MISRA work on maths.ino
This commit is contained in:
parent
7fb7d83f5f
commit
8db54c9c22
|
@ -9,7 +9,7 @@ int fastMap(unsigned long x, int in_min, int in_max, int out_min, int out_max)
|
|||
//return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
||||
}
|
||||
|
||||
//This is a dedicated function that specifically handles the case of mapping 0-1023 values into a 0 to X range
|
||||
//This is a dedicated function that specifically handles the case of mapping 0-1023 values into a 0 to X range
|
||||
//This is a common case because it means converting from a standard 10-bit analog input to a byte or 10-bit analog into 0-511 (Eg the temperature readings)
|
||||
//int fastMap1023toX(unsigned long x, int in_min, int in_max, int out_min, int out_max)
|
||||
//removed ununsed variables, in_min and out_min is aways 0, in_max is aways 1023
|
||||
|
@ -24,61 +24,63 @@ Ref: http://www.hackersdelight.org/divcMore.pdf
|
|||
*/
|
||||
|
||||
//Unsigned divide by 10
|
||||
unsigned int divu10(unsigned int n) {
|
||||
unsigned long q, r;
|
||||
q = (n >> 1) + (n >> 2);
|
||||
q = q + (q >> 4);
|
||||
q = q + (q >> 8);
|
||||
q = q + (q >> 16);
|
||||
q = q >> 3;
|
||||
r = n - q*10;
|
||||
return q + ((r + 6) >> 4);
|
||||
// return q + (r > 9);
|
||||
unsigned int divu10(unsigned int n)
|
||||
{
|
||||
unsigned long q, r;
|
||||
q = (n >> 1) + (n >> 2);
|
||||
q = q + (q >> 4);
|
||||
q = q + (q >> 8);
|
||||
q = q + (q >> 16);
|
||||
q = q >> 3;
|
||||
r = n - (q * 10);
|
||||
return q + ((r + 6) >> 4);
|
||||
}
|
||||
|
||||
//Signed divide by 10
|
||||
int divs10(long n) {
|
||||
long q, r;
|
||||
n = n + (n>>31 & 9);
|
||||
q = (n >> 1) + (n >> 2);
|
||||
q = q + (q >> 4);
|
||||
q = q + (q >> 8);
|
||||
q = q + (q >> 16);
|
||||
q = q >> 3;
|
||||
r = n - q*10;
|
||||
return q + ((r + 6) >> 4);
|
||||
// return q + (r > 9);
|
||||
int divs10(long n)
|
||||
{
|
||||
long q, r, p;
|
||||
p = n + (n>>31 & 9);
|
||||
q = (p >> 1) + (p >> 2);
|
||||
q = q + (q >> 4);
|
||||
q = q + (q >> 8);
|
||||
q = q + (q >> 16);
|
||||
q = q >> 3;
|
||||
r = p - (q * 10);
|
||||
return q + ((r + 6) >> 4);
|
||||
}
|
||||
|
||||
//Signed divide by 100
|
||||
int divs100(long n) {
|
||||
int divs100(long n)
|
||||
{
|
||||
return (n / 100); // Amazingly, gcc is producing a better /divide by 100 function than this
|
||||
long q, r;
|
||||
n = n + (n>>31 & 99);
|
||||
q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
|
||||
(n >> 12) + (n >> 13) - (n >> 16);
|
||||
q = q + (q >> 20);
|
||||
q = q >> 6;
|
||||
r = n - q*100;
|
||||
return q + ((r + 28) >> 7);
|
||||
// return q + (r > 99);
|
||||
/*
|
||||
long q, r;
|
||||
n = n + (n>>31 & 99);
|
||||
q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
|
||||
(n >> 12) + (n >> 13) - (n >> 16);
|
||||
q = q + (q >> 20);
|
||||
q = q >> 6;
|
||||
r = n - q*100;
|
||||
return q + ((r + 28) >> 7);
|
||||
*/
|
||||
}
|
||||
|
||||
//Unsigned divide by 100
|
||||
unsigned long divu100(unsigned long n) {
|
||||
//return (n / 100); // No difference with this on/off
|
||||
unsigned long q, r;
|
||||
q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
|
||||
(n >> 12) + (n >> 13) - (n >> 16);
|
||||
q = q + (q >> 20);
|
||||
q = q >> 6;
|
||||
r = n - q*100;
|
||||
return q + ((r + 28) >> 7);
|
||||
// return q + (r > 99);
|
||||
unsigned long divu100(unsigned long n)
|
||||
{
|
||||
//return (n / 100);
|
||||
unsigned long q, r;
|
||||
q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
|
||||
(n >> 12) + (n >> 13) - (n >> 16);
|
||||
q = q + (q >> 20);
|
||||
q = q >> 6;
|
||||
r = n - (q * 100);
|
||||
return q + ((r + 28) >> 7);
|
||||
}
|
||||
|
||||
//Return x percent of y
|
||||
//This is a relatively fast approximation of a percentage value.
|
||||
//This is a relatively fast approximation of a percentage value.
|
||||
unsigned long percentage(byte x, unsigned long y)
|
||||
{
|
||||
return (y * x) / 100; //For some reason this is faster
|
||||
|
@ -91,7 +93,8 @@ unsigned long percentage(byte x, unsigned long y)
|
|||
inline long powint(int factor, unsigned int exponent)
|
||||
{
|
||||
long product = 1;
|
||||
while (exponent--)
|
||||
unsigned int counter = exponent;
|
||||
while ( (counter--) > 0)
|
||||
product *= factor;
|
||||
return product;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue