186 lines
5.9 KiB
Arduino
186 lines
5.9 KiB
Arduino
|
//This function simply pulls a 1D linear interpolated (ie averaged) value from a 2D table
|
||
|
int get2DTableValue(struct table2Dx4 fromTable, int X)
|
||
|
{
|
||
|
int xMinValue = fromTable.axisX[0];
|
||
|
int xMaxValue = fromTable.axisX[fromTable.xSize-1];
|
||
|
int xMin = 0;
|
||
|
int xMax = 0;
|
||
|
|
||
|
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
|
||
|
if(X > xMaxValue) { X = xMaxValue; }
|
||
|
if(X < xMinValue) { X = xMinValue; }
|
||
|
|
||
|
for (int x = fromTable.xSize-1; x >= 0; x--)
|
||
|
{
|
||
|
//Checks the case where the X value is exactly what was requested
|
||
|
if ( (X == fromTable.axisX[x]) || (x == 0) )
|
||
|
{
|
||
|
return fromTable.values[x]; //Simply return the coresponding value
|
||
|
}
|
||
|
//Normal case
|
||
|
if ( (X <= fromTable.axisX[x]) && (X > fromTable.axisX[x-1]) )
|
||
|
{
|
||
|
xMaxValue = fromTable.axisX[x];
|
||
|
xMinValue = fromTable.axisX[x-1];
|
||
|
xMax = x;
|
||
|
xMin = x-1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsigned int m = X - xMinValue;
|
||
|
unsigned int n = xMaxValue - xMinValue;
|
||
|
|
||
|
//Float version
|
||
|
/*
|
||
|
int yVal = (m / n) * (abs(fromTable.values[xMax] - fromTable.values[xMin]));
|
||
|
*/
|
||
|
|
||
|
//Non-Float version
|
||
|
int yVal;
|
||
|
yVal = ((m << 6) / n) * (abs(fromTable.values[xMax] - fromTable.values[xMin]));
|
||
|
yVal = (yVal >> 6);
|
||
|
|
||
|
if (fromTable.values[xMax] > fromTable.values[xMin]) { yVal = fromTable.values[xMin] + yVal; }
|
||
|
else { yVal = fromTable.values[xMin] - yVal; }
|
||
|
|
||
|
return yVal;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
//This function pulls a value from a 3D table given a target for X and Y coordinates.
|
||
|
//It performs a 2D linear interpolation as descibred in: http://www.megamanual.com/v22manual/ve_tuner.pdf
|
||
|
int get3DTableValue(struct table3D fromTable, int Y, int X)
|
||
|
{
|
||
|
//Loop through the X axis bins for the min/max pair
|
||
|
//Note: For the X axis specifically, rather than looping from tableAxisX[0] up to tableAxisX[max], we start at tableAxisX[Max] and go down.
|
||
|
// This is because the important tables (fuel and injection) will have the highest RPM at the top of the X axis, so starting there will mean the best case occurs when the RPM is highest (And hence the CPU is needed most)
|
||
|
int xMinValue = fromTable.axisX[0];
|
||
|
int xMaxValue = fromTable.axisX[fromTable.xSize-1];
|
||
|
int xMin = 0;
|
||
|
int xMax = 0;
|
||
|
|
||
|
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
|
||
|
if(X > xMaxValue) { X = xMaxValue; }
|
||
|
if(X < xMinValue) { X = xMinValue; }
|
||
|
|
||
|
for (int x = fromTable.xSize-1; x >= 0; x--)
|
||
|
{
|
||
|
//Checks the case where the X value is exactly what was requested
|
||
|
if ( (X == fromTable.axisX[x]) || (x == 0) )
|
||
|
{
|
||
|
xMaxValue = fromTable.axisX[x];
|
||
|
xMinValue = fromTable.axisX[x];
|
||
|
xMax = x;
|
||
|
xMin = x;
|
||
|
break;
|
||
|
}
|
||
|
//Normal case
|
||
|
if ( (X <= fromTable.axisX[x]) && (X > fromTable.axisX[x-1]) )
|
||
|
{
|
||
|
xMaxValue = fromTable.axisX[x];
|
||
|
xMinValue = fromTable.axisX[x-1];
|
||
|
xMax = x;
|
||
|
xMin = x-1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//Loop through the Y axis bins for the min/max pair
|
||
|
int yMaxValue = fromTable.axisY[0];
|
||
|
int yMinValue = fromTable.axisY[fromTable.ySize-1];
|
||
|
int yMin = 0;
|
||
|
int yMax = 0;
|
||
|
|
||
|
//If the requested Y value is greater/small than the maximum/minimum bin, reset Y to be that value
|
||
|
if(Y > yMaxValue) { Y = yMaxValue; }
|
||
|
if(Y < yMinValue) { Y = yMinValue; }
|
||
|
|
||
|
for (int y = fromTable.ySize-1; y >= 0; y--)
|
||
|
{
|
||
|
//Checks the case where the Y value is exactly what was requested
|
||
|
if ( (Y == fromTable.axisY[y]) || (y==0) )
|
||
|
{
|
||
|
yMaxValue = fromTable.axisY[y];
|
||
|
yMinValue = fromTable.axisY[y];
|
||
|
yMax = y;
|
||
|
yMin = y;
|
||
|
break;
|
||
|
}
|
||
|
//Normal case
|
||
|
if ( (Y >= fromTable.axisY[y]) && (Y < fromTable.axisY[y-1]) )
|
||
|
{
|
||
|
yMaxValue = fromTable.axisY[y];
|
||
|
yMinValue = fromTable.axisY[y-1];
|
||
|
yMax = y;
|
||
|
yMin = y-1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
At this point we have the 4 corners of the map where the interpolated value will fall in
|
||
|
Eg: (yMin,xMin) (yMin,xMax)
|
||
|
|
||
|
(yMax,xMin) (yMax,xMax)
|
||
|
|
||
|
In the following calculation the table values are referred to by the following variables:
|
||
|
A B
|
||
|
|
||
|
C D
|
||
|
|
||
|
*/
|
||
|
int A = fromTable.values[yMin][xMin];
|
||
|
int B = fromTable.values[yMin][xMax];
|
||
|
int C = fromTable.values[yMax][xMin];
|
||
|
int D = fromTable.values[yMax][xMax];
|
||
|
|
||
|
//Create some normalised position values
|
||
|
//These are essentially percentages (between 0 and 1) of where the desired value falls between the nearest bins on each axis
|
||
|
|
||
|
// Float version
|
||
|
/*
|
||
|
float p, q;
|
||
|
if (xMaxValue == xMinValue)
|
||
|
{ p = (float)(X-xMinValue); }
|
||
|
else { p = ((float)(X - xMinValue)) / (float)(xMaxValue - xMinValue); }
|
||
|
|
||
|
if (yMaxValue == yMinValue)
|
||
|
{ q = (float)(Y - yMinValue); }
|
||
|
else { q = ((float)(Y - yMaxValue)) / (float)(yMinValue - yMaxValue); }
|
||
|
|
||
|
float m = (1.0-p) * (1.0-q);
|
||
|
float n = p * (1-q);
|
||
|
float o = (1-p) * q;
|
||
|
float r = p * q;
|
||
|
|
||
|
|
||
|
return ( (A * m) + (B * n) + (C * o) + (D * r) );
|
||
|
*/
|
||
|
|
||
|
// Non-Float version:
|
||
|
//Initial check incase the values were hit straight on
|
||
|
long p;
|
||
|
if (xMaxValue == xMinValue)
|
||
|
{ p = ((long)(X - xMinValue) << 8); } //This only occurs if the requested X value was equal to one of the X axis bins
|
||
|
else
|
||
|
{
|
||
|
p = ((long)(X - xMinValue) << 8) / (xMaxValue - xMinValue); } //This is the standard case
|
||
|
|
||
|
long q;
|
||
|
if (yMaxValue == yMinValue)
|
||
|
{ q = ((long)(Y - yMinValue) << 8); }
|
||
|
else
|
||
|
{ q = ((long)(Y - yMaxValue) << 8) / (yMinValue - yMaxValue); }
|
||
|
|
||
|
int m = ((257-p) * (257-q)) >> 8;
|
||
|
int n = (p * (257-q)) >> 8;
|
||
|
int o = ((257-p) * q) >> 8;
|
||
|
int r = (p * q) >> 8;
|
||
|
|
||
|
return ( (A * m) + (B * n) + (C * o) + (D * r) ) >> 8;
|
||
|
}
|