUART->handle, &interruptUART->receive_buffer, 1); }