/* Speeduino - Simple engine management for the Arduino Mega 2560 platform Copyright (C) Josh Stewart A full copy of the license may be found in the projects root directory */ /* Because the size of the table is dynamic, this functino is required to reallocate the array sizes Note that this may clear some of the existing values of the table */ #include "table.h" #include "globals.h" void table2D_setSize(struct table2D* targetTable, byte newSize) { //2D tables can contain either bytes or ints, depending on the value of the valueSize field if(targetTable->valueSize == SIZE_BYTE) { targetTable->values = (byte *)realloc(targetTable->values, newSize * sizeof(byte)); targetTable->axisX = (byte *)realloc(targetTable->axisX, newSize * sizeof(byte)); targetTable->xSize = newSize; } else { targetTable->values16 = (int *)realloc(targetTable->values16, newSize * sizeof(int)); targetTable->axisX16 = (int *)realloc(targetTable->axisX16, newSize * sizeof(int)); targetTable->xSize = newSize; } } /* This function simply pulls a 1D linear interpolated (ie averaged) value from a 2D table ie: Given a value on the X axis, it returns a Y value that coresponds to the point on the curve between the nearest two defined X values This function must take into account whether a table contains 8-bit or 16-bit values. Unfortunately this means many of the lines are duplicated depending on this */ int table2D_getValue(struct table2D *fromTable, int X) { int xMinValue, xMaxValue; if (fromTable->valueSize == SIZE_BYTE) { //Byte version xMinValue = fromTable->axisX[0]; xMaxValue = fromTable->axisX[fromTable->xSize-1]; } else { //int version xMinValue = fromTable->axisX16[0]; xMaxValue = fromTable->axisX16[fromTable->xSize-1]; } int xMin = 0; int xMax = 0; //If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value if(X > xMaxValue) { X = xMaxValue; } if(X < xMinValue) { X = xMinValue; } for (int x = fromTable->xSize-1; x >= 0; x--) { if (fromTable->valueSize == SIZE_BYTE) { //Byte version //Checks the case where the X value is exactly what was requested if ( (X == fromTable->axisX[x]) || (x == 0) ) { return fromTable->values[x]; //Simply return the coresponding value } //Normal case if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) ) { xMaxValue = fromTable->axisX[x]; xMinValue = fromTable->axisX[x-1]; xMax = x; xMin = x-1; break; } } else { //int version if ( (X == fromTable->axisX16[x]) || (x == 0) ) { return fromTable->values16[x]; //Simply return the coresponding value } //Normal case if ( (X <= fromTable->axisX16[x]) && (X > fromTable->axisX16[x-1]) ) { xMaxValue = fromTable->axisX16[x]; xMinValue = fromTable->axisX16[x-1]; xMax = x; xMin = x-1; break; } } } unsigned int m = X - xMinValue; unsigned int n = xMaxValue - xMinValue; //Float version /* int yVal = (m / n) * (abs(fromTable.values[xMax] - fromTable.values[xMin])); */ //Non-Float version int yVal; if (fromTable->valueSize == SIZE_BYTE) { //Byte version yVal = ((long)(m << 6) / n) * (abs(fromTable->values[xMax] - fromTable->values[xMin])); yVal = (yVal >> 6); if (fromTable->values[xMax] > fromTable->values[xMin]) { yVal = fromTable->values[xMin] + yVal; } else { yVal = fromTable->values[xMin] - yVal; } } else { //int version yVal = ((long)(m << 6) / n) * (abs(fromTable->values16[xMax] - fromTable->values16[xMin])); yVal = (yVal >> 6); if (fromTable->values[xMax] > fromTable->values16[xMin]) { yVal = fromTable->values16[xMin] + yVal; } else { yVal = fromTable->values16[xMin] - yVal; } } return yVal; } //This function pulls a value from a 3D table given a target for X and Y coordinates. //It performs a 2D linear interpolation as descibred in: http://www.megamanual.com/v22manual/ve_tuner.pdf int get3DTableValue(struct table3D *fromTable, int Y, int X) { //Loop through the X axis bins for the min/max pair //Note: For the X axis specifically, rather than looping from tableAxisX[0] up to tableAxisX[max], we start at tableAxisX[Max] and go down. // This is because the important tables (fuel and injection) will have the highest RPM at the top of the X axis, so starting there will mean the best case occurs when the RPM is highest (And hence the CPU is needed most) int xMinValue = fromTable->axisX[0]; int xMaxValue = fromTable->axisX[fromTable->xSize-1]; byte xMin = 0; byte xMax = 0; //If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value if(X > xMaxValue) { X = xMaxValue; } if(X < xMinValue) { X = xMinValue; } //1st check is whether we're still in the same X bin as last time if ( (X <= fromTable->axisX[fromTable->lastXMax]) && (X > fromTable->axisX[fromTable->lastXMin]) ) { xMaxValue = fromTable->axisX[fromTable->lastXMax]; xMinValue = fromTable->axisX[fromTable->lastXMin]; xMax = fromTable->lastXMax; xMin = fromTable->lastXMin; } //2nd check is whether we're in the next RPM bin (To the right) else if ( ((fromTable->lastXMax + 1) < fromTable->xSize ) && (X <= fromTable->axisX[fromTable->lastXMax +1 ]) && (X > fromTable->axisX[fromTable->lastXMin + 1]) ) //First make sure we're not already at the last X bin { fromTable->lastXMax = xMax = fromTable->lastXMax + 1; fromTable->lastXMin = xMin = fromTable->lastXMin + 1; xMaxValue = fromTable->axisX[fromTable->lastXMax]; xMinValue = fromTable->axisX[fromTable->lastXMin]; } //3rd check is to look at the previous bin (to the left) else if ( (fromTable->lastXMin > 0 ) && (X <= fromTable->axisX[fromTable->lastXMax - 1]) && (X > fromTable->axisX[fromTable->lastXMin - 1]) ) //First make sure we're not already at the first X bin { fromTable->lastXMax = xMax = fromTable->lastXMax - 1; fromTable->lastXMin = xMin = fromTable->lastXMin - 1; xMaxValue = fromTable->axisX[fromTable->lastXMax]; xMinValue = fromTable->axisX[fromTable->lastXMin]; } else //If it's not caught by one of the above scenarios, give up and just run the loop { for (byte x = fromTable->xSize-1; x >= 0; x--) { //Checks the case where the X value is exactly what was requested if ( (X == fromTable->axisX[x]) || (x == 0) ) { xMaxValue = fromTable->axisX[x]; xMinValue = fromTable->axisX[x]; fromTable->lastXMax = xMax = x; fromTable->lastXMin = xMin = x; break; } //Normal case if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) ) { xMaxValue = fromTable->axisX[x]; xMinValue = fromTable->axisX[x-1]; fromTable->lastXMax = xMax = x; fromTable->lastXMin = xMin = x-1; break; } } } //Loop through the Y axis bins for the min/max pair int yMaxValue = fromTable->axisY[0]; int yMinValue = fromTable->axisY[fromTable->ySize-1]; byte yMin = 0; byte yMax = 0; //If the requested Y value is greater/small than the maximum/minimum bin, reset Y to be that value if(Y > yMaxValue) { Y = yMaxValue; } if(Y < yMinValue) { Y = yMinValue; } //1st check is whether we're still in the same Y bin as last time if ( (Y >= fromTable->axisY[fromTable->lastYMax]) && (Y < fromTable->axisY[fromTable->lastYMin]) ) { yMaxValue = fromTable->axisY[fromTable->lastYMax]; yMinValue = fromTable->axisY[fromTable->lastYMin]; yMax = fromTable->lastYMax; yMin = fromTable->lastYMin; } //2nd check is whether we're in the next MAP/TPS bin (Next one up) else if ( (fromTable->lastYMin > 0 ) && (Y <= fromTable->axisY[fromTable->lastYMin - 1 ]) && (Y > fromTable->axisY[fromTable->lastYMax - 1]) ) //First make sure we're not already at the top Y bin { fromTable->lastYMax = yMax = fromTable->lastYMax - 1; fromTable->lastYMin = yMin = fromTable->lastYMin - 1; yMaxValue = fromTable->axisY[fromTable->lastYMax]; yMinValue = fromTable->axisY[fromTable->lastYMin]; } //3rd check is to look at the previous bin (Next one down) else if ( ((fromTable->lastYMax + 1) < fromTable->ySize) && (Y <= fromTable->axisY[fromTable->lastYMin + 1]) && (Y > fromTable->axisY[fromTable->lastYMax + 1]) ) //First make sure we're not already at the bottom Y bin { fromTable->lastYMax = yMax = fromTable->lastYMax + 1; fromTable->lastYMin = yMin = fromTable->lastYMin + 1; yMaxValue = fromTable->axisY[fromTable->lastYMax]; yMinValue = fromTable->axisY[fromTable->lastYMin]; } else //If it's not caught by one of the above scenarios, give up and just run the loop { for (byte y = fromTable->ySize-1; y >= 0; y--) { //Checks the case where the Y value is exactly what was requested if ( (Y == fromTable->axisY[y]) || (y==0) ) { yMaxValue = fromTable->axisY[y]; yMinValue = fromTable->axisY[y]; fromTable->lastYMax = yMax = y; fromTable->lastYMin = yMin = y; break; } //Normal case if ( (Y >= fromTable->axisY[y]) && (Y < fromTable->axisY[y-1]) ) { yMaxValue = fromTable->axisY[y]; yMinValue = fromTable->axisY[y-1]; fromTable->lastYMax = yMax = y; fromTable->lastYMin = yMin = y-1; break; } } } /* At this point we have the 4 corners of the map where the interpolated value will fall in Eg: (yMin,xMin) (yMin,xMax) (yMax,xMin) (yMax,xMax) In the following calculation the table values are referred to by the following variables: A B C D */ int A = fromTable->values[yMin][xMin]; int B = fromTable->values[yMin][xMax]; int C = fromTable->values[yMax][xMin]; int D = fromTable->values[yMax][xMax]; //Create some normalised position values //These are essentially percentages (between 0 and 1) of where the desired value falls between the nearest bins on each axis // Float version /* float p, q; if (xMaxValue == xMinValue) { p = (float)(X-xMinValue); } else { p = ((float)(X - xMinValue)) / (float)(xMaxValue - xMinValue); } if (yMaxValue == yMinValue) { q = (float)(Y - yMinValue); } else { q = ((float)(Y - yMaxValue)) / (float)(yMinValue - yMaxValue); } float m = (1.0-p) * (1.0-q); float n = p * (1-q); float o = (1-p) * q; float r = p * q; return ( (A * m) + (B * n) + (C * o) + (D * r) ); */ // Non-Float version: //Initial check incase the values were hit straight on long p; if (xMaxValue == xMinValue) { p = ((long)(X - xMinValue) << 8); } //This only occurs if the requested X value was equal to one of the X axis bins else { p = ((long)(X - xMinValue) << 8) / (xMaxValue - xMinValue); //This is the standard case } long q; if (yMaxValue == yMinValue) { q = ((long)(Y - yMinValue) << 8); } else { q = ((long)(Y - yMaxValue) << 8) / (yMinValue - yMaxValue); } int m = ((257-p) * (257-q)) >> 8; int n = (p * (257-q)) >> 8; int o = ((257-p) * q) >> 8; int r = (p * q) >> 8; return ( (A * m) + (B * n) + (C * o) + (D * r) ) >> 8; }