speeduino-personal/table.h

156 lines
4.7 KiB
C

/*
This file is used for everything related to maps/tables including their definition, functions etc
*/
#include <Arduino.h>
struct table {
//All tables must be the same size for simplicity
const static byte xSize = 8;
const static byte ySize = 8;
byte values[ySize][xSize];
int axisX[xSize];
int axisY[ySize];
};
/*
Tables have an origin (0,0) in the top left hand corner. Vertical axis is expressed first.
Eg: 2x2 table
-----
|2 7|
|1 4|
-----
(0,1) = 7
(0,0) = 2
(1,0) = 1
*/
//This function pulls a value from a table given a target for X and Y coordinates.
//It performs a 2D linear interpolation as descibred in: http://www.megamanual.com/v22manual/ve_tuner.pdf
int getTableValue(struct table fromTable, int Y, int X)
{
//Loop through the X axis bins for the min/max pair
//Note: For the X axis specifically, rather than looping from tableAxisX[0] up to tableAxisX[max], we start at tableAxisX[Max] and go down.
// This is because the important tables (fuel and injection) will have the highest RPM at the top of the X axis, so starting there will mean the best case occurs when the RPM is highest (And hence the CPU is needed most)
int xMinValue = fromTable.axisX[0];
int xMaxValue = fromTable.axisX[fromTable.xSize-1];
int xMin = 0;
int xMax = 0;
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
if(X > xMaxValue) { X = xMaxValue; }
if(X < xMinValue) { X = xMinValue; }
for (int x = fromTable.xSize-1; x > 0; x--)
{
//Checks the case where the X value is exactly what was requested
if (X == fromTable.axisX[x-1])
{
xMaxValue = fromTable.axisX[x-1];
xMinValue = fromTable.axisX[x-1];
xMax = x-1;
xMin = x-1;
break;
}
//Normal case
if ( (X <= fromTable.axisX[x]) && (X >= fromTable.axisX[x-1]) )
{
xMaxValue = fromTable.axisX[x];
xMinValue = fromTable.axisX[x-1];
xMax = x;
xMin = x-1;
break;
}
}
//Loop through the Y axis bins for the min/max pair
int yMinValue = fromTable.axisY[0];
int yMaxValue = fromTable.axisY[fromTable.ySize-1];
int yMin = 0;
int yMax = 0;
//If the requested Y value is greater/small than the maximum/minimum bin, reset Y to be that value
if(Y > yMaxValue) { Y = yMaxValue; }
if(Y < yMinValue) { Y = yMinValue; }
for (int y = fromTable.ySize-1; y > 0; y--)
{
//Checks the case where the Y value is exactly what was requested
if (Y == fromTable.axisY[y-1])
{
yMaxValue = fromTable.axisY[y-1];
yMinValue = fromTable.axisY[y-1];
yMax = y-1;
yMin = y-1;
break;
}
//Normal case
if ( (Y >= fromTable.axisY[y]) && (Y <= fromTable.axisY[y-1]) )
{
yMaxValue = fromTable.axisY[y];
yMinValue = fromTable.axisY[y-1];
yMax = y;
yMin = y-1;
break;
}
}
/*
At this point we have the 4 corners of the map where the interpolated value will fall in
Eg: (yMin,xMin) (yMin,xMax)
(yMax,xMin) (yMax,xMax)
In the following calculation the table values are referred to by the following variables:
A B
C D
*/
int A = fromTable.values[yMin][xMin];
int B = fromTable.values[yMin][xMax];
int C = fromTable.values[yMax][xMin];
int D = fromTable.values[yMax][xMax];
//Create some normalised position values
//These are essentially percentages (between 0 and 1) of where the desired value falls between the nearest bins on each axis
/*
// Float version
float p = ((float)(X - xMinValue)) / (float)(xMaxValue - xMinValue);
float q = ((float)(Y - yMaxValue)) / (float)(yMinValue - yMaxValue);
float m = (1.0-p) * (1.0-q);
float n = p * (1-q);
float o = (1-p) * q;
float r = p * q;
return ( (A * m) + (B * n) + (C * o) + (D * r) );
*/
// Non-Float version:
//Initial check incase the values were hit straight on
int p;
if (xMaxValue == xMinValue)
{ p = ((X - xMinValue) << 7); } //This only occurs if the requested X value was equal to one of the X axis bins
else
{ p = ((X - xMinValue) << 7) / (xMaxValue - xMinValue); } //This is the standard case
int q;
if (yMaxValue == yMinValue)
{ q = ((Y - yMinValue) << 7); }
else
{ q = ((Y - yMaxValue) << 7) / (yMinValue - yMaxValue); }
int m = ((128-p) * (128-q)) >> 7;
int n = (p * (128-q)) >> 7;
int o = ((128-p) * q) >> 7;
int r = (p * q) >> 7;
return ( (A * m) + (B * n) + (C * o) + (D * r) ) >> 7;
}