speeduino-personal/speeduino/comms.ino

1590 lines
65 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
#include "globals.h"
#include "comms.h"
#include "cancomms.h"
#include "errors.h"
#include "storage.h"
#include "maths.h"
#include "utils.h"
#include "decoders.h"
/*
Processes the data on the serial buffer.
Can be either a new command or a continuation of one that is already in progress:
* cmdPending = If a command has started but is wairing on further data to complete
* chunkPending = Specifically for the new receive value method where TS will send a known number of contiguous bytes to be written to a table
*/
void command()
{
if (cmdPending == false) { currentCommand = Serial.read(); }
switch (currentCommand)
{
case 'A': // send x bytes of realtime values
sendValues(0, SERIAL_PACKET_SIZE, 0x30, 0); //send values to serial0
break;
case 'B': // Burn current values to eeprom
writeAllConfig();
break;
case 'b': // New EEPROM burn command to only burn a single page at a time
cmdPending = true;
if (Serial.available() >= 2)
{
Serial.read(); //Ignore the first table value, it's always 0
writeConfig(Serial.read());
cmdPending = false;
}
break;
case 'C': // test communications. This is used by Tunerstudio to see whether there is an ECU on a given serial port
testComm();
break;
case 'c': //Send the current loops/sec value
Serial.write(lowByte(currentStatus.loopsPerSecond));
Serial.write(highByte(currentStatus.loopsPerSecond));
break;
//The following can be used to show the amount of free memory
case 'E': // receive command button commands
cmdPending = true;
if(Serial.available() >= 2)
{
cmdGroup = Serial.read();
cmdValue = Serial.read();
cmdCombined = word(cmdGroup, cmdValue);
if (currentStatus.RPM == 0) { commandButtons(); }
cmdPending = false;
}
break;
case 'F': // send serial protocol version
Serial.print("001");
break;
case 'H': //Start the tooth logger
currentStatus.toothLogEnabled = true;
currentStatus.compositeLogEnabled = false; //Safety first (Should never be required)
toothHistoryIndex = 0;
toothHistorySerialIndex = 0;
break;
case 'h': //Stop the tooth logger
currentStatus.toothLogEnabled = false;
break;
case 'J': //Start the composite logger
currentStatus.compositeLogEnabled = true;
currentStatus.toothLogEnabled = false; //Safety first (Should never be required)
toothHistoryIndex = 0;
toothHistorySerialIndex = 0;
compositeLastToothTime = 0;
//Disconnect the standard interrupt and add the logger verion
detachInterrupt( digitalPinToInterrupt(pinTrigger) );
attachInterrupt( digitalPinToInterrupt(pinTrigger), loggerPrimaryISR, CHANGE );
detachInterrupt( digitalPinToInterrupt(pinTrigger2) );
attachInterrupt( digitalPinToInterrupt(pinTrigger2), loggerSecondaryISR, CHANGE );
break;
case 'j': //Stop the composite logger
currentStatus.compositeLogEnabled = false;
//Disconnect the logger interrupts and attach the normal ones
detachInterrupt( digitalPinToInterrupt(pinTrigger) );
attachInterrupt( digitalPinToInterrupt(pinTrigger), triggerHandler, primaryTriggerEdge );
detachInterrupt( digitalPinToInterrupt(pinTrigger2) );
attachInterrupt( digitalPinToInterrupt(pinTrigger2), triggerSecondaryHandler, secondaryTriggerEdge );
break;
case 'L': // List the contents of current page in human readable form
sendPage(true);
break;
case 'm': //Send the current free memory
currentStatus.freeRAM = freeRam();
Serial.write(lowByte(currentStatus.freeRAM));
Serial.write(highByte(currentStatus.freeRAM));
break;
case 'N': // Displays a new line. Like pushing enter in a text editor
Serial.println();
break;
case 'P': // set the current page
//A 2nd byte of data is required after the 'P' specifying the new page number.
cmdPending = true;
if (Serial.available() > 0)
{
currentPage = Serial.read();
//This converts the ascii number char into binary. Note that this will break everyything if there are ever more than 48 pages (48 = asci code for '0')
if (currentPage >= '0') { currentPage -= '0'; }
// Detecting if the current page is a table/map
if ( (currentPage == veMapPage) || (currentPage == ignMapPage) || (currentPage == afrMapPage) ) { isMap = true; }
else { isMap = false; }
cmdPending = false;
}
break;
/*
* New method for sending page values
*/
case 'p':
cmdPending = true;
//6 bytes required:
//2 - Page identifier
//2 - offset
//2 - Length
if(Serial.available() >= 6)
{
byte offset1, offset2, length1, length2;
int length;
byte tempPage;
Serial.read(); // First byte of the page identifier can be ignored. It's always 0
tempPage = Serial.read();
//currentPage = 1;
offset1 = Serial.read();
offset2 = Serial.read();
valueOffset = word(offset2, offset1);
length1 = Serial.read();
length2 = Serial.read();
length = word(length2, length1);
for(int i = 0; i < length; i++)
{
Serial.write( getPageValue(tempPage, valueOffset + i) );
}
cmdPending = false;
}
break;
case 'Q': // send code version
Serial.print(F("speeduino 201812-dev"));
break;
case 'r': //New format for the optimised OutputChannels
cmdPending = true;
byte cmd;
if (Serial.available() >= 6)
{
tsCanId = Serial.read(); //Read the $tsCanId
cmd = Serial.read(); // read the command
uint16_t offset, length;
if(cmd == 0x30) //Send output channels command 0x30 is 48dec
{
byte tmp;
tmp = Serial.read();
offset = word(Serial.read(), tmp);
tmp = Serial.read();
length = word(Serial.read(), tmp);
sendValues(offset, length,cmd, 0);
}
else
{
//No other r/ commands should be called
}
cmdPending = false;
}
break;
case 'S': // send code version
Serial.print(F("Speeduino 2018.12-dev"));
currentStatus.secl = 0; //This is required in TS3 due to its stricter timings
break;
case 'T': //Send 256 tooth log entries to Tuner Studios tooth logger
if(currentStatus.toothLogEnabled == true) { sendToothLog(false); } //Sends tooth log values as ints
else if (currentStatus.compositeLogEnabled == true) { sendCompositeLog(); }
break;
case 't': // receive new Calibration info. Command structure: "t", <tble_idx> <data array>. This is an MS2/Extra command, NOT part of MS1 spec
byte tableID;
//byte canID;
//The first 2 bytes sent represent the canID and tableID
while (Serial.available() == 0) { }
tableID = Serial.read(); //Not currently used for anything
receiveCalibration(tableID); //Receive new values and store in memory
writeCalibration(); //Store received values in EEPROM
break;
case 'U': //User wants to reset the Arduino (probably for FW update)
if (resetControl != RESET_CONTROL_DISABLED)
{
#ifndef SMALL_FLASH_MODE
if (!cmdPending) { Serial.println(F("Comms halted. Next byte will reset the Arduino.")); }
#endif
while (Serial.available() == 0) { }
digitalWrite(pinResetControl, LOW);
}
else
{
#ifndef SMALL_FLASH_MODE
if (!cmdPending) { Serial.println(F("Reset control is currently disabled.")); }
#endif
}
break;
case 'V': // send VE table and constants in binary
sendPage(false);
break;
case 'W': // receive new VE obr constant at 'W'+<offset>+<newbyte>
cmdPending = true;
if (isMap)
{
if(Serial.available() >= 3) // 1 additional byte is required on the MAP pages which are larger than 255 bytes
{
byte offset1, offset2;
offset1 = Serial.read();
offset2 = Serial.read();
valueOffset = word(offset2, offset1);
receiveValue(valueOffset, Serial.read());
cmdPending = false;
}
}
else
{
if(Serial.available() >= 2)
{
valueOffset = Serial.read();
receiveValue(valueOffset, Serial.read());
cmdPending = false;
}
}
break;
case 'w':
cmdPending = true;
if(chunkPending == false)
{
//This means it's a new request
//7 bytes required:
//2 - Page identifier
//2 - offset
//2 - Length
//1 - 1st New value
if(Serial.available() >= 7)
{
byte offset1, offset2, length1, length2;
Serial.read(); // First byte of the page identifier can be ignored. It's always 0
currentPage = Serial.read();
//currentPage = 1;
offset1 = Serial.read();
offset2 = Serial.read();
valueOffset = word(offset2, offset1);
length1 = Serial.read(); // Length to be written (Should always be 1)
length2 = Serial.read(); // Length to be written (Should always be 1)
chunkSize = word(length2, length1);
chunkPending = true;
chunkComplete = 0;
}
}
//This CANNOT be an else of the above if statement as chunkPending gets set to true above
if(chunkPending == true)
{
while( (Serial.available() > 0) && (chunkComplete < chunkSize) )
{
receiveValue( (valueOffset + chunkComplete), Serial.read());
chunkComplete++;
}
if(chunkComplete >= chunkSize) { cmdPending = false; chunkPending = false; }
}
break;
case 'Z': //Totally non-standard testing function. Will be removed once calibration testing is completed. This function takes 1.5kb of program space! :S
#ifndef SMALL_FLASH_MODE
Serial.println(F("Coolant"));
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
{
Serial.print(x);
Serial.print(", ");
Serial.println(cltCalibrationTable[x]);
}
Serial.println(F("Inlet temp"));
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
{
Serial.print(x);
Serial.print(", ");
Serial.println(iatCalibrationTable[x]);
}
Serial.println(F("O2"));
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
{
Serial.print(x);
Serial.print(", ");
Serial.println(o2CalibrationTable[x]);
}
Serial.println(F("WUE"));
for (int x = 0; x < 10; x++)
{
Serial.print(configPage4.wueBins[x]);
Serial.print(", ");
Serial.println(configPage2.wueValues[x]);
}
Serial.flush();
#endif
break;
case 'z': //Send 256 tooth log entries to a terminal emulator
sendToothLog(true); //Sends tooth log values as chars
break;
case '`': //Custom 16u2 firmware is making its presence known
cmdPending = true;
if (Serial.available() >= 1) {
configPage4.bootloaderCaps = Serial.read();
cmdPending = false;
}
break;
case '?':
#ifndef SMALL_FLASH_MODE
Serial.println
(F(
"\n"
"===Command Help===\n\n"
"All commands are single character and are concatenated with their parameters \n"
"without spaces."
"Syntax: <command>+<parameter1>+<parameter2>+<parameterN>\n\n"
"===List of Commands===\n\n"
"A - Displays 31 bytes of currentStatus values in binary (live data)\n"
"B - Burn current map and configPage values to eeprom\n"
"C - Test COM port. Used by Tunerstudio to see whether an ECU is on a given serial \n"
" port. Returns a binary number.\n"
"N - Print new line.\n"
"P - Set current page. Syntax: P+<pageNumber>\n"
"R - Same as A command\n"
"S - Display signature number\n"
"Q - Same as S command\n"
"V - Display map or configPage values in binary\n"
"W - Set one byte in map or configPage. Expects binary parameters. \n"
" Syntax: W+<offset>+<newbyte>\n"
"t - Set calibration values. Expects binary parameters. Table index is either 0, \n"
" 1, or 2. Syntax: t+<tble_idx>+<newValue1>+<newValue2>+<newValueN>\n"
"Z - Display calibration values\n"
"T - Displays 256 tooth log entries in binary\n"
"r - Displays 256 tooth log entries\n"
"U - Prepare for firmware update. The next byte received will cause the Arduino to reset.\n"
"? - Displays this help page"
));
#endif
break;
default:
break;
}
}
/*
This function returns the current values of a fixed group of variables
*/
//void sendValues(int packetlength, byte portNum)
void sendValues(uint16_t offset, uint16_t packetLength, byte cmd, byte portNum)
{
byte fullStatus[SERIAL_PACKET_SIZE];
if (portNum == 3)
{
//CAN serial
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)|| defined(CORE_STM32) || defined (CORE_TEENSY) //ATmega2561 does not have Serial3
if (offset == 0)
{
CANSerial.write("A"); //confirm cmd type
}
else
{
CANSerial.write("r"); //confirm cmd type
CANSerial.write(cmd);
}
#endif
}
else
{
if(requestCount == 0) { currentStatus.secl = 0; }
requestCount++;
}
currentStatus.spark ^= (-currentStatus.hasSync ^ currentStatus.spark) & (1 << BIT_SPARK_SYNC); //Set the sync bit of the Spark variable to match the hasSync variable
fullStatus[0] = currentStatus.secl; //secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0)
fullStatus[1] = currentStatus.status1; //status1 Bitfield
fullStatus[2] = currentStatus.engine; //Engine Status Bitfield
fullStatus[3] = (byte)(divu100(currentStatus.dwell)); //Dwell in ms * 10
fullStatus[4] = lowByte(currentStatus.MAP); //2 bytes for MAP
fullStatus[5] = highByte(currentStatus.MAP);
fullStatus[6] = (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET); //mat
fullStatus[7] = (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //Coolant ADC
fullStatus[8] = currentStatus.batCorrection; //Battery voltage correction (%)
fullStatus[9] = currentStatus.battery10; //battery voltage
fullStatus[10] = currentStatus.O2; //O2
fullStatus[11] = currentStatus.egoCorrection; //Exhaust gas correction (%)
fullStatus[12] = currentStatus.iatCorrection; //Air temperature Correction (%)
fullStatus[13] = currentStatus.wueCorrection; //Warmup enrichment (%)
fullStatus[14] = lowByte(currentStatus.RPM); //rpm HB
fullStatus[15] = highByte(currentStatus.RPM); //rpm LB
fullStatus[16] = (byte)(currentStatus.TAEamount >> 1); //TPS acceleration enrichment (%) divided by 2 (Can exceed 255)
fullStatus[17] = currentStatus.corrections; //Total GammaE (%)
fullStatus[18] = currentStatus.VE; //Current VE 1 (%)
fullStatus[19] = currentStatus.afrTarget;
fullStatus[20] = lowByte(currentStatus.PW1); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[21] = highByte(currentStatus.PW1); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[22] = currentStatus.tpsDOT; //TPS DOT
fullStatus[23] = currentStatus.advance;
fullStatus[24] = currentStatus.TPS; // TPS (0% to 100%)
//Need to split the int loopsPerSecond value into 2 bytes
fullStatus[25] = lowByte(currentStatus.loopsPerSecond);
fullStatus[26] = highByte(currentStatus.loopsPerSecond);
//The following can be used to show the amount of free memory
currentStatus.freeRAM = freeRam();
fullStatus[27] = lowByte(currentStatus.freeRAM); //(byte)((currentStatus.loopsPerSecond >> 8) & 0xFF);
fullStatus[28] = highByte(currentStatus.freeRAM);
fullStatus[29] = (byte)(currentStatus.boostTarget >> 1); //Divide boost target by 2 to fit in a byte
fullStatus[30] = (byte)(currentStatus.boostDuty / 100);
fullStatus[31] = currentStatus.spark; //Spark related bitfield
//rpmDOT must be sent as a signed integer
fullStatus[32] = lowByte(currentStatus.rpmDOT);
fullStatus[33] = highByte(currentStatus.rpmDOT);
fullStatus[34] = currentStatus.ethanolPct; //Flex sensor value (or 0 if not used)
fullStatus[35] = currentStatus.flexCorrection; //Flex fuel correction (% above or below 100)
fullStatus[36] = currentStatus.flexIgnCorrection; //Ignition correction (Increased degrees of advance) for flex fuel
fullStatus[37] = currentStatus.idleLoad;
fullStatus[38] = currentStatus.testOutputs;
fullStatus[39] = currentStatus.O2_2; //O2
fullStatus[40] = currentStatus.baro; //Barometer value
fullStatus[41] = lowByte(currentStatus.canin[0]);
fullStatus[42] = highByte(currentStatus.canin[0]);
fullStatus[43] = lowByte(currentStatus.canin[1]);
fullStatus[44] = highByte(currentStatus.canin[1]);
fullStatus[45] = lowByte(currentStatus.canin[2]);
fullStatus[46] = highByte(currentStatus.canin[2]);
fullStatus[47] = lowByte(currentStatus.canin[3]);
fullStatus[48] = highByte(currentStatus.canin[3]);
fullStatus[49] = lowByte(currentStatus.canin[4]);
fullStatus[50] = highByte(currentStatus.canin[4]);
fullStatus[51] = lowByte(currentStatus.canin[5]);
fullStatus[52] = highByte(currentStatus.canin[5]);
fullStatus[53] = lowByte(currentStatus.canin[6]);
fullStatus[54] = highByte(currentStatus.canin[6]);
fullStatus[55] = lowByte(currentStatus.canin[7]);
fullStatus[56] = highByte(currentStatus.canin[7]);
fullStatus[57] = lowByte(currentStatus.canin[8]);
fullStatus[58] = highByte(currentStatus.canin[8]);
fullStatus[59] = lowByte(currentStatus.canin[9]);
fullStatus[60] = highByte(currentStatus.canin[9]);
fullStatus[61] = lowByte(currentStatus.canin[10]);
fullStatus[62] = highByte(currentStatus.canin[10]);
fullStatus[63] = lowByte(currentStatus.canin[11]);
fullStatus[64] = highByte(currentStatus.canin[11]);
fullStatus[65] = lowByte(currentStatus.canin[12]);
fullStatus[66] = highByte(currentStatus.canin[12]);
fullStatus[67] = lowByte(currentStatus.canin[13]);
fullStatus[68] = highByte(currentStatus.canin[13]);
fullStatus[69] = lowByte(currentStatus.canin[14]);
fullStatus[70] = highByte(currentStatus.canin[14]);
fullStatus[71] = lowByte(currentStatus.canin[15]);
fullStatus[72] = highByte(currentStatus.canin[15]);
fullStatus[73] = currentStatus.tpsADC;
fullStatus[74] = getNextError();
fullStatus[75] = lowByte(currentStatus.PW2); //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[76] = highByte(currentStatus.PW2); //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[77] = lowByte(currentStatus.PW3); //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[78] = highByte(currentStatus.PW3); //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[79] = lowByte(currentStatus.PW4); //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[80] = highByte(currentStatus.PW4); //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
fullStatus[81] = currentStatus.status3;
fullStatus[82] = lowByte(currentStatus.flexBoostCorrection);
fullStatus[83] = highByte(currentStatus.flexBoostCorrection);
fullStatus[84] = currentStatus.nChannels;
fullStatus[85] = lowByte(currentStatus.fuelLoad);
fullStatus[86] = highByte(currentStatus.fuelLoad);
fullStatus[87] = lowByte(currentStatus.ignLoad);
fullStatus[88] = highByte(currentStatus.ignLoad);
fullStatus[89] = currentStatus.syncLossCounter;
for(byte x=0; x<packetLength; x++)
{
if (portNum == 0) { Serial.write(fullStatus[offset+x]); }
else if (portNum == 3){ CANSerial.write(fullStatus[offset+x]); }
}
}
void receiveValue(int valueOffset, byte newValue)
{
void* pnt_configPage;//This only stores the address of the value that it's pointing to and not the max size
int tempOffset;
switch (currentPage)
{
case veMapPage:
if (valueOffset < 256) //New value is part of the fuel map
{
fuelTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
}
else
{
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
if (valueOffset < 272)
{
//X Axis
fuelTable.axisX[(valueOffset - 256)] = ((int)(newValue) * TABLE_RPM_MULTIPLIER); //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
}
else if(valueOffset < 288)
{
//Y Axis
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order (Due to us using (0,0) in the top left rather than bottom right
fuelTable.axisY[tempOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER;
}
else
{
//This should never happen. It means there's an invalid offset value coming through
}
}
break;
case veSetPage:
pnt_configPage = &configPage2; //Setup a pointer to the relevant config page
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
if (valueOffset < npage_size[veSetPage])
{
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
}
break;
case ignMapPage: //Ignition settings page (Page 2)
if (valueOffset < 256) //New value is part of the ignition map
{
ignitionTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
}
else
{
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
if (valueOffset < 272)
{
//X Axis
ignitionTable.axisX[(valueOffset - 256)] = (int)(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct
}
else if(valueOffset < 288)
{
//Y Axis
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order
ignitionTable.axisY[tempOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER;
}
}
break;
case ignSetPage:
pnt_configPage = &configPage4;
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
if (valueOffset < npage_size[ignSetPage])
{
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
}
break;
case afrMapPage: //Air/Fuel ratio target settings page
if (valueOffset < 256) //New value is part of the afr map
{
afrTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
}
else
{
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
if (valueOffset < 272)
{
//X Axis
afrTable.axisX[(valueOffset - 256)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
}
else
{
//Y Axis
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order
afrTable.axisY[tempOffset] = int(newValue) * TABLE_LOAD_MULTIPLIER;
}
}
break;
case afrSetPage:
pnt_configPage = &configPage6;
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
if (valueOffset < npage_size[afrSetPage])
{
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
}
break;
case boostvvtPage: //Boost, VVT and staging maps (all 8x8)
if (valueOffset < 64) //New value is part of the boost map
{
boostTable.values[7 - (valueOffset / 8)][valueOffset % 8] = newValue;
}
else if (valueOffset < 72) //New value is on the X (RPM) axis of the boost table
{
boostTable.axisX[(valueOffset - 64)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
}
else if (valueOffset < 80) //New value is on the Y (TPS) axis of the boost table
{
boostTable.axisY[(7 - (valueOffset - 72))] = int(newValue); //TABLE_LOAD_MULTIPLIER is NOT used for boost as it is TPS based (0-100)
}
//End of boost table
else if (valueOffset < 144) //New value is part of the vvt map
{
tempOffset = valueOffset - 80;
vvtTable.values[7 - (tempOffset / 8)][tempOffset % 8] = newValue;
}
else if (valueOffset < 152) //New value is on the X (RPM) axis of the vvt table
{
tempOffset = valueOffset - 144;
vvtTable.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
}
else if (valueOffset < 160) //New value is on the Y (Load) axis of the vvt table
{
tempOffset = valueOffset - 152;
vvtTable.axisY[(7 - tempOffset)] = int(newValue); //TABLE_LOAD_MULTIPLIER is NOT used for vvt as it is TPS based (0-100)
}
//End of vvt table
else if (valueOffset < 224) //New value is part of the staging map
{
tempOffset = valueOffset - 160;
stagingTable.values[7 - (tempOffset / 8)][tempOffset % 8] = newValue;
}
else if (valueOffset < 232) //New value is on the X (RPM) axis of the staging table
{
tempOffset = valueOffset - 224;
stagingTable.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
}
else if (valueOffset < 240) //New value is on the Y (Load) axis of the staging table
{
tempOffset = valueOffset - 232;
stagingTable.axisY[(7 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER;
}
break;
case seqFuelPage:
if (valueOffset < 36) { trim1Table.values[5 - (valueOffset / 6)][valueOffset % 6] = newValue; } //Trim1 values
else if (valueOffset < 42) { trim1Table.axisX[(valueOffset - 36)] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the trim1 table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
else if (valueOffset < 48) { trim1Table.axisY[(5 - (valueOffset - 42))] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (TPS) axis of the boost table
//Trim table 2
else if (valueOffset < 84) { tempOffset = valueOffset - 48; trim2Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
else if (valueOffset < 90) { tempOffset = valueOffset - 84; trim2Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
else if (valueOffset < 96) { tempOffset = valueOffset - 90; trim2Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
//Trim table 3
else if (valueOffset < 132) { tempOffset = valueOffset - 96; trim3Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
else if (valueOffset < 138) { tempOffset = valueOffset - 132; trim3Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
else if (valueOffset < 144) { tempOffset = valueOffset - 138; trim3Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
//Trim table 4
else if (valueOffset < 180) { tempOffset = valueOffset - 144; trim4Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
else if (valueOffset < 186) { tempOffset = valueOffset - 180; trim4Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
else if (valueOffset < 192) { tempOffset = valueOffset - 186; trim4Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
break;
case canbusPage:
pnt_configPage = &configPage9;
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
if (valueOffset < npage_size[currentPage])
{
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
}
break;
case warmupPage:
pnt_configPage = &configPage10;
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
if (valueOffset < npage_size[currentPage])
{
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
}
break;
default:
break;
}
//if(Serial.available() > 16) { command(); }
}
/*
sendPage() packs the data within the current page (As set with the 'P' command)
into a buffer and sends it.
Note that some translation of the data is required to lay it out in the way Megasqurit / TunerStudio expect it
useChar - If true, all values are send as chars, this is for the serial command line interface. TunerStudio expects data as raw values, so this must be set false in that case
*/
void sendPage(bool useChar)
{
void* pnt_configPage = &configPage2; //Default value is for safety only. Will be changed below if needed.
struct table3D currentTable = fuelTable; //Default value is for safety only. Will be changed below if needed.
byte currentTitleIndex = 0;// This corresponds to the count up to the first char of a string in pageTitles
bool sendComplete = false; //Used to track whether all send operations are complete
switch (currentPage)
{
case veMapPage:
currentTitleIndex = 0;
currentTable = fuelTable;
break;
case veSetPage:
// currentTitleIndex = 27;
if (useChar)
{
uint16_t* pnt16_configPage;
// To Display Values from Config Page 1
// When casting to the __FlashStringHelper type Serial.println uses the same subroutine as when using the F macro
Serial.println((const __FlashStringHelper *)&pageTitles[27]);//27 is the index to the first char in the second sting in pageTitles
// The following loop displays in human readable form of all byte values in config page 1 up to but not including the first array.
// incrementing void pointers is cumbersome. Thus we have "pnt_configPage = (byte *)pnt_configPage + 1"
for (pnt_configPage = &configPage2; pnt_configPage < &configPage2.wueValues[0]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
for (byte x = 10; x; x--)// The x between the ';' has the same representation as the "x != 0" test or comparision
{
Serial.print(configPage2.wueValues[10 - x]);// This displays the values horizantially on the screen
Serial.print(' ');
}
Serial.println();
for (pnt_configPage = (byte *)&configPage2.wueValues[9] + 1; pnt_configPage < &configPage2.inj1Ang; pnt_configPage = (byte *)pnt_configPage + 1) {
Serial.println(*((byte *)pnt_configPage));// This displays all the byte values between the last array up to but not including the first unsigned int on config page 1
}
// The following loop displays four unsigned ints
for (pnt16_configPage = (uint16_t *)&configPage2.inj1Ang; pnt16_configPage < (uint16_t*)&configPage2.inj4Ang + 1; pnt16_configPage = (uint16_t*)pnt16_configPage + 1)
{ Serial.println(*((uint16_t *)pnt16_configPage)); }
// Following loop displays byte values between the unsigned ints
for (pnt_configPage = (uint16_t *)&configPage2.inj4Ang + 1; pnt_configPage < &configPage2.mapMax; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
Serial.println(configPage2.mapMax);
// Following loop displays remaining byte values of the page
for (pnt_configPage = (uint16_t *)&configPage2.mapMax + 1; pnt_configPage < (byte *)&configPage2 + npage_size[veSetPage]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
sendComplete = true;
}
else { pnt_configPage = &configPage2; } //Create a pointer to Page 1 in memory
break;
case ignMapPage:
currentTitleIndex = 42;// the index to the first char of the third string in pageTitles
currentTable = ignitionTable;
break;
case ignSetPage:
//currentTitleIndex = 56;
if (useChar)
{
//To Display Values from Config Page 2
Serial.println((const __FlashStringHelper *)&pageTitles[56]);
Serial.println(configPage4.triggerAngle);// configPsge2.triggerAngle is an int so just display it without complication
// Following loop displays byte values after that first int up to but not including the first array in config page 2
for (pnt_configPage = (int *)&configPage4 + 1; pnt_configPage < &configPage4.taeBins[0]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
for (byte y = 2; y; y--)// Displaying two equal sized arrays
{
byte * currentVar;// A placeholder for each array
if (y == 2) {
currentVar = configPage4.taeBins;
}
else {
currentVar = configPage4.taeValues;
}
for (byte j = 4; j; j--)
{
Serial.print(currentVar[4 - j]);
Serial.print(' ');
}
Serial.println();
}
for (byte x = 10; x ; x--)
{
Serial.print(configPage4.wueBins[10 - x]);//Displaying array horizontally across screen
Serial.print(' ');
}
Serial.println();
Serial.println(configPage4.dwellLimit);// Little lonely byte stuck between two arrays. No complications just display it.
for (byte x = 6; x; x--)
{
Serial.print(configPage4.dwellCorrectionValues[6 - x]);
Serial.print(' ');
}
Serial.println();
for (pnt_configPage = (byte *)&configPage4.dwellCorrectionValues[5] + 1; pnt_configPage < (byte *)&configPage4 + npage_size[ignSetPage]; pnt_configPage = (byte *)pnt_configPage + 1)
{
Serial.println(*((byte *)pnt_configPage));// Displaying remaining byte values of the page
}
sendComplete = true;
}
else { pnt_configPage = &configPage4; } //Create a pointer to Page 2 in memory
break;
case afrMapPage:
currentTitleIndex = 71;//Array index to next string
currentTable = afrTable;
break;
case afrSetPage:
//currentTitleIndex = 91;
if (useChar)
{
//To Display Values from Config Page 3
Serial.println((const __FlashStringHelper *)&pageTitles[91]);//special typecasting to enable suroutine that the F macro uses
for (pnt_configPage = &configPage6; pnt_configPage < &configPage6.voltageCorrectionBins[0]; pnt_configPage = (byte *)pnt_configPage + 1)
{
Serial.println(*((byte *)pnt_configPage));// Displaying byte values of config page 3 up to but not including the first array
}
for (byte y = 2; y; y--)// Displaying two equally sized arrays that are next to each other
{
byte * currentVar;
if (y == 2) { currentVar = configPage6.voltageCorrectionBins; }
else { currentVar = configPage6.injVoltageCorrectionValues; }
for (byte x = 6; x; x--)
{
Serial.print(currentVar[6 - x]);
Serial.print(' ');
}
Serial.println();
}
for (byte y = 2; y; y--)// and again
{
byte* currentVar;
if (y == 2) { currentVar = configPage6.airDenBins; }
else { currentVar = configPage6.airDenRates; }
for (byte x = 9; x; x--)
{
Serial.print(currentVar[9 - x]);
Serial.print(' ');
}
Serial.println();
}
// Following loop displays the remaining byte values of the page
for (pnt_configPage = (byte *)&configPage6.airDenRates[8] + 1; pnt_configPage < (byte *)&configPage6 + npage_size[afrSetPage]; pnt_configPage = (byte *)pnt_configPage + 1)
{
Serial.println(*((byte *)pnt_configPage));
}
sendComplete = true;
}
else { pnt_configPage = &configPage6; } //Create a pointer to Page 3 in memory
//Old configPage4 STARTED HERE!
//currentTitleIndex = 106;
//To Display Values from Config Page 4
if (useChar)
{
Serial.println((const __FlashStringHelper *)&pageTitles[106]);// F macro hack
for (byte y = 4; y; y--)// Display four equally sized arrays
{
byte * currentVar;
switch (y)
{
case 1: currentVar = configPage6.iacBins; break;
case 2: currentVar = configPage6.iacOLPWMVal; break;
case 3: currentVar = configPage6.iacOLStepVal; break;
case 4: currentVar = configPage6.iacCLValues; break;
default: break;
}
for (byte x = 10; x; x--)
{
Serial.print(currentVar[10 - x]);
Serial.print(' ');
}
Serial.println();
}
for (byte y = 3; y; y--)// Three equally sized arrays
{
byte * currentVar;
switch (y)
{
case 1: currentVar = configPage6.iacCrankBins; break;
case 2: currentVar = configPage6.iacCrankDuty; break;
case 3: currentVar = configPage6.iacCrankSteps; break;
default: break;
}
for (byte x = 4; x; x--)
{
Serial.print(currentVar[4 - x]);
Serial.print(' ');
}
Serial.println();
}
// Following loop is for remaining byte value of page
for (pnt_configPage = (byte *)&configPage6.iacCrankBins[3] + 1; pnt_configPage < (byte *)&configPage6 + npage_size[afrSetPage]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
sendComplete = true;
}
else { pnt_configPage = &configPage6; } //Create a pointer to Page 4 in memory
break;
case boostvvtPage:
if(useChar)
{
currentTable = boostTable;
currentTitleIndex = 121;
}
else
{
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
byte response[80]; //Bit hacky, but send 1 map at a time (Each map is 8x8, so 64 + 8 + 8)
//Boost table
for (int x = 0; x < 64; x++) { response[x] = boostTable.values[7 - (x / 8)][x % 8]; }
for (int x = 64; x < 72; x++) { response[x] = byte(boostTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
for (int y = 72; y < 80; y++) { response[y] = byte(boostTable.axisY[7 - (y - 72)]); }
Serial.write((byte *)&response, 80);
//VVT table
for (int x = 0; x < 64; x++) { response[x] = vvtTable.values[7 - (x / 8)][x % 8]; }
for (int x = 64; x < 72; x++) { response[x] = byte(vvtTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
for (int y = 72; y < 80; y++) { response[y] = byte(vvtTable.axisY[7 - (y - 72)]); }
Serial.write((byte *)&response, 80);
//Staging table
for (int x = 0; x < 64; x++) { response[x] = stagingTable.values[7 - (x / 8)][x % 8]; }
for (int x = 64; x < 72; x++) { response[x] = byte(stagingTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
for (int y = 72; y < 80; y++) { response[y] = byte(stagingTable.axisY[7 - (y - 72)] / TABLE_LOAD_MULTIPLIER); }
Serial.write((byte *)&response, 80);
sendComplete = true;
}
break;
case seqFuelPage:
if(useChar)
{
currentTable = trim1Table;
for (int y = 0; y < currentTable.ySize; y++)
{
byte axisY = byte(currentTable.axisY[y]);
if (axisY < 100)
{
Serial.write(" ");
if (axisY < 10)
{
Serial.write(" ");
}
}
Serial.print(axisY);// Vertical Bins
Serial.write(" ");
for (int x = 0; x < currentTable.xSize; x++)
{
byte value = currentTable.values[y][x];
if (value < 100)
{
Serial.write(" ");
if (value < 10)
{
Serial.write(" ");
}
}
Serial.print(value);
Serial.write(" ");
}
Serial.println("");
}
sendComplete = true;
//Do.... Something?
}
else
{
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
byte response[192]; //Bit hacky, but the size is: (6x6 + 6 + 6) * 4 = 192
//trim1 table
for (int x = 0; x < 36; x++) { response[x] = trim1Table.values[5 - (x / 6)][x % 6]; }
for (int x = 36; x < 42; x++) { response[x] = byte(trim1Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
for (int y = 42; y < 48; y++) { response[y] = byte(trim1Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
//trim2 table
for (int x = 0; x < 36; x++) { response[x + 48] = trim2Table.values[5 - (x / 6)][x % 6]; }
for (int x = 36; x < 42; x++) { response[x + 48] = byte(trim2Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
for (int y = 42; y < 48; y++) { response[y + 48] = byte(trim2Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
//trim3 table
for (int x = 0; x < 36; x++) { response[x + 96] = trim3Table.values[5 - (x / 6)][x % 6]; }
for (int x = 36; x < 42; x++) { response[x + 96] = byte(trim3Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
for (int y = 42; y < 48; y++) { response[y + 96] = byte(trim3Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
//trim4 table
for (int x = 0; x < 36; x++) { response[x + 144] = trim4Table.values[5 - (x / 6)][x % 6]; }
for (int x = 36; x < 42; x++) { response[x + 144] = byte(trim4Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
for (int y = 42; y < 48; y++) { response[y + 144] = byte(trim4Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
Serial.write((byte *)&response, sizeof(response));
sendComplete = true;
}
break;
case canbusPage:
//currentTitleIndex = 141;
if (useChar)
{
//To Display Values from Config Page 10
Serial.println((const __FlashStringHelper *)&pageTitles[103]);//special typecasting to enable suroutine that the F macro uses
for (pnt_configPage = &configPage9; pnt_configPage < ((byte *)pnt_configPage + 128); pnt_configPage = (byte *)pnt_configPage + 1)
{
Serial.println(*((byte *)pnt_configPage));// Displaying byte values of config page 3 up to but not including the first array
}
sendComplete = true;
}
else { pnt_configPage = &configPage9; } //Create a pointer to Page 10 in memory
break;
case warmupPage:
if (useChar)
{
sendComplete = true;
}
else { pnt_configPage = &configPage10; } //Create a pointer to Page 11 in memory
break;
default:
#ifndef SMALL_FLASH_MODE
Serial.println(F("\nPage has not been implemented yet"));
#endif
//Just set default Values to avoid warnings
pnt_configPage = &configPage10;
currentTable = fuelTable;
sendComplete = true;
break;
}
if(!sendComplete)
{
if (isMap)
{
if (useChar)
{
do //This is a do while loop that kicks in for the boostvvtPage
{
const char spaceChar = ' ';
/*while(pageTitles[currentTitleIndex])
{
Serial.print(pageTitles[currentTitleIndex]);
currentTitleIndex++;
}*/
Serial.println((const __FlashStringHelper *)&pageTitles[currentTitleIndex]);// F macro hack
Serial.println();
for (int y = 0; y < currentTable.ySize; y++)
{
byte axisY = byte(currentTable.axisY[y]);
if (axisY < 100)
{
Serial.write(spaceChar);
if (axisY < 10)
{
Serial.write(spaceChar);
}
}
Serial.print(axisY);// Vertical Bins
Serial.write(spaceChar);
for (int i = 0; i < currentTable.xSize; i++)
{
byte value = currentTable.values[y][i];
if (value < 100)
{
Serial.write(spaceChar);
if (value < 10)
{
Serial.write(spaceChar);
}
}
Serial.print(value);
Serial.write(spaceChar);
}
Serial.println();
}
Serial.print(F(" "));
for (int x = 0; x < currentTable.xSize; x++)// Horizontal bins
{
byte axisX = byte(currentTable.axisX[x] / 100);
if (axisX < 100)
{
Serial.write(spaceChar);
if (axisX < 10)
{
Serial.write(spaceChar);
}
}
Serial.print(axisX);
Serial.write(spaceChar);
}
Serial.println();
if(currentTitleIndex == 121) //Check to see if on boostTable
{
currentTitleIndex = 132; //Change over to vvtTable mid display
currentTable = vvtTable;
}
else currentTitleIndex = 0;
}while(currentTitleIndex == 132); //Should never loop unless going to display vvtTable
} //use char
else
{
//Need to perform a translation of the values[yaxis][xaxis] into the MS expected format
//MS format has origin (0,0) in the bottom left corner, we use the top left for efficiency reasons
byte response[MAP_PAGE_SIZE];
for (int x = 0; x < 256; x++) { response[x] = currentTable.values[15 - (x / 16)][x % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
//loop();
for (int x = 256; x < 272; x++) { response[x] = byte(currentTable.axisX[(x - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
//loop();
for (int y = 272; y < 288; y++) { response[y] = byte(currentTable.axisY[15 - (y - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
//loop();
Serial.write((byte *)&response, sizeof(response));
}
} //is map
else
{
/*if(useChar)
{
while(pageTitles[currentTitleIndex])
{
Serial.print(pageTitles[currentTitleIndex]);
currentTitleIndex++;
}
Serial.println();
for(byte x=0;x<page_size;x++) Serial.println(*((byte *)pnt_configPage + x));
}
else
{*/
//All other bytes can simply be copied from the config table
//byte response[npage_size[currentPage]];
for (byte x = 0; x < npage_size[currentPage]; x++)
{
//response[x] = *((byte *)pnt_configPage + x);
Serial.write(*((byte *)pnt_configPage + x)); //Each byte is simply the location in memory of the configPage + the offset + the variable number (x)
}
//Serial.write((byte *)&response, npage_size[currentPage]);
// }
} //isMap
} //sendComplete
}
byte getPageValue(byte page, uint16_t valueAddress)
{
void* pnt_configPage = &configPage2; //Default value is for safety only. Will be changed below if needed.
uint16_t tempAddress;
byte returnValue = 0;
switch (page)
{
case veMapPage:
if( valueAddress < 256) { returnValue = fuelTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
else if(valueAddress < 272) { returnValue = byte(fuelTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
else if (valueAddress < 288) { returnValue = byte(fuelTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
break;
case veSetPage:
pnt_configPage = &configPage2; //Create a pointer to Page 1 in memory
returnValue = *((byte *)pnt_configPage + valueAddress);
break;
case ignMapPage:
if( valueAddress < 256) { returnValue = ignitionTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
else if(valueAddress < 272) { returnValue = byte(ignitionTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
else if (valueAddress < 288) { returnValue = byte(ignitionTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
break;
case ignSetPage:
pnt_configPage = &configPage4; //Create a pointer to Page 2 in memory
returnValue = *((byte *)pnt_configPage + valueAddress);
break;
case afrMapPage:
if( valueAddress < 256) { returnValue = afrTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
else if(valueAddress < 272) { returnValue = byte(afrTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
else if (valueAddress < 288) { returnValue = byte(afrTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
break;
case afrSetPage:
pnt_configPage = &configPage6; //Create a pointer to Page 3 in memory
returnValue = *((byte *)pnt_configPage + valueAddress);
break;
case boostvvtPage:
{
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
if(valueAddress < 80)
{
//Boost table
if(valueAddress < 64) { returnValue = boostTable.values[7 - (valueAddress / 8)][valueAddress % 8]; }
else if(valueAddress < 72) { returnValue = byte(boostTable.axisX[(valueAddress - 64)] / TABLE_RPM_MULTIPLIER); }
else if(valueAddress < 80) { returnValue = byte(boostTable.axisY[7 - (valueAddress - 72)]); }
}
else if(valueAddress < 160)
{
tempAddress = valueAddress - 80;
//VVT table
if(tempAddress < 64) { returnValue = vvtTable.values[7 - (tempAddress / 8)][tempAddress % 8]; }
else if(tempAddress < 72) { returnValue = byte(vvtTable.axisX[(tempAddress - 64)] / TABLE_RPM_MULTIPLIER); }
else if(tempAddress < 80) { returnValue = byte(vvtTable.axisY[7 - (tempAddress - 72)]); }
}
else
{
tempAddress = valueAddress - 160;
//Staging table
if(tempAddress < 64) { returnValue = stagingTable.values[7 - (tempAddress / 8)][tempAddress % 8]; }
else if(tempAddress < 72) { returnValue = byte(stagingTable.axisX[(tempAddress - 64)] / TABLE_RPM_MULTIPLIER); }
else if(tempAddress < 80) { returnValue = byte(stagingTable.axisY[7 - (tempAddress - 72)] / TABLE_LOAD_MULTIPLIER); }
}
}
break;
case seqFuelPage:
{
//Need to perform a translation of the values[MAP/TPS][RPM] into the TS expected format
if(valueAddress < 48)
{
//trim1 table
if(valueAddress < 36) { returnValue = trim1Table.values[5 - (valueAddress / 6)][valueAddress % 6]; }
else if(valueAddress < 42) { returnValue = byte(trim1Table.axisX[(valueAddress - 36)] / TABLE_RPM_MULTIPLIER); }
else if(valueAddress < 48) { returnValue = byte(trim1Table.axisY[5 - (valueAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
}
else if(valueAddress < 96)
{
tempAddress = valueAddress - 48;
//trim2 table
if(tempAddress < 36) { returnValue = trim2Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
else if(tempAddress < 42) { returnValue = byte(trim2Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
else if(tempAddress < 48) { returnValue = byte(trim2Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
}
else if(valueAddress < 144)
{
tempAddress = valueAddress - 96;
//trim3 table
if(tempAddress < 36) { returnValue = trim3Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
else if(tempAddress < 42) { returnValue = byte(trim3Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
else if(tempAddress < 48) { returnValue = byte(trim3Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
}
else if(valueAddress < 192)
{
tempAddress = valueAddress - 144;
//trim4 table
if(tempAddress < 36) { returnValue = trim4Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
else if(tempAddress < 42) { returnValue = byte(trim4Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
else if(tempAddress < 48) { returnValue = byte(trim4Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
}
}
break;
case canbusPage:
pnt_configPage = &configPage9; //Create a pointer to Page 10 in memory
returnValue = *((byte *)pnt_configPage + valueAddress);
break;
case warmupPage:
pnt_configPage = &configPage10; //Create a pointer to Page 11 in memory
returnValue = *((byte *)pnt_configPage + valueAddress);
break;
default:
#ifndef SMALL_FLASH_MODE
Serial.println(F("\nPage has not been implemented yet"));
#endif
//Just set default Values to avoid warnings
pnt_configPage = &configPage10;
break;
}
return returnValue;
}
/*
This function is used to store calibration data sent by Tuner Studio.
*/
void receiveCalibration(byte tableID)
{
byte* pnt_TargetTable; //Pointer that will be used to point to the required target table
int OFFSET, DIVISION_FACTOR, BYTES_PER_VALUE, EEPROM_START;
switch (tableID)
{
case 0:
//coolant table
pnt_TargetTable = (byte *)&cltCalibrationTable;
OFFSET = CALIBRATION_TEMPERATURE_OFFSET; //
DIVISION_FACTOR = 10;
BYTES_PER_VALUE = 2;
EEPROM_START = EEPROM_CALIBRATION_CLT;
break;
case 1:
//Inlet air temp table
pnt_TargetTable = (byte *)&iatCalibrationTable;
OFFSET = CALIBRATION_TEMPERATURE_OFFSET;
DIVISION_FACTOR = 10;
BYTES_PER_VALUE = 2;
EEPROM_START = EEPROM_CALIBRATION_IAT;
break;
case 2:
//O2 table
pnt_TargetTable = (byte *)&o2CalibrationTable;
OFFSET = 0;
DIVISION_FACTOR = 1;
BYTES_PER_VALUE = 1;
EEPROM_START = EEPROM_CALIBRATION_O2;
break;
default:
OFFSET = 0;
pnt_TargetTable = (byte *)&o2CalibrationTable;
DIVISION_FACTOR = 1;
BYTES_PER_VALUE = 1;
EEPROM_START = EEPROM_CALIBRATION_O2;
break; //Should never get here, but if we do, just fail back to main loop
}
//1024 value pairs are sent. We have to receive them all, but only use every second one (We only store 512 calibratino table entries to save on EEPROM space)
//The values are sent as 2 byte ints, but we convert them to single bytes. Any values over 255 are capped at 255.
int tempValue;
byte tempBuffer[2];
bool every2nd = true;
int x;
int counter = 0;
pinMode(LED_BUILTIN, OUTPUT); //pinMode(13, OUTPUT);
digitalWrite(LED_BUILTIN, LOW); //digitalWrite(13, LOW);
for (x = 0; x < 1024; x++)
{
//UNlike what is listed in the protocol documentation, the O2 sensor values are sent as bytes rather than ints
if (BYTES_PER_VALUE == 1)
{
while ( Serial.available() < 1 ) {}
tempValue = Serial.read();
}
else
{
while ( Serial.available() < 2 ) {}
tempBuffer[0] = Serial.read();
tempBuffer[1] = Serial.read();
tempValue = div(int(word(tempBuffer[1], tempBuffer[0])), DIVISION_FACTOR).quot; //Read 2 bytes, convert to word (an unsigned int), convert to signed int. These values come through * 10 from Tuner Studio
tempValue = ((tempValue - 32) * 5) / 9; //Convert from F to C
}
tempValue = tempValue + OFFSET;
if (every2nd) //Only use every 2nd value
{
if (tempValue > 255) {
tempValue = 255; // Cap the maximum value to prevent overflow when converting to byte
}
if (tempValue < 0) {
tempValue = 0;
}
pnt_TargetTable[(x / 2)] = (byte)tempValue;
//From TS3.x onwards, the EEPROM must be written here as TS restarts immediately after the process completes which is before the EEPROM write completes
int y = EEPROM_START + (x / 2);
//EEPROM.update(y, (byte)tempValue);
storeCalibrationValue(y, (byte)tempValue);
every2nd = false;
#if defined(CORE_STM32)
digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
#else
analogWrite(LED_BUILTIN, (counter % 50) ); //analogWrite(13, (counter % 50) );
#endif
counter++;
}
else {
every2nd = true;
}
}
}
/*
Send 256 tooth log entries
* if useChar is true, the values are sent as chars to be printed out by a terminal emulator
* if useChar is false, the values are sent as a 2 byte integer which is readable by TunerStudios tooth logger
*/
void sendToothLog(bool useChar)
{
//We need TOOTH_LOG_SIZE number of records to send to TunerStudio. If there aren't that many in the buffer then we just return and wait for the next call
if (BIT_CHECK(currentStatus.status1, BIT_STATUS1_TOOTHLOG1READY)) //Sanity check. Flagging system means this should always be true
{
for (int x = 0; x < TOOTH_LOG_SIZE; x++)
{
Serial.write(highByte(toothHistory[toothHistorySerialIndex]));
Serial.write(lowByte(toothHistory[toothHistorySerialIndex]));
if(toothHistorySerialIndex == (TOOTH_LOG_BUFFER-1)) { toothHistorySerialIndex = 0; }
else { toothHistorySerialIndex++; }
}
BIT_CLEAR(currentStatus.status1, BIT_STATUS1_TOOTHLOG1READY);
cmdPending = false;
}
else { cmdPending = true; } //Mark this request as being incomplete.
}
void sendCompositeLog()
{
if (BIT_CHECK(currentStatus.status1, BIT_STATUS1_TOOTHLOG1READY)) //Sanity check. Flagging system means this should always be true
{
uint32_t runTime = 0;
for (int x = 0; x < TOOTH_LOG_SIZE; x++)
{
runTime += toothHistory[toothHistorySerialIndex]; //This combined runtime (in us) that the log was going for by this record)
//Serial.write(highByte(runTime));
//Serial.write(lowByte(runTime));
Serial.write(runTime >> 24);
Serial.write(runTime >> 16);
Serial.write(runTime >> 8);
Serial.write(runTime);
//Serial.write(highByte(toothHistory[toothHistorySerialIndex]));
//Serial.write(lowByte(toothHistory[toothHistorySerialIndex]));
Serial.write(compositeLogHistory[toothHistorySerialIndex]); //The status byte (Indicates which)
if(toothHistorySerialIndex == (TOOTH_LOG_BUFFER-1)) { toothHistorySerialIndex = 0; }
else { toothHistorySerialIndex++; }
}
BIT_CLEAR(currentStatus.status1, BIT_STATUS1_TOOTHLOG1READY);
cmdPending = false;
}
else { cmdPending = true; } //Mark this request as being incomplete.
}
void testComm()
{
Serial.write(1);
return;
}
void commandButtons()
{
switch (cmdCombined)
{
case 256: // cmd is stop
BIT_CLEAR(currentStatus.testOutputs, 1);
digitalWrite(pinInjector1, LOW);
digitalWrite(pinInjector2, LOW);
digitalWrite(pinInjector3, LOW);
digitalWrite(pinInjector4, LOW);
digitalWrite(pinCoil1, LOW);
digitalWrite(pinCoil2, LOW);
digitalWrite(pinCoil3, LOW);
digitalWrite(pinCoil4, LOW);
break;
case 257: // cmd is enable
// currentStatus.testactive = 1;
BIT_SET(currentStatus.testOutputs, 1);
break;
case 513: // cmd group is for injector1 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector1, HIGH); }
break;
case 514: // cmd group is for injector1 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){digitalWrite(pinInjector1, LOW);}
break;
case 515: // cmd group is for injector1 50% dc actions
//for (byte dcloop = 0; dcloop < 11; dcloop++)
//{
// digitalWrite(pinInjector1, HIGH);
// delay(500);
// digitalWrite(pinInjector1, LOW);
// delay(500);
//}
break;
case 516: // cmd group is for injector2 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector2, HIGH); }
break;
case 517: // cmd group is for injector2 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector2, LOW); }
break;
case 518: // cmd group is for injector2 50%dc actions
break;
case 519: // cmd group is for injector3 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinInjector3, HIGH); }
break;
case 520: // cmd group is for injector3 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinInjector3, LOW); }
break;
case 521: // cmd group is for injector3 50%dc actions
break;
case 522: // cmd group is for injector4 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector4, HIGH); }
break;
case 523: // cmd group is for injector4 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector4, LOW); }
break;
case 524: // cmd group is for injector4 50% dc actions
break;
case 769: // cmd group is for spark1 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil1, HIGH); }
break;
case 770: // cmd group is for spark1 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil1, LOW); }
break;
case 771: // cmd group is for spark1 50%dc actions
break;
case 772: // cmd group is for spark2 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil2, HIGH); }
break;
case 773: // cmd group is for spark2 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil2, LOW); }
break;
case 774: // cmd group is for spark2 50%dc actions
break;
case 775: // cmd group is for spark3 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil3, HIGH); }
break;
case 776: // cmd group is for spark3 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil3, LOW); }
break;
case 777: // cmd group is for spark3 50%dc actions
break;
case 778: // cmd group is for spark4 on actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil4, HIGH); }
break;
case 779: // cmd group is for spark4 off actions
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil4, LOW); }
break;
case 780: // cmd group is for spark4 50%dc actions
default:
break;
}
}