1483 lines
61 KiB
C++
1483 lines
61 KiB
C++
/*
|
|
Speeduino - Simple engine management for the Arduino Mega 2560 platform
|
|
Copyright (C) Josh Stewart
|
|
A full copy of the license may be found in the projects root directory
|
|
*/
|
|
|
|
/*
|
|
Processes the data on the serial buffer.
|
|
Can be either a new command or a continuation of one that is already in progress:
|
|
* cmdPending = If a command has started but is wairing on further data to complete
|
|
* chunkPending = Specifically for the new receive value method where TS will send a known number of contiguous bytes to be written to a table
|
|
*/
|
|
void command()
|
|
{
|
|
|
|
if (cmdPending == false) { currentCommand = Serial.read(); }
|
|
|
|
switch (currentCommand)
|
|
{
|
|
|
|
case 'A': // send x bytes of realtime values
|
|
sendValues(0, SERIAL_PACKET_SIZE, 0x30, 0); //send values to serial0
|
|
break;
|
|
|
|
|
|
case 'B': // Burn current values to eeprom
|
|
writeAllConfig();
|
|
break;
|
|
|
|
case 'b': // New EEPROM burn command to only burn a single page at a time
|
|
cmdPending = true;
|
|
|
|
if (Serial.available() >= 2)
|
|
{
|
|
Serial.read(); //Ignore the first table value, it's always 0
|
|
writeConfig(Serial.read());
|
|
cmdPending = false;
|
|
}
|
|
break;
|
|
|
|
case 'C': // test communications. This is used by Tunerstudio to see whether there is an ECU on a given serial port
|
|
testComm();
|
|
break;
|
|
|
|
case 'c': //Send the current loops/sec value
|
|
Serial.write(lowByte(currentStatus.loopsPerSecond));
|
|
Serial.write(highByte(currentStatus.loopsPerSecond));
|
|
break;
|
|
|
|
//The following can be used to show the amount of free memory
|
|
|
|
case 'E': // receive command button commands
|
|
cmdPending = true;
|
|
|
|
if(Serial.available() >= 2)
|
|
{
|
|
cmdGroup = Serial.read();
|
|
cmdValue = Serial.read();
|
|
cmdCombined = word(cmdGroup, cmdValue);
|
|
if (currentStatus.RPM == 0) { commandButtons(); }
|
|
|
|
cmdPending = false;
|
|
}
|
|
break;
|
|
|
|
case 'F': // send serial protocol version
|
|
Serial.print("001");
|
|
break;
|
|
|
|
case 'L': // List the contents of current page in human readable form
|
|
sendPage(true);
|
|
break;
|
|
|
|
case 'm': //Send the current free memory
|
|
currentStatus.freeRAM = freeRam();
|
|
Serial.write(lowByte(currentStatus.freeRAM));
|
|
Serial.write(highByte(currentStatus.freeRAM));
|
|
break;
|
|
|
|
case 'N': // Displays a new line. Like pushing enter in a text editor
|
|
Serial.println();
|
|
break;
|
|
|
|
case 'P': // set the current page
|
|
//A 2nd byte of data is required after the 'P' specifying the new page number.
|
|
cmdPending = true;
|
|
|
|
if (Serial.available() > 0)
|
|
{
|
|
currentPage = Serial.read();
|
|
//This converts the ascii number char into binary. Note that this will break everyything if there are ever more than 48 pages (48 = asci code for '0')
|
|
if (currentPage >= '0') { currentPage -= '0'; }
|
|
// Detecting if the current page is a table/map
|
|
if ( (currentPage == veMapPage) || (currentPage == ignMapPage) || (currentPage == afrMapPage) ) { isMap = true; }
|
|
else { isMap = false; }
|
|
cmdPending = false;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* New method for sending page values
|
|
*/
|
|
case 'p':
|
|
cmdPending = true;
|
|
|
|
//6 bytes required:
|
|
//2 - Page identifier
|
|
//2 - offset
|
|
//2 - Length
|
|
if(Serial.available() >= 6)
|
|
{
|
|
byte offset1, offset2, length1, length2;
|
|
int length;
|
|
byte tempPage;
|
|
|
|
Serial.read(); // First byte of the page identifier can be ignored. It's always 0
|
|
tempPage = Serial.read();
|
|
//currentPage = 1;
|
|
offset1 = Serial.read();
|
|
offset2 = Serial.read();
|
|
valueOffset = word(offset2, offset1);
|
|
length1 = Serial.read();
|
|
length2 = Serial.read();
|
|
length = word(length2, length1);
|
|
for(int i = 0; i < length; i++)
|
|
{
|
|
Serial.write( getPageValue(tempPage, valueOffset + i) );
|
|
}
|
|
|
|
cmdPending = false;
|
|
}
|
|
break;
|
|
|
|
case 'Q': // send code version
|
|
Serial.print("speeduino 201801-dev");
|
|
break;
|
|
|
|
case 'r': //New format for the optimised OutputChannels
|
|
cmdPending = true;
|
|
byte cmd;
|
|
if (Serial.available() >= 6)
|
|
{
|
|
tsCanId = Serial.read(); //Read the $tsCanId
|
|
cmd = Serial.read(); // read the command
|
|
|
|
uint16_t offset, length;
|
|
if(cmd == 0x30) //Send output channels command 0x30 is 48dec
|
|
{
|
|
byte tmp;
|
|
tmp = Serial.read();
|
|
offset = word(Serial.read(), tmp);
|
|
tmp = Serial.read();
|
|
length = word(Serial.read(), tmp);
|
|
sendValues(offset, length,cmd, 0);
|
|
}
|
|
else
|
|
{
|
|
//No other r/ commands should be called
|
|
}
|
|
cmdPending = false;
|
|
}
|
|
break;
|
|
|
|
case 'S': // send code version
|
|
Serial.print("Speeduino 2018.1-dev");
|
|
currentStatus.secl = 0; //This is required in TS3 due to its stricter timings
|
|
break;
|
|
|
|
case 'T': //Send 256 tooth log entries to Tuner Studios tooth logger
|
|
sendToothLog(false); //Sends tooth log values as ints
|
|
break;
|
|
|
|
case 't': // receive new Calibration info. Command structure: "t", <tble_idx> <data array>. This is an MS2/Extra command, NOT part of MS1 spec
|
|
byte tableID;
|
|
//byte canID;
|
|
|
|
//The first 2 bytes sent represent the canID and tableID
|
|
while (Serial.available() == 0) { }
|
|
tableID = Serial.read(); //Not currently used for anything
|
|
|
|
receiveCalibration(tableID); //Receive new values and store in memory
|
|
writeCalibration(); //Store received values in EEPROM
|
|
|
|
break;
|
|
|
|
case 'V': // send VE table and constants in binary
|
|
sendPage(false);
|
|
break;
|
|
|
|
case 'W': // receive new VE obr constant at 'W'+<offset>+<newbyte>
|
|
cmdPending = true;
|
|
|
|
if (isMap)
|
|
{
|
|
if(Serial.available() >= 3) // 1 additional byte is required on the MAP pages which are larger than 255 bytes
|
|
{
|
|
byte offset1, offset2;
|
|
offset1 = Serial.read();
|
|
offset2 = Serial.read();
|
|
valueOffset = word(offset2, offset1);
|
|
receiveValue(valueOffset, Serial.read());
|
|
cmdPending = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(Serial.available() >= 2)
|
|
{
|
|
valueOffset = Serial.read();
|
|
receiveValue(valueOffset, Serial.read());
|
|
cmdPending = false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case 'w':
|
|
cmdPending = true;
|
|
|
|
if(chunkPending == false)
|
|
{
|
|
//This means it's a new request
|
|
//7 bytes required:
|
|
//2 - Page identifier
|
|
//2 - offset
|
|
//2 - Length
|
|
//1 - 1st New value
|
|
if(Serial.available() >= 7)
|
|
{
|
|
byte offset1, offset2, length1, length2;
|
|
|
|
Serial.read(); // First byte of the page identifier can be ignored. It's always 0
|
|
currentPage = Serial.read();
|
|
//currentPage = 1;
|
|
offset1 = Serial.read();
|
|
offset2 = Serial.read();
|
|
valueOffset = word(offset2, offset1);
|
|
length1 = Serial.read(); // Length to be written (Should always be 1)
|
|
length2 = Serial.read(); // Length to be written (Should always be 1)
|
|
chunkSize = word(length2, length1);
|
|
|
|
chunkPending = true;
|
|
chunkComplete = 0;
|
|
}
|
|
}
|
|
//This CANNOT be an else of the above if statement as chunkPending gets set to true above
|
|
if(chunkPending == true)
|
|
{
|
|
while( (Serial.available() > 0) && (chunkComplete < chunkSize) )
|
|
{
|
|
receiveValue( (valueOffset + chunkComplete), Serial.read());
|
|
chunkComplete++;
|
|
}
|
|
if(chunkComplete >= chunkSize) { cmdPending = false; chunkPending = false; }
|
|
}
|
|
break;
|
|
|
|
case 'Z': //Totally non-standard testing function. Will be removed once calibration testing is completed. This function takes 1.5kb of program space! :S
|
|
#ifndef SMALL_FLASH_MODE
|
|
Serial.println(F("Coolant"));
|
|
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
|
|
{
|
|
Serial.print(x);
|
|
Serial.print(", ");
|
|
Serial.println(cltCalibrationTable[x]);
|
|
}
|
|
Serial.println(F("Inlet temp"));
|
|
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
|
|
{
|
|
Serial.print(x);
|
|
Serial.print(", ");
|
|
Serial.println(iatCalibrationTable[x]);
|
|
}
|
|
Serial.println(F("O2"));
|
|
for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++)
|
|
{
|
|
Serial.print(x);
|
|
Serial.print(", ");
|
|
Serial.println(o2CalibrationTable[x]);
|
|
}
|
|
Serial.println(F("WUE"));
|
|
for (int x = 0; x < 10; x++)
|
|
{
|
|
Serial.print(configPage2.wueBins[x]);
|
|
Serial.print(", ");
|
|
Serial.println(configPage1.wueValues[x]);
|
|
}
|
|
Serial.flush();
|
|
#endif
|
|
break;
|
|
|
|
case 'z': //Send 256 tooth log entries to a terminal emulator
|
|
sendToothLog(true); //Sends tooth log values as chars
|
|
break;
|
|
|
|
case '?':
|
|
#ifndef SMALL_FLASH_MODE
|
|
Serial.println
|
|
(F(
|
|
"\n"
|
|
"===Command Help===\n\n"
|
|
"All commands are single character and are concatenated with their parameters \n"
|
|
"without spaces."
|
|
"Syntax: <command>+<parameter1>+<parameter2>+<parameterN>\n\n"
|
|
"===List of Commands===\n\n"
|
|
"A - Displays 31 bytes of currentStatus values in binary (live data)\n"
|
|
"B - Burn current map and configPage values to eeprom\n"
|
|
"C - Test COM port. Used by Tunerstudio to see whether an ECU is on a given serial \n"
|
|
" port. Returns a binary number.\n"
|
|
"N - Print new line.\n"
|
|
"P - Set current page. Syntax: P+<pageNumber>\n"
|
|
"R - Same as A command\n"
|
|
"S - Display signature number\n"
|
|
"Q - Same as S command\n"
|
|
"V - Display map or configPage values in binary\n"
|
|
"W - Set one byte in map or configPage. Expects binary parameters. \n"
|
|
" Syntax: W+<offset>+<newbyte>\n"
|
|
"t - Set calibration values. Expects binary parameters. Table index is either 0, \n"
|
|
" 1, or 2. Syntax: t+<tble_idx>+<newValue1>+<newValue2>+<newValueN>\n"
|
|
"Z - Display calibration values\n"
|
|
"T - Displays 256 tooth log entries in binary\n"
|
|
"r - Displays 256 tooth log entries\n"
|
|
"? - Displays this help page"
|
|
));
|
|
#endif
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
This function returns the current values of a fixed group of variables
|
|
*/
|
|
//void sendValues(int packetlength, byte portNum)
|
|
void sendValues(uint16_t offset, uint16_t packetLength, byte cmd, byte portNum)
|
|
{
|
|
byte fullStatus[SERIAL_PACKET_SIZE];
|
|
|
|
if (portNum == 3)
|
|
{
|
|
//CAN serial
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)|| defined(CORE_STM32) || defined (CORE_TEENSY) //ATmega2561 does not have Serial3
|
|
if (offset == 0)
|
|
{
|
|
CANSerial.write("A"); //confirm cmd type
|
|
}
|
|
else
|
|
{
|
|
CANSerial.write("r"); //confirm cmd type
|
|
CANSerial.write(cmd);
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
if(requestCount == 0) { currentStatus.secl = 0; }
|
|
requestCount++;
|
|
}
|
|
|
|
currentStatus.spark ^= (-currentStatus.hasSync ^ currentStatus.spark) & (1 << BIT_SPARK_SYNC); //Set the sync bit of the Spark variable to match the hasSync variable
|
|
|
|
fullStatus[0] = currentStatus.secl; //secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0)
|
|
fullStatus[1] = currentStatus.status1; //status1 Bitfield
|
|
fullStatus[2] = currentStatus.engine; //Engine Status Bitfield
|
|
fullStatus[3] = (byte)(divu100(currentStatus.dwell)); //Dwell in ms * 10
|
|
fullStatus[4] = lowByte(currentStatus.MAP); //2 bytes for MAP
|
|
fullStatus[5] = highByte(currentStatus.MAP);
|
|
fullStatus[6] = (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET); //mat
|
|
fullStatus[7] = (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //Coolant ADC
|
|
fullStatus[8] = currentStatus.batCorrection; //Battery voltage correction (%)
|
|
fullStatus[9] = currentStatus.battery10; //battery voltage
|
|
fullStatus[10] = currentStatus.O2; //O2
|
|
fullStatus[11] = currentStatus.egoCorrection; //Exhaust gas correction (%)
|
|
fullStatus[12] = currentStatus.iatCorrection; //Air temperature Correction (%)
|
|
fullStatus[13] = currentStatus.wueCorrection; //Warmup enrichment (%)
|
|
fullStatus[14] = lowByte(currentStatus.RPM); //rpm HB
|
|
fullStatus[15] = highByte(currentStatus.RPM); //rpm LB
|
|
fullStatus[16] = (byte)(currentStatus.TAEamount >> 1); //TPS acceleration enrichment (%) divided by 2 (Can exceed 255)
|
|
fullStatus[17] = currentStatus.corrections; //Total GammaE (%)
|
|
fullStatus[18] = currentStatus.VE; //Current VE 1 (%)
|
|
fullStatus[19] = currentStatus.afrTarget;
|
|
fullStatus[20] = lowByte(currentStatus.PW1); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[21] = highByte(currentStatus.PW1); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[22] = currentStatus.tpsDOT; //TPS DOT
|
|
fullStatus[23] = currentStatus.advance;
|
|
fullStatus[24] = currentStatus.TPS; // TPS (0% to 100%)
|
|
//Need to split the int loopsPerSecond value into 2 bytes
|
|
fullStatus[25] = lowByte(currentStatus.loopsPerSecond);
|
|
fullStatus[26] = highByte(currentStatus.loopsPerSecond);
|
|
|
|
//The following can be used to show the amount of free memory
|
|
currentStatus.freeRAM = freeRam();
|
|
fullStatus[27] = lowByte(currentStatus.freeRAM); //(byte)((currentStatus.loopsPerSecond >> 8) & 0xFF);
|
|
fullStatus[28] = highByte(currentStatus.freeRAM);
|
|
|
|
fullStatus[29] = (byte)(currentStatus.boostTarget >> 1); //Divide boost target by 2 to fit in a byte
|
|
fullStatus[30] = (byte)(currentStatus.boostDuty / 100);
|
|
fullStatus[31] = currentStatus.spark; //Spark related bitfield
|
|
|
|
//rpmDOT must be sent as a signed integer
|
|
fullStatus[32] = lowByte(currentStatus.rpmDOT);
|
|
fullStatus[33] = highByte(currentStatus.rpmDOT);
|
|
|
|
fullStatus[34] = currentStatus.ethanolPct; //Flex sensor value (or 0 if not used)
|
|
fullStatus[35] = currentStatus.flexCorrection; //Flex fuel correction (% above or below 100)
|
|
fullStatus[36] = currentStatus.flexIgnCorrection; //Ignition correction (Increased degrees of advance) for flex fuel
|
|
|
|
fullStatus[37] = currentStatus.idleLoad;
|
|
fullStatus[38] = currentStatus.testOutputs;
|
|
|
|
fullStatus[39] = currentStatus.O2_2; //O2
|
|
fullStatus[40] = currentStatus.baro; //Barometer value
|
|
|
|
fullStatus[41] = lowByte(currentStatus.canin[0]);
|
|
fullStatus[42] = highByte(currentStatus.canin[0]);
|
|
fullStatus[43] = lowByte(currentStatus.canin[1]);
|
|
fullStatus[44] = highByte(currentStatus.canin[1]);
|
|
fullStatus[45] = lowByte(currentStatus.canin[2]);
|
|
fullStatus[46] = highByte(currentStatus.canin[2]);
|
|
fullStatus[47] = lowByte(currentStatus.canin[3]);
|
|
fullStatus[48] = highByte(currentStatus.canin[3]);
|
|
fullStatus[49] = lowByte(currentStatus.canin[4]);
|
|
fullStatus[50] = highByte(currentStatus.canin[4]);
|
|
fullStatus[51] = lowByte(currentStatus.canin[5]);
|
|
fullStatus[52] = highByte(currentStatus.canin[5]);
|
|
fullStatus[53] = lowByte(currentStatus.canin[6]);
|
|
fullStatus[54] = highByte(currentStatus.canin[6]);
|
|
fullStatus[55] = lowByte(currentStatus.canin[7]);
|
|
fullStatus[56] = highByte(currentStatus.canin[7]);
|
|
fullStatus[57] = lowByte(currentStatus.canin[8]);
|
|
fullStatus[58] = highByte(currentStatus.canin[8]);
|
|
fullStatus[59] = lowByte(currentStatus.canin[9]);
|
|
fullStatus[60] = highByte(currentStatus.canin[9]);
|
|
fullStatus[61] = lowByte(currentStatus.canin[10]);
|
|
fullStatus[62] = highByte(currentStatus.canin[10]);
|
|
fullStatus[63] = lowByte(currentStatus.canin[11]);
|
|
fullStatus[64] = highByte(currentStatus.canin[11]);
|
|
fullStatus[65] = lowByte(currentStatus.canin[12]);
|
|
fullStatus[66] = highByte(currentStatus.canin[12]);
|
|
fullStatus[67] = lowByte(currentStatus.canin[13]);
|
|
fullStatus[68] = highByte(currentStatus.canin[13]);
|
|
fullStatus[69] = lowByte(currentStatus.canin[14]);
|
|
fullStatus[70] = highByte(currentStatus.canin[14]);
|
|
fullStatus[71] = lowByte(currentStatus.canin[15]);
|
|
fullStatus[72] = highByte(currentStatus.canin[15]);
|
|
|
|
fullStatus[73] = currentStatus.tpsADC;
|
|
fullStatus[74] = getNextError();
|
|
|
|
fullStatus[75] = lowByte(currentStatus.PW2); //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[76] = highByte(currentStatus.PW2); //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[77] = lowByte(currentStatus.PW3); //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[78] = highByte(currentStatus.PW3); //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[79] = lowByte(currentStatus.PW4); //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
fullStatus[80] = highByte(currentStatus.PW4); //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.
|
|
|
|
for(byte x=0; x<packetLength; x++)
|
|
{
|
|
if (portNum == 0) { Serial.write(fullStatus[offset+x]); }
|
|
else if (portNum == 3){ CANSerial.write(fullStatus[offset+x]); }
|
|
}
|
|
|
|
}
|
|
|
|
void receiveValue(int valueOffset, byte newValue)
|
|
{
|
|
|
|
void* pnt_configPage;//This only stores the address of the value that it's pointing to and not the max size
|
|
int tempOffset;
|
|
|
|
switch (currentPage)
|
|
{
|
|
case veMapPage:
|
|
if (valueOffset < 256) //New value is part of the fuel map
|
|
{
|
|
fuelTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
|
|
}
|
|
else
|
|
{
|
|
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
|
|
if (valueOffset < 272)
|
|
{
|
|
//X Axis
|
|
fuelTable.axisX[(valueOffset - 256)] = ((int)(newValue) * TABLE_RPM_MULTIPLIER); //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
}
|
|
else if(valueOffset < 288)
|
|
{
|
|
//Y Axis
|
|
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order (Due to us using (0,0) in the top left rather than bottom right
|
|
fuelTable.axisY[tempOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER;
|
|
}
|
|
else
|
|
{
|
|
//This should never happen. It means there's an invalid offset value coming through
|
|
}
|
|
}
|
|
break;
|
|
|
|
case veSetPage:
|
|
pnt_configPage = &configPage1; //Setup a pointer to the relevant config page
|
|
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
|
|
if (valueOffset < npage_size[veSetPage])
|
|
{
|
|
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
|
|
}
|
|
break;
|
|
|
|
case ignMapPage: //Ignition settings page (Page 2)
|
|
if (valueOffset < 256) //New value is part of the ignition map
|
|
{
|
|
ignitionTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
|
|
}
|
|
else
|
|
{
|
|
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
|
|
if (valueOffset < 272)
|
|
{
|
|
//X Axis
|
|
ignitionTable.axisX[(valueOffset - 256)] = (int)(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct
|
|
}
|
|
else if(valueOffset < 288)
|
|
{
|
|
//Y Axis
|
|
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order
|
|
ignitionTable.axisY[tempOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ignSetPage:
|
|
pnt_configPage = &configPage2;
|
|
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
|
|
if (valueOffset < npage_size[ignSetPage])
|
|
{
|
|
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
|
|
}
|
|
break;
|
|
|
|
case afrMapPage: //Air/Fuel ratio target settings page
|
|
if (valueOffset < 256) //New value is part of the afr map
|
|
{
|
|
afrTable.values[15 - (valueOffset / 16)][valueOffset % 16] = newValue;
|
|
}
|
|
else
|
|
{
|
|
//Check whether this is on the X (RPM) or Y (MAP/TPS) axis
|
|
if (valueOffset < 272)
|
|
{
|
|
//X Axis
|
|
afrTable.axisX[(valueOffset - 256)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
}
|
|
else
|
|
{
|
|
//Y Axis
|
|
tempOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order
|
|
afrTable.axisY[tempOffset] = int(newValue) * TABLE_LOAD_MULTIPLIER;
|
|
|
|
}
|
|
}
|
|
break;
|
|
|
|
case afrSetPage:
|
|
pnt_configPage = &configPage3;
|
|
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
|
|
if (valueOffset < npage_size[afrSetPage])
|
|
{
|
|
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
|
|
}
|
|
break;
|
|
|
|
case boostvvtPage: //Boost, VVT and staging maps (all 8x8)
|
|
if (valueOffset < 64) //New value is part of the boost map
|
|
{
|
|
boostTable.values[7 - (valueOffset / 8)][valueOffset % 8] = newValue;
|
|
}
|
|
else if (valueOffset < 72) //New value is on the X (RPM) axis of the boost table
|
|
{
|
|
boostTable.axisX[(valueOffset - 64)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
}
|
|
else if (valueOffset < 80) //New value is on the Y (TPS) axis of the boost table
|
|
{
|
|
boostTable.axisY[(7 - (valueOffset - 72))] = int(newValue); //TABLE_LOAD_MULTIPLIER is NOT used for boost as it is TPS based (0-100)
|
|
}
|
|
//End of boost table
|
|
else if (valueOffset < 144) //New value is part of the vvt map
|
|
{
|
|
tempOffset = valueOffset - 80;
|
|
vvtTable.values[7 - (tempOffset / 8)][tempOffset % 8] = newValue;
|
|
}
|
|
else if (valueOffset < 152) //New value is on the X (RPM) axis of the vvt table
|
|
{
|
|
tempOffset = valueOffset - 144;
|
|
vvtTable.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
}
|
|
else if (valueOffset < 160) //New value is on the Y (Load) axis of the vvt table
|
|
{
|
|
tempOffset = valueOffset - 152;
|
|
vvtTable.axisY[(7 - tempOffset)] = int(newValue); //TABLE_LOAD_MULTIPLIER is NOT used for vvt as it is TPS based (0-100)
|
|
}
|
|
//End of vvt table
|
|
else if (valueOffset < 224) //New value is part of the staging map
|
|
{
|
|
tempOffset = valueOffset - 160;
|
|
stagingTable.values[7 - (tempOffset / 8)][tempOffset % 8] = newValue;
|
|
}
|
|
else if (valueOffset < 232) //New value is on the X (RPM) axis of the staging table
|
|
{
|
|
tempOffset = valueOffset - 224;
|
|
stagingTable.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
}
|
|
else if (valueOffset < 240) //New value is on the Y (Load) axis of the staging table
|
|
{
|
|
tempOffset = valueOffset - 232;
|
|
stagingTable.axisY[(7 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER;
|
|
}
|
|
break;
|
|
|
|
case seqFuelPage:
|
|
if (valueOffset < 36) { trim1Table.values[5 - (valueOffset / 6)][valueOffset % 6] = newValue; } //Trim1 values
|
|
else if (valueOffset < 42) { trim1Table.axisX[(valueOffset - 36)] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the trim1 table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
else if (valueOffset < 48) { trim1Table.axisY[(5 - (valueOffset - 42))] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (TPS) axis of the boost table
|
|
//Trim table 2
|
|
else if (valueOffset < 84) { tempOffset = valueOffset - 48; trim2Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
|
|
else if (valueOffset < 90) { tempOffset = valueOffset - 84; trim2Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
else if (valueOffset < 96) { tempOffset = valueOffset - 90; trim2Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
|
|
//Trim table 3
|
|
else if (valueOffset < 132) { tempOffset = valueOffset - 96; trim3Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
|
|
else if (valueOffset < 138) { tempOffset = valueOffset - 132; trim3Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
else if (valueOffset < 144) { tempOffset = valueOffset - 138; trim3Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
|
|
//Trim table 4
|
|
else if (valueOffset < 180) { tempOffset = valueOffset - 144; trim4Table.values[5 - (tempOffset / 6)][tempOffset % 6] = newValue; } //New value is part of the trim2 map
|
|
else if (valueOffset < 186) { tempOffset = valueOffset - 180; trim4Table.axisX[tempOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER)
|
|
else if (valueOffset < 192) { tempOffset = valueOffset - 186; trim4Table.axisY[(5 - tempOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table
|
|
|
|
break;
|
|
|
|
case canbusPage:
|
|
pnt_configPage = &configPage10;
|
|
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
|
|
if (valueOffset < npage_size[currentPage])
|
|
{
|
|
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
|
|
}
|
|
break;
|
|
|
|
case warmupPage:
|
|
pnt_configPage = &configPage11;
|
|
//For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size
|
|
if (valueOffset < npage_size[currentPage])
|
|
{
|
|
*((byte *)pnt_configPage + (byte)valueOffset) = newValue;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
//if(Serial.available() > 16) { command(); }
|
|
}
|
|
|
|
/*
|
|
sendPage() packs the data within the current page (As set with the 'P' command)
|
|
into a buffer and sends it.
|
|
Note that some translation of the data is required to lay it out in the way Megasqurit / TunerStudio expect it
|
|
useChar - If true, all values are send as chars, this is for the serial command line interface. TunerStudio expects data as raw values, so this must be set false in that case
|
|
*/
|
|
void sendPage(bool useChar)
|
|
{
|
|
void* pnt_configPage = &configPage1; //Default value is for safety only. Will be changed below if needed.
|
|
struct table3D currentTable = fuelTable; //Default value is for safety only. Will be changed below if needed.
|
|
byte currentTitleIndex = 0;// This corresponds to the count up to the first char of a string in pageTitles
|
|
bool sendComplete = false; //Used to track whether all send operations are complete
|
|
|
|
switch (currentPage)
|
|
{
|
|
case veMapPage:
|
|
currentTitleIndex = 0;
|
|
currentTable = fuelTable;
|
|
break;
|
|
|
|
case veSetPage:
|
|
// currentTitleIndex = 27;
|
|
if (useChar)
|
|
{
|
|
uint16_t* pnt16_configPage;
|
|
// To Display Values from Config Page 1
|
|
// When casting to the __FlashStringHelper type Serial.println uses the same subroutine as when using the F macro
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[27]);//27 is the index to the first char in the second sting in pageTitles
|
|
// The following loop displays in human readable form of all byte values in config page 1 up to but not including the first array.
|
|
// incrementing void pointers is cumbersome. Thus we have "pnt_configPage = (byte *)pnt_configPage + 1"
|
|
for (pnt_configPage = &configPage1; pnt_configPage < &configPage1.wueValues[0]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
|
|
for (byte x = 10; x; x--)// The x between the ';' has the same representation as the "x != 0" test or comparision
|
|
{
|
|
Serial.print(configPage1.wueValues[10 - x]);// This displays the values horizantially on the screen
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
for (pnt_configPage = (byte *)&configPage1.wueValues[9] + 1; pnt_configPage < &configPage1.inj1Ang; pnt_configPage = (byte *)pnt_configPage + 1) {
|
|
Serial.println(*((byte *)pnt_configPage));// This displays all the byte values between the last array up to but not including the first unsigned int on config page 1
|
|
}
|
|
// The following loop displays four unsigned ints
|
|
for (pnt16_configPage = (uint16_t *)&configPage1.inj1Ang; pnt16_configPage < (uint16_t*)&configPage1.inj4Ang + 1; pnt16_configPage = (uint16_t*)pnt16_configPage + 1)
|
|
{ Serial.println(*((uint16_t *)pnt16_configPage)); }
|
|
// Following loop displays byte values between the unsigned ints
|
|
for (pnt_configPage = (uint16_t *)&configPage1.inj4Ang + 1; pnt_configPage < &configPage1.mapMax; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
|
|
Serial.println(configPage1.mapMax);
|
|
// Following loop displays remaining byte values of the page
|
|
for (pnt_configPage = (uint16_t *)&configPage1.mapMax + 1; pnt_configPage < (byte *)&configPage1 + npage_size[veSetPage]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage1; } //Create a pointer to Page 1 in memory
|
|
break;
|
|
|
|
case ignMapPage:
|
|
currentTitleIndex = 42;// the index to the first char of the third string in pageTitles
|
|
currentTable = ignitionTable;
|
|
break;
|
|
|
|
case ignSetPage:
|
|
//currentTitleIndex = 56;
|
|
if (useChar)
|
|
{
|
|
//To Display Values from Config Page 2
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[56]);
|
|
Serial.println(configPage2.triggerAngle);// configPsge2.triggerAngle is an int so just display it without complication
|
|
// Following loop displays byte values after that first int up to but not including the first array in config page 2
|
|
for (pnt_configPage = (int *)&configPage2 + 1; pnt_configPage < &configPage2.taeBins[0]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
|
|
for (byte y = 2; y; y--)// Displaying two equal sized arrays
|
|
{
|
|
byte * currentVar;// A placeholder for each array
|
|
if (y == 2) {
|
|
currentVar = configPage2.taeBins;
|
|
}
|
|
else {
|
|
currentVar = configPage2.taeValues;
|
|
}
|
|
|
|
for (byte j = 4; j; j--)
|
|
{
|
|
Serial.print(currentVar[4 - j]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
}
|
|
for (byte x = 10; x ; x--)
|
|
{
|
|
Serial.print(configPage2.wueBins[10 - x]);//Displaying array horizontally across screen
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
Serial.println(configPage2.dwellLimit);// Little lonely byte stuck between two arrays. No complications just display it.
|
|
for (byte x = 6; x; x--)
|
|
{
|
|
Serial.print(configPage2.dwellCorrectionValues[6 - x]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
for (pnt_configPage = (byte *)&configPage2.dwellCorrectionValues[5] + 1; pnt_configPage < (byte *)&configPage2 + npage_size[ignSetPage]; pnt_configPage = (byte *)pnt_configPage + 1)
|
|
{
|
|
Serial.println(*((byte *)pnt_configPage));// Displaying remaining byte values of the page
|
|
}
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage2; } //Create a pointer to Page 2 in memory
|
|
break;
|
|
|
|
case afrMapPage:
|
|
currentTitleIndex = 71;//Array index to next string
|
|
currentTable = afrTable;
|
|
break;
|
|
|
|
case afrSetPage:
|
|
//currentTitleIndex = 91;
|
|
if (useChar)
|
|
{
|
|
//To Display Values from Config Page 3
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[91]);//special typecasting to enable suroutine that the F macro uses
|
|
for (pnt_configPage = &configPage3; pnt_configPage < &configPage3.voltageCorrectionBins[0]; pnt_configPage = (byte *)pnt_configPage + 1)
|
|
{
|
|
Serial.println(*((byte *)pnt_configPage));// Displaying byte values of config page 3 up to but not including the first array
|
|
}
|
|
for (byte y = 2; y; y--)// Displaying two equally sized arrays that are next to each other
|
|
{
|
|
byte * currentVar;
|
|
if (y == 2) { currentVar = configPage3.voltageCorrectionBins; }
|
|
else { currentVar = configPage3.injVoltageCorrectionValues; }
|
|
|
|
for (byte x = 6; x; x--)
|
|
{
|
|
Serial.print(currentVar[6 - x]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
}
|
|
for (byte y = 2; y; y--)// and again
|
|
{
|
|
byte* currentVar;
|
|
if (y == 2) { currentVar = configPage3.airDenBins; }
|
|
else { currentVar = configPage3.airDenRates; }
|
|
|
|
for (byte x = 9; x; x--)
|
|
{
|
|
Serial.print(currentVar[9 - x]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
}
|
|
// Following loop displays the remaining byte values of the page
|
|
for (pnt_configPage = (byte *)&configPage3.airDenRates[8] + 1; pnt_configPage < (byte *)&configPage3 + npage_size[afrSetPage]; pnt_configPage = (byte *)pnt_configPage + 1)
|
|
{
|
|
Serial.println(*((byte *)pnt_configPage));
|
|
}
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage3; } //Create a pointer to Page 3 in memory
|
|
|
|
//Old configPage4 STARTED HERE!
|
|
//currentTitleIndex = 106;
|
|
//To Display Values from Config Page 4
|
|
if (useChar)
|
|
{
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[106]);// F macro hack
|
|
for (byte y = 4; y; y--)// Display four equally sized arrays
|
|
{
|
|
byte * currentVar;
|
|
switch (y)
|
|
{
|
|
case 1: currentVar = configPage3.iacBins; break;
|
|
case 2: currentVar = configPage3.iacOLPWMVal; break;
|
|
case 3: currentVar = configPage3.iacOLStepVal; break;
|
|
case 4: currentVar = configPage3.iacCLValues; break;
|
|
default: break;
|
|
}
|
|
for (byte x = 10; x; x--)
|
|
{
|
|
Serial.print(currentVar[10 - x]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
}
|
|
for (byte y = 3; y; y--)// Three equally sized arrays
|
|
{
|
|
byte * currentVar;
|
|
switch (y)
|
|
{
|
|
case 1: currentVar = configPage3.iacCrankBins; break;
|
|
case 2: currentVar = configPage3.iacCrankDuty; break;
|
|
case 3: currentVar = configPage3.iacCrankSteps; break;
|
|
default: break;
|
|
}
|
|
for (byte x = 4; x; x--)
|
|
{
|
|
Serial.print(currentVar[4 - x]);
|
|
Serial.print(' ');
|
|
}
|
|
Serial.println();
|
|
}
|
|
// Following loop is for remaining byte value of page
|
|
for (pnt_configPage = (byte *)&configPage3.iacCrankBins[3] + 1; pnt_configPage < (byte *)&configPage3 + npage_size[afrSetPage]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); }
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage3; } //Create a pointer to Page 4 in memory
|
|
break;
|
|
|
|
case boostvvtPage:
|
|
if(useChar)
|
|
{
|
|
currentTable = boostTable;
|
|
currentTitleIndex = 121;
|
|
}
|
|
else
|
|
{
|
|
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
|
|
byte response[80]; //Bit hacky, but send 1 map at a time (Each map is 8x8, so 64 + 8 + 8)
|
|
|
|
//Boost table
|
|
for (int x = 0; x < 64; x++) { response[x] = boostTable.values[7 - (x / 8)][x % 8]; }
|
|
for (int x = 64; x < 72; x++) { response[x] = byte(boostTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 72; y < 80; y++) { response[y] = byte(boostTable.axisY[7 - (y - 72)]); }
|
|
Serial.write((byte *)&response, 80);
|
|
//VVT table
|
|
for (int x = 0; x < 64; x++) { response[x] = vvtTable.values[7 - (x / 8)][x % 8]; }
|
|
for (int x = 64; x < 72; x++) { response[x] = byte(vvtTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 72; y < 80; y++) { response[y] = byte(vvtTable.axisY[7 - (y - 72)]); }
|
|
Serial.write((byte *)&response, 80);
|
|
//Staging table
|
|
for (int x = 0; x < 64; x++) { response[x] = stagingTable.values[7 - (x / 8)][x % 8]; }
|
|
for (int x = 64; x < 72; x++) { response[x] = byte(stagingTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 72; y < 80; y++) { response[y] = byte(stagingTable.axisY[7 - (y - 72)] / TABLE_LOAD_MULTIPLIER); }
|
|
Serial.write((byte *)&response, 80);
|
|
sendComplete = true;
|
|
}
|
|
break;
|
|
|
|
case seqFuelPage:
|
|
if(useChar)
|
|
{
|
|
currentTable = trim1Table;
|
|
for (int y = 0; y < currentTable.ySize; y++)
|
|
{
|
|
byte axisY = byte(currentTable.axisY[y]);
|
|
if (axisY < 100)
|
|
{
|
|
Serial.write(" ");
|
|
if (axisY < 10)
|
|
{
|
|
Serial.write(" ");
|
|
}
|
|
}
|
|
Serial.print(axisY);// Vertical Bins
|
|
Serial.write(" ");
|
|
for (int x = 0; x < currentTable.xSize; x++)
|
|
{
|
|
byte value = currentTable.values[y][x];
|
|
if (value < 100)
|
|
{
|
|
Serial.write(" ");
|
|
if (value < 10)
|
|
{
|
|
Serial.write(" ");
|
|
}
|
|
}
|
|
Serial.print(value);
|
|
Serial.write(" ");
|
|
}
|
|
Serial.println("");
|
|
}
|
|
sendComplete = true;
|
|
//Do.... Something?
|
|
}
|
|
else
|
|
{
|
|
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
|
|
byte response[192]; //Bit hacky, but the size is: (6x6 + 6 + 6) * 4 = 192
|
|
|
|
//trim1 table
|
|
for (int x = 0; x < 36; x++) { response[x] = trim1Table.values[5 - (x / 6)][x % 6]; }
|
|
for (int x = 36; x < 42; x++) { response[x] = byte(trim1Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 42; y < 48; y++) { response[y] = byte(trim1Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
//trim2 table
|
|
for (int x = 0; x < 36; x++) { response[x + 48] = trim2Table.values[5 - (x / 6)][x % 6]; }
|
|
for (int x = 36; x < 42; x++) { response[x + 48] = byte(trim2Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 42; y < 48; y++) { response[y + 48] = byte(trim2Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
//trim3 table
|
|
for (int x = 0; x < 36; x++) { response[x + 96] = trim3Table.values[5 - (x / 6)][x % 6]; }
|
|
for (int x = 36; x < 42; x++) { response[x + 96] = byte(trim3Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 42; y < 48; y++) { response[y + 96] = byte(trim3Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
//trim4 table
|
|
for (int x = 0; x < 36; x++) { response[x + 144] = trim4Table.values[5 - (x / 6)][x % 6]; }
|
|
for (int x = 36; x < 42; x++) { response[x + 144] = byte(trim4Table.axisX[(x - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
for (int y = 42; y < 48; y++) { response[y + 144] = byte(trim4Table.axisY[5 - (y - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
Serial.write((byte *)&response, sizeof(response));
|
|
sendComplete = true;
|
|
}
|
|
break;
|
|
|
|
case canbusPage:
|
|
//currentTitleIndex = 141;
|
|
if (useChar)
|
|
{
|
|
//To Display Values from Config Page 10
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[141]);//special typecasting to enable suroutine that the F macro uses
|
|
for (pnt_configPage = &configPage10; pnt_configPage < ((byte *)pnt_configPage + 128); pnt_configPage = (byte *)pnt_configPage + 1)
|
|
{
|
|
Serial.println(*((byte *)pnt_configPage));// Displaying byte values of config page 3 up to but not including the first array
|
|
}
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage10; } //Create a pointer to Page 10 in memory
|
|
break;
|
|
|
|
case warmupPage:
|
|
if (useChar)
|
|
{
|
|
sendComplete = true;
|
|
}
|
|
else { pnt_configPage = &configPage11; } //Create a pointer to Page 11 in memory
|
|
break;
|
|
|
|
default:
|
|
#ifndef SMALL_FLASH_MODE
|
|
Serial.println(F("\nPage has not been implemented yet"));
|
|
#endif
|
|
//Just set default Values to avoid warnings
|
|
pnt_configPage = &configPage11;
|
|
currentTable = fuelTable;
|
|
sendComplete = true;
|
|
break;
|
|
}
|
|
if(!sendComplete)
|
|
{
|
|
if (isMap)
|
|
{
|
|
if (useChar)
|
|
{
|
|
do //This is a do while loop that kicks in for the boostvvtPage
|
|
{
|
|
const char spaceChar = ' ';
|
|
/*while(pageTitles[currentTitleIndex])
|
|
{
|
|
Serial.print(pageTitles[currentTitleIndex]);
|
|
currentTitleIndex++;
|
|
}*/
|
|
Serial.println((const __FlashStringHelper *)&pageTitles[currentTitleIndex]);// F macro hack
|
|
Serial.println();
|
|
for (int y = 0; y < currentTable.ySize; y++)
|
|
{
|
|
byte axisY = byte(currentTable.axisY[y]);
|
|
if (axisY < 100)
|
|
{
|
|
Serial.write(spaceChar);
|
|
if (axisY < 10)
|
|
{
|
|
Serial.write(spaceChar);
|
|
}
|
|
}
|
|
Serial.print(axisY);// Vertical Bins
|
|
Serial.write(spaceChar);
|
|
for (int i = 0; i < currentTable.xSize; i++)
|
|
{
|
|
byte value = currentTable.values[y][i];
|
|
if (value < 100)
|
|
{
|
|
Serial.write(spaceChar);
|
|
if (value < 10)
|
|
{
|
|
Serial.write(spaceChar);
|
|
}
|
|
}
|
|
Serial.print(value);
|
|
Serial.write(spaceChar);
|
|
}
|
|
Serial.println();
|
|
}
|
|
Serial.print(F(" "));
|
|
for (int x = 0; x < currentTable.xSize; x++)// Horizontal bins
|
|
{
|
|
byte axisX = byte(currentTable.axisX[x] / 100);
|
|
if (axisX < 100)
|
|
{
|
|
Serial.write(spaceChar);
|
|
if (axisX < 10)
|
|
{
|
|
Serial.write(spaceChar);
|
|
}
|
|
}
|
|
Serial.print(axisX);
|
|
Serial.write(spaceChar);
|
|
}
|
|
Serial.println();
|
|
if(currentTitleIndex == 121) //Check to see if on boostTable
|
|
{
|
|
currentTitleIndex = 132; //Change over to vvtTable mid display
|
|
currentTable = vvtTable;
|
|
}
|
|
else currentTitleIndex = 0;
|
|
}while(currentTitleIndex == 132); //Should never loop unless going to display vvtTable
|
|
} //use char
|
|
else
|
|
{
|
|
//Need to perform a translation of the values[yaxis][xaxis] into the MS expected format
|
|
//MS format has origin (0,0) in the bottom left corner, we use the top left for efficiency reasons
|
|
byte response[MAP_PAGE_SIZE];
|
|
|
|
for (int x = 0; x < 256; x++) { response[x] = currentTable.values[15 - (x / 16)][x % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
|
|
//loop();
|
|
for (int x = 256; x < 272; x++) { response[x] = byte(currentTable.axisX[(x - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
|
|
//loop();
|
|
for (int y = 272; y < 288; y++) { response[y] = byte(currentTable.axisY[15 - (y - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
|
|
//loop();
|
|
Serial.write((byte *)&response, sizeof(response));
|
|
}
|
|
} //is map
|
|
else
|
|
{
|
|
/*if(useChar)
|
|
{
|
|
while(pageTitles[currentTitleIndex])
|
|
{
|
|
Serial.print(pageTitles[currentTitleIndex]);
|
|
currentTitleIndex++;
|
|
}
|
|
Serial.println();
|
|
for(byte x=0;x<page_size;x++) Serial.println(*((byte *)pnt_configPage + x));
|
|
}
|
|
else
|
|
{*/
|
|
//All other bytes can simply be copied from the config table
|
|
//byte response[npage_size[currentPage]];
|
|
for (byte x = 0; x < npage_size[currentPage]; x++)
|
|
{
|
|
//response[x] = *((byte *)pnt_configPage + x);
|
|
Serial.write(*((byte *)pnt_configPage + x)); //Each byte is simply the location in memory of the configPage + the offset + the variable number (x)
|
|
}
|
|
|
|
//Serial.write((byte *)&response, npage_size[currentPage]);
|
|
// }
|
|
} //isMap
|
|
} //sendComplete
|
|
}
|
|
|
|
byte getPageValue(byte page, uint16_t valueAddress)
|
|
{
|
|
void* pnt_configPage = &configPage1; //Default value is for safety only. Will be changed below if needed.
|
|
uint16_t tempAddress;
|
|
byte returnValue = 0;
|
|
|
|
switch (page)
|
|
{
|
|
case veMapPage:
|
|
if( valueAddress < 256) { returnValue = fuelTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
|
|
else if(valueAddress < 272) { returnValue = byte(fuelTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
|
|
else if (valueAddress < 288) { returnValue = byte(fuelTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
|
|
break;
|
|
|
|
case veSetPage:
|
|
pnt_configPage = &configPage1; //Create a pointer to Page 1 in memory
|
|
returnValue = *((byte *)pnt_configPage + valueAddress);
|
|
break;
|
|
|
|
case ignMapPage:
|
|
if( valueAddress < 256) { returnValue = ignitionTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
|
|
else if(valueAddress < 272) { returnValue = byte(ignitionTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
|
|
else if (valueAddress < 288) { returnValue = byte(ignitionTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
|
|
break;
|
|
|
|
case ignSetPage:
|
|
pnt_configPage = &configPage2; //Create a pointer to Page 2 in memory
|
|
returnValue = *((byte *)pnt_configPage + valueAddress);
|
|
break;
|
|
|
|
case afrMapPage:
|
|
if( valueAddress < 256) { returnValue = afrTable.values[15 - (valueAddress / 16)][valueAddress % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses
|
|
else if(valueAddress < 272) { returnValue = byte(afrTable.axisX[(valueAddress - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100)
|
|
else if (valueAddress < 288) { returnValue = byte(afrTable.axisY[15 - (valueAddress - 272)] / TABLE_LOAD_MULTIPLIER); } //MAP or TPS bins for VE table
|
|
break;
|
|
|
|
case afrSetPage:
|
|
pnt_configPage = &configPage3; //Create a pointer to Page 3 in memory
|
|
returnValue = *((byte *)pnt_configPage + valueAddress);
|
|
break;
|
|
|
|
case boostvvtPage:
|
|
|
|
{
|
|
//Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format
|
|
if(valueAddress < 80)
|
|
{
|
|
//Boost table
|
|
if(valueAddress < 64) { returnValue = boostTable.values[7 - (valueAddress / 8)][valueAddress % 8]; }
|
|
else if(valueAddress < 72) { returnValue = byte(boostTable.axisX[(valueAddress - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(valueAddress < 80) { returnValue = byte(boostTable.axisY[7 - (valueAddress - 72)]); }
|
|
}
|
|
else if(valueAddress < 160)
|
|
{
|
|
tempAddress = valueAddress - 80;
|
|
//VVT table
|
|
if(tempAddress < 64) { returnValue = vvtTable.values[7 - (tempAddress / 8)][tempAddress % 8]; }
|
|
else if(tempAddress < 72) { returnValue = byte(vvtTable.axisX[(tempAddress - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(tempAddress < 80) { returnValue = byte(vvtTable.axisY[7 - (tempAddress - 72)]); }
|
|
}
|
|
else
|
|
{
|
|
tempAddress = valueAddress - 160;
|
|
//Staging table
|
|
if(tempAddress < 64) { returnValue = stagingTable.values[7 - (tempAddress / 8)][tempAddress % 8]; }
|
|
else if(tempAddress < 72) { returnValue = byte(stagingTable.axisX[(tempAddress - 64)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(tempAddress < 80) { returnValue = byte(stagingTable.axisY[7 - (tempAddress - 72)] / TABLE_LOAD_MULTIPLIER); }
|
|
}
|
|
}
|
|
break;
|
|
|
|
case seqFuelPage:
|
|
|
|
{
|
|
//Need to perform a translation of the values[MAP/TPS][RPM] into the TS expected format
|
|
if(valueAddress < 48)
|
|
{
|
|
//trim1 table
|
|
if(valueAddress < 36) { returnValue = trim1Table.values[5 - (valueAddress / 6)][valueAddress % 6]; }
|
|
else if(valueAddress < 42) { returnValue = byte(trim1Table.axisX[(valueAddress - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(valueAddress < 48) { returnValue = byte(trim1Table.axisY[5 - (valueAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
}
|
|
else if(valueAddress < 96)
|
|
{
|
|
tempAddress = valueAddress - 48;
|
|
//trim2 table
|
|
if(tempAddress < 36) { returnValue = trim2Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
|
|
else if(tempAddress < 42) { returnValue = byte(trim2Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(tempAddress < 48) { returnValue = byte(trim2Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
}
|
|
else if(valueAddress < 144)
|
|
{
|
|
tempAddress = valueAddress - 96;
|
|
//trim3 table
|
|
if(tempAddress < 36) { returnValue = trim3Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
|
|
else if(tempAddress < 42) { returnValue = byte(trim3Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(tempAddress < 48) { returnValue = byte(trim3Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
}
|
|
else if(valueAddress < 192)
|
|
{
|
|
tempAddress = valueAddress - 144;
|
|
//trim4 table
|
|
if(tempAddress < 36) { returnValue = trim4Table.values[5 - (tempAddress / 6)][tempAddress % 6]; }
|
|
else if(tempAddress < 42) { returnValue = byte(trim4Table.axisX[(tempAddress - 36)] / TABLE_RPM_MULTIPLIER); }
|
|
else if(tempAddress < 48) { returnValue = byte(trim4Table.axisY[5 - (tempAddress - 42)] / TABLE_LOAD_MULTIPLIER); }
|
|
}
|
|
}
|
|
break;
|
|
|
|
case canbusPage:
|
|
pnt_configPage = &configPage10; //Create a pointer to Page 10 in memory
|
|
returnValue = *((byte *)pnt_configPage + valueAddress);
|
|
break;
|
|
|
|
case warmupPage:
|
|
pnt_configPage = &configPage11; //Create a pointer to Page 11 in memory
|
|
returnValue = *((byte *)pnt_configPage + valueAddress);
|
|
break;
|
|
|
|
default:
|
|
#ifndef SMALL_FLASH_MODE
|
|
Serial.println(F("\nPage has not been implemented yet"));
|
|
#endif
|
|
//Just set default Values to avoid warnings
|
|
pnt_configPage = &configPage11;
|
|
break;
|
|
}
|
|
return returnValue;
|
|
}
|
|
|
|
/*
|
|
This function is used to store calibration data sent by Tuner Studio.
|
|
*/
|
|
void receiveCalibration(byte tableID)
|
|
{
|
|
byte* pnt_TargetTable; //Pointer that will be used to point to the required target table
|
|
int OFFSET, DIVISION_FACTOR, BYTES_PER_VALUE, EEPROM_START;
|
|
|
|
switch (tableID)
|
|
{
|
|
case 0:
|
|
//coolant table
|
|
pnt_TargetTable = (byte *)&cltCalibrationTable;
|
|
OFFSET = CALIBRATION_TEMPERATURE_OFFSET; //
|
|
DIVISION_FACTOR = 10;
|
|
BYTES_PER_VALUE = 2;
|
|
EEPROM_START = EEPROM_CALIBRATION_CLT;
|
|
break;
|
|
case 1:
|
|
//Inlet air temp table
|
|
pnt_TargetTable = (byte *)&iatCalibrationTable;
|
|
OFFSET = CALIBRATION_TEMPERATURE_OFFSET;
|
|
DIVISION_FACTOR = 10;
|
|
BYTES_PER_VALUE = 2;
|
|
EEPROM_START = EEPROM_CALIBRATION_IAT;
|
|
break;
|
|
case 2:
|
|
//O2 table
|
|
pnt_TargetTable = (byte *)&o2CalibrationTable;
|
|
OFFSET = 0;
|
|
DIVISION_FACTOR = 1;
|
|
BYTES_PER_VALUE = 1;
|
|
EEPROM_START = EEPROM_CALIBRATION_O2;
|
|
break;
|
|
|
|
default:
|
|
OFFSET = 0;
|
|
pnt_TargetTable = (byte *)&o2CalibrationTable;
|
|
DIVISION_FACTOR = 1;
|
|
BYTES_PER_VALUE = 1;
|
|
EEPROM_START = EEPROM_CALIBRATION_O2;
|
|
break; //Should never get here, but if we do, just fail back to main loop
|
|
}
|
|
|
|
//1024 value pairs are sent. We have to receive them all, but only use every second one (We only store 512 calibratino table entries to save on EEPROM space)
|
|
//The values are sent as 2 byte ints, but we convert them to single bytes. Any values over 255 are capped at 255.
|
|
int tempValue;
|
|
byte tempBuffer[2];
|
|
bool every2nd = true;
|
|
int x;
|
|
int counter = 0;
|
|
pinMode(LED_BUILTIN, OUTPUT); //pinMode(13, OUTPUT);
|
|
|
|
digitalWrite(LED_BUILTIN, LOW); //digitalWrite(13, LOW);
|
|
for (x = 0; x < 1024; x++)
|
|
{
|
|
//UNlike what is listed in the protocol documentation, the O2 sensor values are sent as bytes rather than ints
|
|
if (BYTES_PER_VALUE == 1)
|
|
{
|
|
while ( Serial.available() < 1 ) {}
|
|
tempValue = Serial.read();
|
|
}
|
|
else
|
|
{
|
|
while ( Serial.available() < 2 ) {}
|
|
tempBuffer[0] = Serial.read();
|
|
tempBuffer[1] = Serial.read();
|
|
|
|
tempValue = div(int(word(tempBuffer[1], tempBuffer[0])), DIVISION_FACTOR).quot; //Read 2 bytes, convert to word (an unsigned int), convert to signed int. These values come through * 10 from Tuner Studio
|
|
tempValue = ((tempValue - 32) * 5) / 9; //Convert from F to C
|
|
}
|
|
tempValue = tempValue + OFFSET;
|
|
|
|
if (every2nd) //Only use every 2nd value
|
|
{
|
|
if (tempValue > 255) {
|
|
tempValue = 255; // Cap the maximum value to prevent overflow when converting to byte
|
|
}
|
|
if (tempValue < 0) {
|
|
tempValue = 0;
|
|
}
|
|
|
|
pnt_TargetTable[(x / 2)] = (byte)tempValue;
|
|
|
|
//From TS3.x onwards, the EEPROM must be written here as TS restarts immediately after the process completes which is before the EEPROM write completes
|
|
int y = EEPROM_START + (x / 2);
|
|
EEPROM.update(y, (byte)tempValue);
|
|
|
|
every2nd = false;
|
|
#if defined(CORE_STM32)
|
|
digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
|
|
#else
|
|
analogWrite(LED_BUILTIN, (counter % 50) ); //analogWrite(13, (counter % 50) );
|
|
#endif
|
|
counter++;
|
|
}
|
|
else {
|
|
every2nd = true;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
Send 256 tooth log entries
|
|
* if useChar is true, the values are sent as chars to be printed out by a terminal emulator
|
|
* if useChar is false, the values are sent as a 2 byte integer which is readable by TunerStudios tooth logger
|
|
*/
|
|
void sendToothLog(bool useChar)
|
|
{
|
|
//We need TOOTH_LOG_SIZE number of records to send to TunerStudio. If there aren't that many in the buffer then we just return and wait for the next call
|
|
if (toothHistoryIndex >= TOOTH_LOG_SIZE) //Sanity check. Flagging system means this should always be true
|
|
{
|
|
unsigned int tempToothHistory[TOOTH_LOG_BUFFER]; //Create a temporary array that will contain a copy of what is in the main toothHistory array
|
|
|
|
//Copy the working history into the temporary buffer array. This is done so that, if the history loops whilst the values are being sent over serial, it doesn't affect the values
|
|
memcpy( (void*)tempToothHistory, (void*)toothHistory, sizeof(tempToothHistory) );
|
|
toothHistoryIndex = 0; //Reset the history index
|
|
|
|
//Loop only needs to go to half the buffer size
|
|
if (useChar)
|
|
{
|
|
for (int x = 0; x < TOOTH_LOG_SIZE; x++)
|
|
{
|
|
Serial.println(tempToothHistory[x]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int x = 0; x < TOOTH_LOG_SIZE; x++)
|
|
{
|
|
Serial.write(highByte(tempToothHistory[x]));
|
|
Serial.write(lowByte(tempToothHistory[x]));
|
|
}
|
|
BIT_CLEAR(currentStatus.status1, BIT_STATUS1_TOOTHLOG1READY);
|
|
}
|
|
toothLogRead = true;
|
|
}
|
|
}
|
|
|
|
void testComm()
|
|
{
|
|
Serial.write(1);
|
|
return;
|
|
}
|
|
|
|
void commandButtons()
|
|
{
|
|
switch (cmdCombined)
|
|
{
|
|
case 256: // cmd is stop
|
|
BIT_CLEAR(currentStatus.testOutputs, 1);
|
|
digitalWrite(pinInjector1, LOW);
|
|
digitalWrite(pinInjector2, LOW);
|
|
digitalWrite(pinInjector3, LOW);
|
|
digitalWrite(pinInjector4, LOW);
|
|
digitalWrite(pinCoil1, LOW);
|
|
digitalWrite(pinCoil2, LOW);
|
|
digitalWrite(pinCoil3, LOW);
|
|
digitalWrite(pinCoil4, LOW);
|
|
break;
|
|
|
|
case 257: // cmd is enable
|
|
// currentStatus.testactive = 1;
|
|
BIT_SET(currentStatus.testOutputs, 1);
|
|
break;
|
|
case 513: // cmd group is for injector1 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector1, HIGH); }
|
|
break;
|
|
case 514: // cmd group is for injector1 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){digitalWrite(pinInjector1, LOW);}
|
|
break;
|
|
case 515: // cmd group is for injector1 50% dc actions
|
|
//for (byte dcloop = 0; dcloop < 11; dcloop++)
|
|
//{
|
|
// digitalWrite(pinInjector1, HIGH);
|
|
// delay(500);
|
|
// digitalWrite(pinInjector1, LOW);
|
|
// delay(500);
|
|
//}
|
|
break;
|
|
case 516: // cmd group is for injector2 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector2, HIGH); }
|
|
break;
|
|
case 517: // cmd group is for injector2 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector2, LOW); }
|
|
break;
|
|
case 518: // cmd group is for injector2 50%dc actions
|
|
|
|
break;
|
|
case 519: // cmd group is for injector3 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinInjector3, HIGH); }
|
|
break;
|
|
case 520: // cmd group is for injector3 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinInjector3, LOW); }
|
|
break;
|
|
case 521: // cmd group is for injector3 50%dc actions
|
|
|
|
break;
|
|
case 522: // cmd group is for injector4 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector4, HIGH); }
|
|
break;
|
|
case 523: // cmd group is for injector4 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ){ digitalWrite(pinInjector4, LOW); }
|
|
break;
|
|
case 524: // cmd group is for injector4 50% dc actions
|
|
|
|
break;
|
|
case 769: // cmd group is for spark1 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil1, HIGH); }
|
|
break;
|
|
case 770: // cmd group is for spark1 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil1, LOW); }
|
|
break;
|
|
case 771: // cmd group is for spark1 50%dc actions
|
|
|
|
break;
|
|
case 772: // cmd group is for spark2 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil2, HIGH); }
|
|
break;
|
|
case 773: // cmd group is for spark2 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil2, LOW); }
|
|
break;
|
|
case 774: // cmd group is for spark2 50%dc actions
|
|
|
|
break;
|
|
case 775: // cmd group is for spark3 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil3, HIGH); }
|
|
break;
|
|
case 776: // cmd group is for spark3 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil3, LOW); }
|
|
break;
|
|
case 777: // cmd group is for spark3 50%dc actions
|
|
|
|
break;
|
|
case 778: // cmd group is for spark4 on actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil4, HIGH); }
|
|
break;
|
|
case 779: // cmd group is for spark4 off actions
|
|
if( BIT_CHECK(currentStatus.testOutputs, 1) ) { digitalWrite(pinCoil4, LOW); }
|
|
break;
|
|
case 780: // cmd group is for spark4 50%dc actions
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|