speeduino-personal/speeduino/idle.ino

425 lines
17 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
#include "idle.h"
/*
These functions cover the PWM and stepper idle control
*/
/*
Idle Control
Currently limited to on/off control and open loop PWM and stepper drive
*/
integerPID idlePID(&currentStatus.longRPM, &idle_pid_target_value, &idle_cl_target_rpm, configPage3.idleKP, configPage3.idleKI, configPage3.idleKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call
void initialiseIdle()
{
//By default, turn off the PWM interrupt (It gets turned on below if needed)
IDLE_TIMER_DISABLE();
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__) //AVR chips use the ISR for this
//No timer work required for AVRs. Timer is shared with the schedules and setup in there.
#elif defined (CORE_TEENSY)
//FlexTimer 2 is used for idle
FTM2_MODE |= FTM_MODE_WPDIS; // Write Protection Disable
FTM2_MODE |= FTM_MODE_FTMEN; //Flex Timer module enable
FTM2_MODE |= FTM_MODE_INIT;
FTM2_SC = 0x00; // Set this to zero before changing the modulus
FTM2_CNTIN = 0x0000; //Shouldn't be needed, but just in case
FTM2_CNT = 0x0000; // Reset the count to zero
FTM2_MOD = 0xFFFF; // max modulus = 65535
/*
* Enable the clock for FTM0/1
* 00 No clock selected. Disables the FTM counter.
* 01 System clock
* 10 Fixed frequency clock (32kHz)
* 11 External clock
*/
FTM2_SC |= FTM_SC_CLKS(0b10);
/*
* Trim the slow clock from 32kHz down to 31.25kHz (The slowest it will go)
* This is somewhat imprecise and documentation is not good.
* I poked the chip until I figured out the values associated with 31.25kHz
*/
MCG_C3 = 0x9B;
/*
* Set Prescaler
* This is the slowest that the timer can be clocked (Without used the slow timer, which is too slow). It results in ticks of 2.13333uS on the teensy 3.5:
* 32000 Hz = F_BUS
* 128 * 1000000uS / F_BUS = 2.133uS
*
* 000 = Divide by 1
* 001 Divide by 2
* 010 Divide by 4
* 011 Divide by 8
* 100 Divide by 16
* 101 Divide by 32
* 110 Divide by 64
* 111 Divide by 128
*/
FTM2_SC |= FTM_SC_PS(0b0); //No prescaler
//Setup the channels (See Pg 1014 of K64 DS).
FTM2_C0SC &= ~FTM_CSC_MSB; //According to Pg 965 of the K64 datasheet, this should not be needed as MSB is reset to 0 upon reset, but the channel interrupt fails to fire without it
FTM2_C0SC |= FTM_CSC_MSA; //Enable Compare mode
FTM2_C0SC |= FTM_CSC_CHIE; //Enable channel compare interrupt
// enable IRQ Interrupt
NVIC_ENABLE_IRQ(IRQ_FTM2);
#endif
//Initialising comprises of setting the 2D tables with the relevant values from the config pages
switch(configPage4.iacAlgorithm)
{
case IAC_ALGORITHM_NONE: //Case 0 is no idle control ('None')
break;
case IAC_ALGORITHM_ONOFF:
//Case 1 is on/off idle control
if (currentStatus.coolant < configPage4.iacFastTemp)
{
digitalWrite(pinIdle1, HIGH);
}
break;
case IAC_ALGORITHM_PWM_OL:
//Case 2 is PWM open loop
iacPWMTable.xSize = 10;
iacPWMTable.valueSize = SIZE_BYTE;
iacPWMTable.values = configPage4.iacOLPWMVal;
iacPWMTable.axisX = configPage4.iacBins;
iacCrankDutyTable.xSize = 4;
iacCrankDutyTable.valueSize = SIZE_BYTE;
iacCrankDutyTable.values = configPage4.iacCrankDuty;
iacCrankDutyTable.axisX = configPage4.iacCrankBins;
idle_pin_port = portOutputRegister(digitalPinToPort(pinIdle1));
idle_pin_mask = digitalPinToBitMask(pinIdle1);
idle2_pin_port = portOutputRegister(digitalPinToPort(pinIdle2));
idle2_pin_mask = digitalPinToBitMask(pinIdle2);
idle_pwm_max_count = 1000000L / (16 * configPage3.idleFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle. Note that the frequency is divided by 2 coming from TS to allow for up to 512hz
enableIdle();
break;
case IAC_ALGORITHM_PWM_CL:
//Case 3 is PWM closed loop
iacClosedLoopTable.xSize = 10;
iacClosedLoopTable.valueSize = SIZE_BYTE;
iacClosedLoopTable.values = configPage4.iacCLValues;
iacClosedLoopTable.axisX = configPage4.iacBins;
iacCrankDutyTable.xSize = 4;
iacCrankDutyTable.valueSize = SIZE_BYTE;
iacCrankDutyTable.values = configPage4.iacCrankDuty;
iacCrankDutyTable.axisX = configPage4.iacCrankBins;
idle_pin_port = portOutputRegister(digitalPinToPort(pinIdle1));
idle_pin_mask = digitalPinToBitMask(pinIdle1);
idle2_pin_port = portOutputRegister(digitalPinToPort(pinIdle2));
idle2_pin_mask = digitalPinToBitMask(pinIdle2);
idle_pwm_max_count = 1000000L / (16 * configPage3.idleFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle. Note that the frequency is divided by 2 coming from TS to allow for up to 512hz
idlePID.SetOutputLimits(percentage(configPage1.iacCLminDuty, idle_pwm_max_count), percentage(configPage1.iacCLmaxDuty, idle_pwm_max_count));
idlePID.SetTunings(configPage3.idleKP, configPage3.idleKI, configPage3.idleKD);
idlePID.SetMode(AUTOMATIC); //Turn PID on
idleCounter = 0;
break;
case IAC_ALGORITHM_STEP_OL:
//Case 2 is Stepper open loop
iacStepTable.xSize = 10;
iacStepTable.valueSize = SIZE_BYTE;
iacStepTable.values = configPage4.iacOLStepVal;
iacStepTable.axisX = configPage4.iacBins;
iacCrankStepsTable.xSize = 4;
iacCrankStepsTable.values = configPage4.iacCrankSteps;
iacCrankStepsTable.axisX = configPage4.iacCrankBins;
iacStepTime = configPage4.iacStepTime * 1000;
//homeStepper(); //Returns the stepper to the 'home' position
completedHomeSteps = 0;
idleStepper.curIdleStep = 0;
idleStepper.stepperStatus = SOFF;
break;
case IAC_ALGORITHM_STEP_CL:
//Case 5 is Stepper closed loop
iacClosedLoopTable.xSize = 10;
iacClosedLoopTable.valueSize = SIZE_BYTE;
iacClosedLoopTable.values = configPage4.iacCLValues;
iacClosedLoopTable.axisX = configPage4.iacBins;
iacCrankStepsTable.xSize = 4;
iacCrankStepsTable.values = configPage4.iacCrankSteps;
iacCrankStepsTable.axisX = configPage4.iacCrankBins;
iacStepTime = configPage4.iacStepTime * 1000;
completedHomeSteps = 0;
idleCounter = 0;
idleStepper.curIdleStep = 0;
idleStepper.stepperStatus = SOFF;
idlePID.SetOutputLimits(0, (configPage4.iacStepHome * 3)); //Maximum number of steps probably needs its own setting
idlePID.SetTunings(configPage3.idleKP, configPage3.idleKI, configPage3.idleKD);
idlePID.SetMode(AUTOMATIC); //Turn PID on
break;
}
idleInitComplete = configPage4.iacAlgorithm; //Sets which idle method was initialised
currentStatus.idleLoad = 0;
}
void idleControl()
{
if(idleInitComplete != configPage4.iacAlgorithm) { initialiseIdle(); }
switch(configPage4.iacAlgorithm)
{
case IAC_ALGORITHM_NONE: //Case 0 is no idle control ('None')
break;
case IAC_ALGORITHM_ONOFF: //Case 1 is on/off idle control
if ( (currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET) < configPage4.iacFastTemp) //All temps are offset by 40 degrees
{
digitalWrite(pinIdle1, HIGH);
idleOn = true;
}
else if (idleOn) { digitalWrite(pinIdle1, LOW); idleOn = false; }
break;
case IAC_ALGORITHM_PWM_OL: //Case 2 is PWM open loop
//Check for cranking pulsewidth
if( BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) )
{
//Currently cranking. Use the cranking table
currentStatus.idleDuty = table2D_getValue(&iacCrankDutyTable, currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //All temps are offset by 40 degrees
idle_pwm_target_value = percentage(currentStatus.idleDuty, idle_pwm_max_count);
idleOn = true;
}
else
{
//Standard running
currentStatus.idleDuty = table2D_getValue(&iacPWMTable, currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //All temps are offset by 40 degrees
if( currentStatus.idleDuty == 0 ) { disableIdle(); break; }
enableIdle();
idle_pwm_target_value = percentage(currentStatus.idleDuty, idle_pwm_max_count);
currentStatus.idleLoad = currentStatus.idleDuty >> 1;
idleOn = true;
}
break;
case IAC_ALGORITHM_PWM_CL: //Case 3 is PWM closed loop
//No cranking specific value for closed loop (yet?)
idle_cl_target_rpm = table2D_getValue(&iacClosedLoopTable, currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET) * 10; //All temps are offset by 40 degrees
if( (idleCounter & 31) == 1) { idlePID.SetTunings(configPage3.idleKP, configPage3.idleKI, configPage3.idleKD); } //This only needs to be run very infrequently, once every 32 calls to idleControl(). This is approx. once per second
idlePID.Compute();
idle_pwm_target_value = idle_pid_target_value;
if( idle_pwm_target_value == 0 ) { disableIdle(); }
else{ enableIdle(); } //Turn on the C compare unit (ie turn on the interrupt)
currentStatus.idleLoad = ((unsigned long)(idle_pwm_target_value * 100UL) / idle_pwm_max_count) >> 1;
//idle_pwm_target_value = 104;
idleCounter++;
break;
case IAC_ALGORITHM_STEP_OL: //Case 4 is open loop stepper control
//First thing to check is whether there is currently a step going on and if so, whether it needs to be turned off
if( checkForStepping() ) { return; } //If this is true it means there's either a step taking place or
if( !isStepperHomed() ) { return; } //Check whether homing is completed yet.
//Check for cranking pulsewidth
if( BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) )
{
//Currently cranking. Use the cranking table
idleStepper.targetIdleStep = table2D_getValue(&iacCrankStepsTable, (currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET)) * 3; //All temps are offset by 40 degrees. Step counts are divided by 3 in TS. Multiply back out here
doStep();
}
else if( (currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET) < iacStepTable.axisX[IDLE_TABLE_SIZE-1])
{
//Standard running
if ((mainLoopCount & 255) == 1)
{
//Only do a lookup of the required value around 4 times per second. Any more than this can create too much jitter and require a hyster value that is too high
idleStepper.targetIdleStep = table2D_getValue(&iacStepTable, (currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET)) * 3; //All temps are offset by 40 degrees. Step counts are divided by 3 in TS. Multiply back out here
}
doStep();
}
currentStatus.idleLoad = idleStepper.curIdleStep >> 1; //Current step count (Divided by 2 for byte)
break;
case IAC_ALGORITHM_STEP_CL://Case 5 is closed loop stepper control
//First thing to check is whether there is currently a step going on and if so, whether it needs to be turned off
if( checkForStepping() ) { return; } //If this is true it means there's either a step taking place or
if( !isStepperHomed() ) { return; } //Check whether homing is completed yet.
if( (idleCounter & 31) == 1) { idlePID.SetTunings(configPage3.idleKP, configPage3.idleKI, configPage3.idleKD); } //This only needs to be run very infrequently, once every 32 calls to idleControl(). This is approx. once per second
idle_cl_target_rpm = table2D_getValue(&iacClosedLoopTable, currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET) * 10; //All temps are offset by 40 degrees
idlePID.Compute();
idleStepper.targetIdleStep = idle_pid_target_value;
doStep();
currentStatus.idleLoad = idleStepper.curIdleStep >> 1; //Current step count (Divided by 2 for byte)
idleCounter++;
break;
}
}
/*
Checks whether the stepper has been homed yet. If it hasn't, will handle the next step
Returns:
True: If the system has been homed. No other action is taken
False: If the motor has not yet been homed. Will also perform another homing step.
*/
static inline byte isStepperHomed()
{
if( completedHomeSteps < (configPage4.iacStepHome * 3) ) //Home steps are divided by 3 from TS
{
digitalWrite(pinStepperDir, STEPPER_BACKWARD); //Sets stepper direction to backwards
digitalWrite(pinStepperStep, HIGH);
idleStepper.stepStartTime = micros();
idleStepper.stepperStatus = STEPPING;
completedHomeSteps++;
idleOn = true;
return false;
}
return true;
}
/*
Checks whether a step is currently underway or whether the motor is in 'cooling' state (ie whether it's ready to begin another step or not)
Returns:
True: If a step is underway or motor is 'cooling'
False: If the motor is ready for another step
*/
static inline byte checkForStepping()
{
if(idleStepper.stepperStatus == STEPPING || idleStepper.stepperStatus == COOLING)
{
if(micros() > (idleStepper.stepStartTime + iacStepTime) )
{
if(idleStepper.stepperStatus == STEPPING)
{
//Means we're currently in a step, but it needs to be turned off
digitalWrite(pinStepperStep, LOW); //Turn off the step
idleStepper.stepStartTime = micros();
idleStepper.stepperStatus = COOLING; //'Cooling' is the time the stepper needs to sit in LOW state before the next step can be made
return true;
}
else
{
//Means we're in COOLING status but have been in this state long enough to
idleStepper.stepperStatus = SOFF;
}
}
else
{
//Means we're in a step, but it doesn't need to turn off yet. No further action at this time
return true;
}
}
return false;
}
/*
Performs a step
*/
static inline void doStep()
{
if ( idleStepper.targetIdleStep > (idleStepper.curIdleStep - configPage4.iacStepHyster) && idleStepper.targetIdleStep < (idleStepper.curIdleStep + configPage4.iacStepHyster) ) { return; } //Hysteris check
else if(idleStepper.targetIdleStep < idleStepper.curIdleStep) { digitalWrite(pinStepperDir, STEPPER_BACKWARD); idleStepper.curIdleStep--; }//Sets stepper direction to backwards
else if (idleStepper.targetIdleStep > idleStepper.curIdleStep) { digitalWrite(pinStepperDir, STEPPER_FORWARD); idleStepper.curIdleStep++; }//Sets stepper direction to forwards
digitalWrite(pinStepperStep, HIGH);
idleStepper.stepStartTime = micros();
idleStepper.stepperStatus = STEPPING;
idleOn = true;
}
//This function simply turns off the idle PWM and sets the pin low
static inline void disableIdle()
{
if(configPage4.iacAlgorithm == IAC_ALGORITHM_PWM_CL || configPage4.iacAlgorithm == IAC_ALGORITHM_PWM_OL)
{
IDLE_TIMER_DISABLE();
digitalWrite(pinIdle1, LOW);
}
else if (configPage4.iacAlgorithm == IAC_ALGORITHM_STEP_CL || configPage4.iacAlgorithm == IAC_ALGORITHM_STEP_OL)
{
idleStepper.targetIdleStep = 1; //Home the stepper
if( checkForStepping() ) { return; } //If this is true it means there's either a step taking place or
if( !isStepperHomed() ) { return; } //Check whether homing is completed yet.
doStep();
}
}
//Any common functions associated with starting the Idle
//Typically this is enabling the PWM interrupt
static inline void enableIdle()
{
if(configPage4.iacAlgorithm == IAC_ALGORITHM_PWM_CL || configPage4.iacAlgorithm == IAC_ALGORITHM_PWM_OL)
{
IDLE_TIMER_ENABLE();
}
else if (configPage4.iacAlgorithm == IAC_ALGORITHM_STEP_CL || configPage4.iacAlgorithm == IAC_ALGORITHM_STEP_OL)
{
}
}
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__) //AVR chips use the ISR for this
ISR(TIMER4_COMPC_vect)
#elif defined (CORE_TEENSY)
static inline void idleInterrupt() //Most ARM chips can simply call a function
#endif
{
if (idle_pwm_state)
{
if (configPage4.iacPWMdir == 0)
{
//Normal direction
*idle_pin_port &= ~(idle_pin_mask); // Switch pin to low (1 pin mode)
if(configPage4.iacChannels) { *idle2_pin_port |= (idle2_pin_mask); } //If 2 idle channels are in use, flip idle2 to be the opposite of idle1
}
else
{
//Reversed direction
*idle_pin_port |= (idle_pin_mask); // Switch pin high
if(configPage4.iacChannels) { *idle2_pin_port &= ~(idle2_pin_mask); } //If 2 idle channels are in use, flip idle2 to be the opposite of idle1
}
IDLE_COMPARE = IDLE_COUNTER + (idle_pwm_max_count - idle_pwm_cur_value);
idle_pwm_state = false;
}
else
{
if (configPage4.iacPWMdir == 0)
{
//Normal direction
*idle_pin_port |= (idle_pin_mask); // Switch pin high
if(configPage4.iacChannels) { *idle2_pin_port &= ~(idle2_pin_mask); } //If 2 idle channels are in use, flip idle2 to be the opposite of idle1
}
else
{
//Reversed direction
*idle_pin_port &= ~(idle_pin_mask); // Switch pin to low (1 pin mode)
if(configPage4.iacChannels) { *idle2_pin_port |= (idle2_pin_mask); } //If 2 idle channels are in use, flip idle2 to be the opposite of idle1
}
IDLE_COMPARE = IDLE_COUNTER + idle_pwm_target_value;
idle_pwm_cur_value = idle_pwm_target_value;
idle_pwm_state = true;
}
}