speeduino-personal/speeduino/timers.ino

180 lines
8.1 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
/*
Timers are used for having actions performed repeatedly at a fixed interval (Eg every 100ms)
They should not be confused with Schedulers, which are for performing an action once at a given point of time in the future
Timers are typically low resolution (Compared to Schedulers), with maximum frequency currently being approximately every 10ms
*/
#include "timers.h"
#include "globals.h"
#include "sensors.h"
#if defined(CORE_AVR)
#include <avr/wdt.h>
#endif
void initialiseTimers()
{
#if defined(CORE_AVR) //AVR chips use the ISR for this
//Configure Timer2 for our low-freq interrupt code.
TCCR2B = 0x00; //Disbale Timer2 while we set it up
TCNT2 = 131; //Preload timer2 with 131 cycles, leaving 125 till overflow. As the timer runs at 125Khz, this causes overflow to occur at 1Khz = 1ms
TIFR2 = 0x00; //Timer2 INT Flag Reg: Clear Timer Overflow Flag
TIMSK2 = 0x01; //Timer2 Set Overflow Interrupt enabled.
TCCR2A = 0x00; //Timer2 Control Reg A: Wave Gen Mode normal
/* Now configure the prescaler to CPU clock divided by 128 = 125Khz */
TCCR2B |= (1<<CS22) | (1<<CS20); // Set bits
TCCR2B &= ~(1<<CS21); // Clear bit
//Enable the watchdog timer for 2 second resets (Good reference: https://tushev.org/articles/arduino/5/arduino-and-watchdog-timer)
//wdt_enable(WDTO_2S); //Boooooooooo WDT is currently broken on Mega 2560 bootloaders :(
#elif defined (CORE_TEENSY)
//Uses the PIT timer on Teensy.
lowResTimer.begin(oneMSInterval, 1000);
#elif defined(CORE_STM32)
Timer4.setPeriod(1000); // Set up period
// Set up an interrupt
Timer4.setMode(TIMER_CH1, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(1, oneMSInterval);
#endif
dwellLimit_uS = (1000 * configPage2.dwellLimit);
lastRPM_100ms = 0;
}
//Timer2 Overflow Interrupt Vector, called when the timer overflows.
//Executes every ~1ms.
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
ISR(TIMER2_OVF_vect, ISR_NOBLOCK)
#elif defined (CORE_TEENSY) || defined(CORE_STM32)
void oneMSInterval() //Most ARM chips can simply call a function
#endif
{
//Increment Loop Counters
loop100ms++;
loop250ms++;
loopSec++;
unsigned long targetOverdwellTime;
//Overdwell check
targetOverdwellTime = micros() - dwellLimit_uS; //Set a target time in the past that all coil charging must have begun after. If the coil charge began before this time, it's been running too long
//Check first whether each spark output is currently on. Only check it's dwell time if it is
if(ignitionSchedule1.Status == RUNNING) { if(ignitionSchedule1.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil1Charge(); } }
if(ignitionSchedule2.Status == RUNNING) { if(ignitionSchedule2.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil2Charge(); } }
if(ignitionSchedule3.Status == RUNNING) { if(ignitionSchedule3.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil3Charge(); } }
if(ignitionSchedule4.Status == RUNNING) { if(ignitionSchedule4.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil4Charge(); } }
if(ignitionSchedule5.Status == RUNNING) { if(ignitionSchedule5.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil5Charge(); } }
//Loop executed every 100ms loop
//Anything inside this if statement will run every 100ms.
if (loop100ms == 100)
{
loop100ms = 0; //Reset counter
currentStatus.rpmDOT = (currentStatus.RPM - lastRPM_100ms) * 10; //This is the RPM per second that the engine has accelerated/decelleratedin the last loop
lastRPM_100ms = currentStatus.RPM; //Record the current RPM for next calc
}
//Loop executed every 250ms loop (1ms x 250 = 250ms)
//Anything inside this if statement will run every 250ms.
if (loop250ms == 250)
{
loop250ms = 0; //Reset Counter.
#if defined(CORE_AVR)
//wdt_reset(); //Reset watchdog timer
#endif
}
//Loop executed every 1 second (1ms x 1000 = 1000ms)
if (loopSec == 1000)
{
loopSec = 0; //Reset counter.
dwellLimit_uS = (1000 * configPage2.dwellLimit); //Update uS value incase setting has changed
if ( configPage2.ignCranklock && BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK)) { dwellLimit_uS = dwellLimit_uS * 3; } //Make sure the overdwell doesn't clobber the fixed ignition cranking if enabled.
//**************************************************************************************************************************************************
//This updates the runSecs variable
//If the engine is running or cranking, we need ot update the run time counter.
if (BIT_CHECK(currentStatus.engine, BIT_ENGINE_RUN))
{ //NOTE - There is a potential for a ~1sec gap between engine crank starting and ths runSec number being incremented. This may delay ASE!
if (currentStatus.runSecs <= 254) //Ensure we cap out at 255 and don't overflow. (which would reset ASE)
{ currentStatus.runSecs++; } //Increment our run counter by 1 second.
}
//**************************************************************************************************************************************************
//This records the number of main loops the system has completed in the last second
currentStatus.loopsPerSecond = mainLoopCount;
mainLoopCount = 0;
//**************************************************************************************************************************************************
//increament secl (secl is simply a counter that increments every second and is used to track whether the system has unexpectedly reset
currentStatus.secl++;
//**************************************************************************************************************************************************
//Check the fan output status
if (configPage4.fanEnable == 1)
{
fanControl(); // Fucntion to turn the cooling fan on/off
}
//Check whether fuel pump priming is complete
if(!fpPrimed)
{
if(currentStatus.secl >= configPage1.fpPrime)
{
fpPrimed = true; //Mark the priming as being completed
if(currentStatus.RPM == 0) { digitalWrite(pinFuelPump, LOW); fuelPumpOn = false; } //If we reach here then the priming is complete, however only turn off the fuel pump if the engine isn't running
}
}
//**************************************************************************************************************************************************
//Set the flex reading (if enabled). The flexCounter is updated with every pulse from the sensor. If cleared once per second, we get a frequency reading
if(configPage1.flexEnabled)
{
if(flexCounter < 50)
{
currentStatus.ethanolPct = 0; //Standard GM Continental sensor reads from 50Hz (0 ethanol) to 150Hz (Pure ethanol). Subtracting 50 from the frequency therefore gives the ethanol percentage.
flexCounter = 0;
}
else if (flexCounter > 151) //1 pulse buffer
{
if(flexCounter < 169)
{
currentStatus.ethanolPct = 100;
flexCounter = 0;
}
else
{
//This indicates an error condition. Spec of the sensor is that errors are above 170Hz)
currentStatus.ethanolPct = 0;
flexCounter = 0;
}
}
else
{
currentStatus.ethanolPct = flexCounter - 50; //Standard GM Continental sensor reads from 50Hz (0 ethanol) to 150Hz (Pure ethanol). Subtracting 50 from the frequency therefore gives the ethanol percentage.
flexCounter = 0;
}
//Off by 1 error check
if (currentStatus.ethanolPct == 1) { currentStatus.ethanolPct = 0; }
}
}
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
//Reset Timer2 to trigger in another ~1ms
TCNT2 = 131; //Preload timer2 with 100 cycles, leaving 156 till overflow.
TIFR2 = 0x00; //Timer2 INT Flag Reg: Clear Timer Overflow Flag
#endif
}